Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = PSMA5/α5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 588 KB  
Review
Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights
by Luca Filippi, Viviana Frantellizzi, Luca Urso, Giuseppe De Vincentis and Nicoletta Urbano
Biomedicines 2025, 13(7), 1570; https://doi.org/10.3390/biomedicines13071570 - 26 Jun 2025
Viewed by 2681
Abstract
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity [...] Read more.
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity and tumor uptake but suffering from prolonged circulation times and suboptimal signal-to-background ratios. To address these limitations, interest has shifted toward low-molecular-weight vectors—synthetic peptides and small antibody fragments—labeled with shorter-lived radionuclides (e.g., 68Ga and 18F) to enable rapid pharmacokinetics and same-day imaging protocols. Emerging platforms such as affibodies and aptamers offer further advantages in target affinity and reduced immunogenicity. However, clinical translation requires rigorous validation: larger, histologically confirmed cohorts, head-to-head comparison with CT/MRI, and correlation with hard clinical endpoints. Moreover, leveraging GPC3 expression as a biomarker could guarantee a deeper knowledge of tumor biology—differentiation grade and vascular invasion risk—and guide theranostic strategies. While β-emitters (90Y, 177Lu) have been explored for GPC3-directed therapy, their efficacy is influenced by oxygenation and cell-cycle status, whereas α-emitters (225Ac) may overcome these constraints, albeit with challenges in radionuclide selection and daughter nuclide management. Finally, dual-targeting probes combining GPC3 and prostate-specific membrane antigen (PSMA) have demonstrated superior uptake and retention in murine models, suggesting a versatile approach for future clinical diagnostics and therapy planning. Full article
Show Figures

Figure 1

19 pages, 3205 KB  
Article
MSTN Regulates Bovine Skeletal Muscle Satellite Cell Differentiation via PSMA6-Mediated AKT Signaling Pathway
by Tengxia Ma, Meiling Miao, Xiangquan Liu, Linlin Zhang, Yiwen Guo, Xin Li, Xiangbin Ding, Hong Guo and Debao Hu
Int. J. Mol. Sci. 2025, 26(11), 4963; https://doi.org/10.3390/ijms26114963 - 22 May 2025
Viewed by 1284
Abstract
MSTN has been used as a candidate gene in the genetics, breeding, and improvement of animal breeds. However, the possible mechanism by which the MSTN gene regulates muscle development through PSMA6 is not well understood. Previous methylome and transcriptome sequencing analyses of gluteal [...] Read more.
MSTN has been used as a candidate gene in the genetics, breeding, and improvement of animal breeds. However, the possible mechanism by which the MSTN gene regulates muscle development through PSMA6 is not well understood. Previous methylome and transcriptome sequencing analyses of gluteal muscle tissues from MSTN+/−Luxi cattle and wild-type Luxi cattle identified that the PSMA6 gene exhibited a negative correlation between methylation levels and transcriptional activity. To investigate whether MSTN expression regulates PSMA6 gene expression, we examined the effects of MSTN on DNA methyltransferases (DNMT1, DNMT2, DNMT3A, and DNMT3B) and DNA demethylases (TET1, TET2, and TET3). Additionally, chromatin immunoprecipitation (ChIP) assays were performed to detect the binding interaction between PSMA6 and TET2. In this paper, we first established an MSTN knockdown cellular model to preliminarily validate its regulatory effect on PSMA6 expression. Subsequently, the developmental impact of PSMA6 on bovine skeletal muscle satellite cells was further investigated through both knockdown and overexpression of the PSMA6 gene. Furthermore, we examined changes in the expression of key components of the AKT/mTOR signaling pathway to elucidate the mechanisms underlying the PSMA6-mediated regulation of satellite cell development. The results demonstrate that myostatin (MSTN) inhibition significantly decreased proteasome 20S subunit alpha-6 (PSMA6) gene expression, while increasing demethylase expression, particularly ten-eleven translocation-2 (TET2), which exhibited the most pronounced changes. During the cell proliferation stage, the markers Paired Box 7 (PAX7) and Ki-67 exhibited no significant changes, whereas the PSMA6 gene was either overexpressed or disrupted. Conversely, PSMA6 overexpression altered the myogenic differentiation markers, causing the differential regulation of myosin heavy chain (MyHC) and myogenin (MyoG) expression, with MyHC upregulation and concurrent MyoG downregulation. PSMA6 gene overexpression led to the downregulation of AKT1 and Rac1, as well as the activation of the AKT/mTOR pathway, including key factors such as mTOR, p-mTOR, RPS6, p-RPS6, and RhoA. PSMA6 interference resulted in the downregulation of p-mTOR and the upregulation of p-RPS6. Gene expression profiling in our study revealed that the myostatin (MSTN) knockout model significantly reduced the transcriptional levels of the proteasome α6 subunit (PSMA6) (p < 0.05), with the regulatory intensity showing a significant negative correlation with MSTN expression. This molecular evidence substantiates a negative regulatory axis between MSTN and PSMA6. Functional experiments demonstrated that PSMA6 overexpression specifically enhanced myotube formation rates in bovine skeletal muscle satellite cells, whereas siRNA-mediated PSMA6 knockdown exhibited no significant effects on cellular proliferation, indicating the functional specificity of this gene in myogenic differentiation. Mechanistic investigations further revealed that PSMA6 activates the canonical AKT/mTOR signaling transduction cascade through the phosphorylation of AKT and its downstream effector mTOR, thereby mediating the expression of myogenic regulatory factors MyoD and myogenin. Collectively, these findings demonstrate that MSTN deficiency alleviates the transcriptional repression of PSMA6, remodels skeletal muscle differentiation-associated signaling networks, and ultimately drives the directional differentiation of satellite cells toward myofiber specification. Full article
Show Figures

Graphical abstract

19 pages, 11219 KB  
Article
The Development of Al18F-NOTA-FAP-2286 as an FAP-Targeted PET Tracer and the Translational Application in the Diagnosis of Acquired Drug Resistance in Progressive Prostate Cancer
by Xia Du, Yu Zhang, Yao Jia and Bo Gao
Pharmaceutics 2025, 17(5), 552; https://doi.org/10.3390/pharmaceutics17050552 - 23 Apr 2025
Viewed by 1200
Abstract
Objectives: Tumor heterogeneity and acquired resistance to prostate-specific membrane antigen (PSMA) radioligand therapy (PRLT) pose significant challenges to PSMA PET-based diagnosis. This study aimed to develop an Al18F-labeled FAP-targeted tracer and explore the diagnostic value in acquired drug-resistant tumor models. [...] Read more.
Objectives: Tumor heterogeneity and acquired resistance to prostate-specific membrane antigen (PSMA) radioligand therapy (PRLT) pose significant challenges to PSMA PET-based diagnosis. This study aimed to develop an Al18F-labeled FAP-targeted tracer and explore the diagnostic value in acquired drug-resistant tumor models. Methods: To identify potential targets for imaging drug-resistant prostate cancer, bioinformatic analysis was employed to correlate FAP expression levels with genes associated with tumor progression and radiotherapy resistance. Molecular docking technology simulations were utilized to screen FAP ligands for optimal binding affinity and target specificity. The most promising ligand, FAP-2286, was radiolabeled with 18F to develop a novel PET imaging agent, Al18F-NOTA-FAP-2286 PET. To evaluate the diagnostic potential of this agent, various tumor models were established. U87 cells were used to optimize the imaging protocol and assess targeting efficiency and 22RV-1-resistant cells co-xenografted with NIH-3T3 cells were used to model acquired drug-resistant prostate cancer. The diagnostic efficacy of Al18F-NOTA-FAP-2286 PET in this acquired drug-resistant model was assessed and validated through immunohistochemical staining of tumor tissue. Results: Bioinformatic analysis confirmed the association between FAP expression and key genes involved in radiotherapy resistance, such as HIF1α, BCL2, ATM, and EGFR. Molecular docking studies demonstrated the strong binding affinity of FAP-2286 to FAPα (−10 kcal/mol). Al18F-NOTA-FAP-2286 PET/CT imaging in U87 tumor-bearing mice revealed accurate targeting of high FAP-expressing xenografts. The imaging characteristics of Al18F-NOTA-FAP-2286 were comparable to 18F-FDG and 68Ga-FAP-2286 but with a prolonged imaging window compared to 68Ga-FAP-2286. In acquired drug-resistant prostate cancer xenograft nude mice, Al18F-NOTA-FAP-2286 could effectively detect tumor lesions, as confirmed by immunohistochemical analysis. Conclusions: Al18F-NOTA-FAP-2286, as a PSMA-independent imaging agent, holds promise as a valuable complementary molecular imaging tool for assessing acquired resistance to PRLT. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

16 pages, 4037 KB  
Article
Enhancing Effects of Olaparib by Alpha- and Beta-Emitting Radionuclides, X-Rays, and Ultraviolet A Light in Combination with Ortho-IodoHoechst in a Prostate Cancer Cell Model
by Andrea C. Luna Mass, Roswitha Runge, Kerstin Wetzig, Lisa Huebinger, Claudia Brogsitter and Joerg Kotzerke
Pharmaceuticals 2024, 17(11), 1450; https://doi.org/10.3390/ph17111450 - 30 Oct 2024
Cited by 2 | Viewed by 1906
Abstract
Background: New therapeutic strategies for metastatic castration-resistant prostate cancer (mCRPC) have been developed in the past to achieve the best response rates. Most recently, the use of combination therapies has been explored to optimize patient outcomes. Poly(ADP-ribose) polymerase inhibitors (PARPi) may help to [...] Read more.
Background: New therapeutic strategies for metastatic castration-resistant prostate cancer (mCRPC) have been developed in the past to achieve the best response rates. Most recently, the use of combination therapies has been explored to optimize patient outcomes. Poly(ADP-ribose) polymerase inhibitors (PARPi) may help to treat mCRPC more effectively. Objectives: This study aimed to determine whether the combination of a PARPi with different radiation qualities results in different levels of radiosensitization of PC-3 cells. Methods: The radiosensitizing potential of Olaparib in combination with 177Lu, 223Ra, X-rays and photodynamic therapy (PDT) using the UVA light-activated photosensitizer ortho-iodoHoechst33258 (oIH) was evaluated by determining the clonogenic survival, DNA damage and cell cycle analysis. Results: Here, we show that this combination strategy differentially sensitized PC-3 cells to different radiation qualities. The combination of 177Lu with Olaparib increased the numbers of persistent double-strand breaks (DSBs) by a factor of 3.3 and cell death in PC-3 cells. Overall, the β-emitter 177Lu indicated a higher radiosensitization efficacy compared to 223Ra, with X-rays corresponding to dose modification factors (DMF) of 1.77, 1.17 and 1.16 respectively. Even in the case of the α-emitter 223Ra, the effects were much less pronounced than for 177Lu. PARPi also showed a slight potentiation of the cytotoxic effects both in co-treatment with X-rays and with PDT. Conclusions: The results of our study indicate a potential role for Olaparib in further optimizing the PSMA radioligand therapy (PRLT) outcomes. However, further evaluation of the combination of PARPi with PRLT is needed to gain more insights into improving the benefit to patients suffering from mCRPC. Full article
Show Figures

Figure 1

14 pages, 3821 KB  
Article
Osteoarthritis as a Systemic Disease Promoted Prostate Cancer In Vivo and In Vitro
by Samuel Rosas, Andy Kwok, Joseph Moore, Lihong Shi, Thomas L. Smith, E. Ann Tallant, Bethany A. Kerr and Jeffrey S. Willey
Int. J. Mol. Sci. 2024, 25(11), 6014; https://doi.org/10.3390/ijms25116014 - 30 May 2024
Cited by 4 | Viewed by 1767
Abstract
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of [...] Read more.
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 4551 KB  
Article
Human ABC and SLC Transporters: The Culprit Responsible for Unspecific PSMA-617 Uptake?
by Harun Taş, Gábor Bakos, Ulrike Bauder-Wüst, Martin Schäfer, Yvonne Remde, Mareike Roscher and Martina Benešová-Schäfer
Pharmaceuticals 2024, 17(4), 513; https://doi.org/10.3390/ph17040513 - 16 Apr 2024
Viewed by 3183
Abstract
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still [...] Read more.
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,β-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities. Full article
Show Figures

Figure 1

19 pages, 10078 KB  
Article
Developing Folate-Conjugated miR-34a Therapeutic for Prostate Cancer: Challenges and Promises
by Wen (Jess) Li, Yunfei Wang, Xiaozhuo Liu, Shan Wu, Moyi Wang, Steven G. Turowski, Joseph A. Spernyak, Amanda Tracz, Ahmed M. Abdelaal, Kasireddy Sudarshan, Igor Puzanov, Gurkamal Chatta, Andrea L. Kasinski and Dean G. Tang
Int. J. Mol. Sci. 2024, 25(4), 2123; https://doi.org/10.3390/ijms25042123 - 9 Feb 2024
Cited by 26 | Viewed by 3402
Abstract
Prostate cancer (PCa) remains a common cancer with high mortality in men due to its heterogeneity and the emergence of drug resistance. A critical factor contributing to its lethality is the presence of prostate cancer stem cells (PCSCs), which can self-renew, long-term propagate [...] Read more.
Prostate cancer (PCa) remains a common cancer with high mortality in men due to its heterogeneity and the emergence of drug resistance. A critical factor contributing to its lethality is the presence of prostate cancer stem cells (PCSCs), which can self-renew, long-term propagate tumors, and mediate treatment resistance. MicroRNA-34a (miR-34a) has shown promise as an anti-PCSC therapeutic by targeting critical molecules involved in cancer stem cell (CSC) survival and functions. Despite extensive efforts, the development of miR-34a therapeutics still faces challenges, including non-specific delivery and delivery-associated toxicity. One emerging delivery approach is ligand-mediated conjugation, aiming to achieve specific delivery of miR-34a to cancer cells, thereby enhancing efficacy while minimizing toxicity. Folate-conjugated miR-34a (folate–miR-34a) has demonstrated promising anti-tumor efficacy in breast and lung cancers by targeting folate receptor α (FOLR1). Here, we first show that miR-34a, a TP53 transcriptional target, is reduced in PCa that harbors TP53 loss or mutations and that miR-34a mimic, when transfected into PCa cells, downregulated multiple miR-34a targets and inhibited cell growth. When exploring the therapeutic potential of folate–miR-34a, we found that folate–miR-34a exhibited impressive inhibitory effects on breast, ovarian, and cervical cancer cells but showed minimal effects on and targeted delivery to PCa cells due to a lack of appreciable expression of FOLR1 in PCa cells. Folate–miR-34a also did not display any apparent effect on PCa cells expressing prostate-specific membrane antigen (PMSA) despite the reported folate’s binding capability to PSMA. These results highlight challenges in the specific delivery of folate–miR-34a to PCa due to a lack of target (receptor) expression. Our study offers novel insights into the challenges and promises within the field and casts light on the development of ligand-conjugated miR-34a therapeutics for PCa. Full article
(This article belongs to the Special Issue Non-coding RNAs in Tumor Development and Angiogenesis)
Show Figures

Figure 1

14 pages, 3875 KB  
Article
Comparison of Nuclear Medicine Therapeutics Targeting PSMA among Alpha-Emitting Nuclides
by Kazuko Kaneda-Nakashima, Yoshifumi Shirakami, Yuichiro Kadonaga, Tadashi Watabe, Kazuhiro Ooe, Xiaojie Yin, Hiromitsu Haba, Kenji Shirasaki, Hidetoshi Kikunaga, Kazuaki Tsukada, Atsushi Toyoshima, Jens Cardinale, Frederik L. Giesel and Koichi Fukase
Int. J. Mol. Sci. 2024, 25(2), 933; https://doi.org/10.3390/ijms25020933 - 11 Jan 2024
Cited by 8 | Viewed by 3443
Abstract
Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against [...] Read more.
Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method. Full article
Show Figures

Figure 1

18 pages, 4180 KB  
Review
Current Status of Radiolabeled Monoclonal Antibodies Targeting PSMA for Imaging and Therapy
by Mohammed Abusalem, Lucia Martiniova, Sarita Soebianto, Louis DePalatis and Gregory Ravizzini
Cancers 2023, 15(18), 4537; https://doi.org/10.3390/cancers15184537 - 13 Sep 2023
Cited by 6 | Viewed by 4158
Abstract
Prostate cancer (PCa) is one of the most prevalent cancer diagnoses among men in the United States and in several other developed countries. The prostate specific membrane antigen (PSMA) has been recognized as a promising molecular target in PCa, which has led to [...] Read more.
Prostate cancer (PCa) is one of the most prevalent cancer diagnoses among men in the United States and in several other developed countries. The prostate specific membrane antigen (PSMA) has been recognized as a promising molecular target in PCa, which has led to the development of specific radionuclide-based tracers for imaging and radiopharmaceuticals for PSMA targeted therapy. These compounds range from small molecule ligands to monoclonal antibodies (mAbs). Monoclonal antibodies play a crucial role in targeting cancer cell-specific antigens with a high degree of specificity while minimizing side effects to normal cells. The same mAb can often be labeled in different ways, such as with radionuclides suitable for imaging with Positron Emission Tomography (β+ positrons), Gamma Camera Scintigraphy (γ photons), or radiotherapy (β− electrons, α-emitters, or Auger electrons). Accordingly, the use of radionuclide-based PSMA-targeting compounds in molecular imaging and therapeutic applications has significantly grown in recent years. In this article, we will highlight the latest developments and prospects of radiolabeled mAbs that target PSMA for the detection and treatment of prostate cancer. Full article
(This article belongs to the Special Issue Cancers: Molecular Imaging and Therapy)
Show Figures

Figure 1

14 pages, 2457 KB  
Communication
Polyploid Giant Cancer Cells Are Frequently Found in the Urine of Prostate Cancer Patients
by Laura Nalleli Garrido Castillo, Julien Anract, Nicolas Barry Delongchamps, Olivier Huillard, Fatima BenMohamed, Alessandra Decina, Thierry Lebret, Roger Dachez and Patrizia Paterlini-Bréchot
Cancers 2023, 15(13), 3366; https://doi.org/10.3390/cancers15133366 - 27 Jun 2023
Cited by 6 | Viewed by 2996
Abstract
Prostate cancer is the third cause of cancer-related deaths in men. Its early and reliable diagnosis is still a public health issue, generating many useless prostate biopsies. Prostate cancer cells detected in urine could be the target of a powerful test but they [...] Read more.
Prostate cancer is the third cause of cancer-related deaths in men. Its early and reliable diagnosis is still a public health issue, generating many useless prostate biopsies. Prostate cancer cells detected in urine could be the target of a powerful test but they are considered too rare. By using an approach targeting rare cells, we have analyzed urine from 45 patients with prostate cancer and 43 healthy subjects under 50 y.o. We observed a relevant number of giant cells in patients with cancer. Giant cells, named Polyploid Giant Cancer Cells (PGCC), are thought to be involved in tumorigenesis and treatment resistance. We thus performed immune-morphological studies with cancer-related markers such as α-methylacyl-CoA racemase (AMACR), prostate-specific membrane antigen (PSMA), and telomerase reverse transcriptase (TERT) to understand if the giant cells we found are PGCC or other urinary cells. We found PGCC in the urine of 22 patients, including those with early-stage prostate cancer, and one healthy subject. Although these results are preliminary, they provide, for the first time, clinical evidence that prostate cancers release PGCC into the urine. They are expected to stimulate further studies aimed at understanding the role of urinary PGCC and their possible use as a diagnostic tool and therapeutic target. Full article
(This article belongs to the Special Issue Liquid Biopsy of Genitourinary Tumors)
Show Figures

Figure 1

14 pages, 4941 KB  
Article
Method of Monitoring 26S Proteasome in Cells Revealed the Crucial Role of PSMA3 C-Terminus in 26S Integrity
by Shirel Steinberger, Julia Adler and Yosef Shaul
Biomolecules 2023, 13(6), 992; https://doi.org/10.3390/biom13060992 - 15 Jun 2023
Cited by 1 | Viewed by 2522
Abstract
Proteasomes critically regulate proteostasis via protein degradation. Proteasomes are multi-subunit complexes composed of the 20S proteolytic core particle (20S CP) that, in association with one or two 19S regulatory particles (19S RPs), generates the 26S proteasome, which is the major proteasomal complex in [...] Read more.
Proteasomes critically regulate proteostasis via protein degradation. Proteasomes are multi-subunit complexes composed of the 20S proteolytic core particle (20S CP) that, in association with one or two 19S regulatory particles (19S RPs), generates the 26S proteasome, which is the major proteasomal complex in cells. Native gel protocols are used to investigate the 26S/20S ratio. However, a simple method for detecting these proteasome complexes in cells is missing. To this end, using CRISPR technology, we YFP-tagged the endogenous PSMB6 (β1) gene, a 20S CP subunit, and co-tagged endogenous PSMD6 (Rpn7), a 19S RP subunit, with the mScarlet fluorescent protein. We observed the colocalization of the YFP and mScarlet fluorescent proteins in the cells, with higher nuclear accumulation. Nuclear proteasomal granules are formed under osmotic stress, and all were positive for YFP and mScarlet. Previously, we have reported that PSMD1 knockdown, one of the 19 RP subunits, gives rise to a high level of “free” 20S CPs. Intriguingly, under this condition, the 20S-YFP remained nuclear, whereas the PSMD6-mScarlet was mostly in cytoplasm, demonstrating the distinct subcellular distribution of uncapped 20S CPs. Lately, we have shown that the PSMA3 (α7) C-terminus, a 20S CP subunit, binds multiple intrinsically disordered proteins (IDPs). Remarkably, the truncation of the PSMA3 C-terminus is phenotypically reminiscent of PSMD1 knockdown. These data suggest that the PSMA3 C-terminal region is critical for 26S proteasome integrity. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 2526 KB  
Article
[225Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [225Ac]Ac-PSMA-617
by Sarah D. Busslinger, Viviane J. Tschan, Olivia K. Richard, Zeynep Talip, Roger Schibli and Cristina Müller
Cancers 2022, 14(22), 5651; https://doi.org/10.3390/cancers14225651 - 17 Nov 2022
Cited by 27 | Viewed by 4604
Abstract
In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities [...] Read more.
In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted α-therapy of prostate cancer. Full article
Show Figures

Graphical abstract

10 pages, 1416 KB  
Article
Sublingual Atropine Administration as a Tool to Decrease Salivary Glands’ PSMA-Ligand Uptake: A Preclinical Proof of Concept Study Using [68Ga]Ga-PSMA-11
by Vincent Nail, Béatrice Louis, Anaïs Moyon, Adrien Chabert, Laure Balasse, Samantha Fernandez, Guillaume Hache, Philippe Garrigue, David Taïeb and Benjamin Guillet
Pharmaceutics 2022, 14(6), 1276; https://doi.org/10.3390/pharmaceutics14061276 - 16 Jun 2022
Viewed by 3508
Abstract
Prostate Specific Membrane Antigen (PSMA)-directed radionuclide therapy has gained an important role in the management of advanced castration-resistant prostate cancer. Although extremely promising, the prolongation in survival and amelioration of disease-related symptoms must be balanced against the direct toxicities of the treatment. Xerostomia [...] Read more.
Prostate Specific Membrane Antigen (PSMA)-directed radionuclide therapy has gained an important role in the management of advanced castration-resistant prostate cancer. Although extremely promising, the prolongation in survival and amelioration of disease-related symptoms must be balanced against the direct toxicities of the treatment. Xerostomia is amongst the most common and debilitating of these, particularly when using an alpha emitter. It is therefore of main importance to develop new preventive strategies. This preclinical study has evaluated the effect of α-adrenergic and anticholinergic drugs on [99mTc]TcO4 Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and [68Ga]Ga-PSMA-11 Positron Emission Tomography (PET/CT). Methods: The effects of phenylephrine, scopolamine, atropine, and ipratropium on salivary glands uptake were evaluated in non-tumor-bearing mice by [99mTc]TcO4 microSPECT/CT. The most efficient identified strategy was evaluated in non-tumor-bearing and xenografted mice by [68Ga]Ga-PSMA-11 PET/CT. Results: Scopolamine and atropine showed a significant decrease in the parotid glands’ uptake on SPECT/CT whereas phenylephrine and ipratropium failed. Atropine premedication (sublingual route), which was the most effective strategy, also showed a drastic decrease of [68Ga]Ga-PSMA-11 salivary glands’ uptake in both non-tumor-bearing mice (−51.6% for the parotids, p < 0.0001) and human prostate adenocarcinoma xenografted mice (−26.8% for the parotids, p < 0.0001). Conclusion: Premedication with a local administration of atropine could represent a simple, safe, and efficient approach for reducing salivary glands’ uptake. Full article
Show Figures

Figure 1

17 pages, 5509 KB  
Article
Conserved Mitotic Phosphorylation of a Proteasome Subunit Regulates Cell Proliferation
by Jinyuan Duan, Wenzhu Li, Xin Shu, Bing Yang, Xiangwei He and Xing Guo
Cells 2021, 10(11), 3075; https://doi.org/10.3390/cells10113075 - 8 Nov 2021
Cited by 2 | Viewed by 2793
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating proteasome function in various physiological processes. Essentially all proteasome phosphorylations characterized thus far occur on proteasome holoenzyme or subcomplexes to regulate substrate degradation. Here, we report a highly conserved phosphorylation that only exists [...] Read more.
Reversible phosphorylation has emerged as an important mechanism for regulating proteasome function in various physiological processes. Essentially all proteasome phosphorylations characterized thus far occur on proteasome holoenzyme or subcomplexes to regulate substrate degradation. Here, we report a highly conserved phosphorylation that only exists on the unassembled α5 subunit of the proteasome. The modified residue, α5-Ser16, is within a SP motif typically recognized by cyclin-dependent kinases (CDKs). Using a phospho-specific antibody generated against this site, we found that α5-S16 phosphorylation is mitosis-specific in both yeast and mammalian cells. Blocking this site with a S16A mutation caused growth defect and G2/M arrest of the cell cycle. α5-S16 phosphorylation depends on CDK1 activity and is highly abundant in some but not all mitotic cells. Immunoprecipitation and mass spectrometry (IP-MS) studies identified numerous proteins that could interact with phosphorylated α5, including PLK1, a key regulator of mitosis. α5–PLK1 interaction increased upon mitosis and could be facilitated by S16 phosphorylation. CDK1 activation downstream of PLK1 activity was delayed in S16A mutant cells, suggesting an important role of α5-S16 phosphorylation in regulating PLK1 and mitosis. These data have revealed an unappreciated function of “exo-proteasome” phosphorylation of a proteasome subunit and may bring new insights to our understanding of cell cycle control. Full article
Show Figures

Figure 1

17 pages, 15589 KB  
Article
Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?—An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer
by Gabriele Birindelli, Milos Drobnjakovic, Volker Morath, Katja Steiger, Calogero D’Alessandria, Eleni Gourni, Ali Afshar-Oromieh, Wolfgang Weber, Axel Rominger, Matthias Eiber and Kuangyu Shi
Cancers 2021, 13(14), 3429; https://doi.org/10.3390/cancers13143429 - 8 Jul 2021
Cited by 16 | Viewed by 4276
Abstract
Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α [...] Read more.
Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection–reaction–diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome. Full article
(This article belongs to the Special Issue Novel Perspectives on Hypoxia in Cancer)
Show Figures

Figure 1

Back to TopTop