Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = PSI time-series

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3267 KiB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 196
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

26 pages, 7238 KiB  
Article
Towards Operational Dam Monitoring with PS-InSAR and Electronic Corner Reflectors
by Jannik Jänichen, Jonas Ziemer, Marco Wolsza, Daniel Klöpper, Sebastian Weltmann, Carolin Wicker, Katja Last, Christiane Schmullius and Clémence Dubois
Remote Sens. 2025, 17(7), 1318; https://doi.org/10.3390/rs17071318 - 7 Apr 2025
Cited by 1 | Viewed by 863
Abstract
Dams are crucial for ensuring water and electricity supply, while also providing significant flood protection. Regular monitoring of dam deformations is of vital socio-economic and ecological significance. In Germany, dams must be constructed and operated according to generally accepted rules of engineering. The [...] Read more.
Dams are crucial for ensuring water and electricity supply, while also providing significant flood protection. Regular monitoring of dam deformations is of vital socio-economic and ecological significance. In Germany, dams must be constructed and operated according to generally accepted rules of engineering. The safety concept for dams based on these rules relies on structural safety, professional operation and maintenance, safety monitoring, and precautionary measures. Rather time-consuming in situ techniques have been employed for these measurements, which permit monitoring deformations with either high spatial or temporal resolution, but not both. As a means of measuring large-scale deformations in the millimeter range, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique of Persistent Scatterer Interferometry (PSI) is already being applied in various fields. However, when considering the operational monitoring of dams using PSI, specific characteristics need to be considered. For example, the geographical location of the dam in space, as well as its shape, size, and land cover. All these factors can affect the visibility of the structure for the use with PSI and, in certain cases, limit the applicability of SAR data. The visibility of dams for PSI monitoring is often limited, particularly in cases where observation is typically not feasible due to factors such as geographical and structural characteristics. While corner reflectors can improve visibility, their large size often makes them unsuitable for dam infrastructure and may raise concerns with heritage protection for listed dams. Addressing these challenges, electronic corner reflectors (ECRs) offer an effective alternative due to their small and compact size. In this study, we analyzed the strategic placement of ECRs on dam structures. We developed a new CR Index, which identifies areas where PSI alone is insufficient due to unfavorable geometric or land use conditions. This index categorizes visibility potential into three classes, presented in a ‘traffic light’ map, and is instrumental in selecting optimal installation sites. We furthermore investigated the signal stability of ECRs over an extended observation period, considering the Amplitude Dispersion Index (ADI). It showed values between 0.1 and 0.4 for many dam structures, which is comparable to normal corner reflectors (CRs), confirming the reliability of these signals for PSI analysis. This work underscores the feasibility of using ECRs to enhance monitoring capabilities at dam infrastructure. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

19 pages, 1233 KiB  
Article
Enhancing the Prediction of Dam Deformations: A Novel Data-Driven Approach
by Jonas Ziemer, Gideon Stein, Carolin Wicker, Jannik Jänichen, Daniel Klöpper, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(6), 1026; https://doi.org/10.3390/rs17061026 - 15 Mar 2025
Cited by 1 | Viewed by 783
Abstract
Deformation monitoring is a critical task for dam operators to guarantee safe operation. Given an increasing number of extreme weather events caused by climate change, the precise prediction of dam deformations has become increasingly important. Traditionally, multiple linear regression models have been employed, [...] Read more.
Deformation monitoring is a critical task for dam operators to guarantee safe operation. Given an increasing number of extreme weather events caused by climate change, the precise prediction of dam deformations has become increasingly important. Traditionally, multiple linear regression models have been employed, utilizing in situ data from pendulum systems or trigonometric measurements. These methods sometimes suffer from sparse data, which typically represent deformations only at specific points on the dam, if such data are available at all. Technical advances in multi-temporal synthetic aperture radar interferometry (MT-InSAR), particularly Persistent Scatterer Interferometry (PSI), address these limitations by enabling monitoring in high spatial and temporal resolution, capturing dam deformations with millimeter precision, and providing extensive spatial coverage. This study advances traditional methods of dam monitoring by employing data-driven techniques and integrating Sentinel-1 C-band Persistent Scatterer (PS) time series alongside in situ data. Through a comprehensive evaluation of advanced data-driven approaches, we demonstrated considerable improvements in predicting dam deformations and evaluating their drivers. The analysis provided evidence for the following insights: First, the accuracy of current modeling approaches can be greatly improved by utilizing advanced feature engineering and data-driven model selection. The prediction performance of the pendulum data was improved by utilizing data-driven algorithms, reducing the mean absolute error from 0.51 mm in the baseline model (R2 = 0.92) to as low as 0.05 mm using the full model search space (R2 = 0.99). Although the model accuracy for the PS datasets (MAEmax: 0.81 mm) was about one order of magnitude lower than that for pendulum data, the mean absolute errors could be reduced by up to 0.25 mm. Second, by incorporating freely available PS time series into deformation prediction, dams can be monitored in higher spatial resolution, making PSI a valuable tool for dam operators. This requires adequate dataset filtering to eliminate noisy PS points. Third, extended representations of water level and temperature, including interaction effects, can improve model accuracy and reduce prediction errors. With these insights, we recommend incorporating the proposed methodology into the monitoring program of gravity dams to enhance the accuracy in predicting their expected deformations. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

21 pages, 9480 KiB  
Article
Collapse Hotspot Detection in Urban Area Using Sentinel-1 and TerraSAR-X Dataset with SBAS and PSI Techniques
by Niloofar Alizadeh, Yasser Maghsoudi, Tayebe Managhebi and Saeed Azadnejad
Land 2024, 13(12), 2237; https://doi.org/10.3390/land13122237 - 20 Dec 2024
Cited by 2 | Viewed by 1633
Abstract
Urban areas face an imminent risk of collapse due to structural deficiencies and gradual ground subsidence. Therefore, monitoring surface movements is crucial for detecting abnormal behavior, implementing timely preventive measures, and minimizing the detrimental effects of this phenomenon in residential regions. In this [...] Read more.
Urban areas face an imminent risk of collapse due to structural deficiencies and gradual ground subsidence. Therefore, monitoring surface movements is crucial for detecting abnormal behavior, implementing timely preventive measures, and minimizing the detrimental effects of this phenomenon in residential regions. In this context, interferometric synthetic aperture radar (InSAR) has emerged as a highly effective technique for monitoring slow and long-term ground hazards and surface motions. The first goal of this study is to explore the potential applications of persistent scatterer interferometry (PSI) and small baseline subset (SBAS) algorithms in collapse hotspot detection, utilizing a dataset consisting of 144 Sentinel-1 images. The experimental results from three areas with a history of collapses demonstrate that the SBAS algorithm outperforms PSI in uncovering behavior patterns indicative of collapse and accurately pinpointing collapse points near real collapse sites. In the second phase, this research incorporated an additional dataset of 36 TerraSAR-X images alongside the Sentinel-1 data to compare results based on radar images with different spatial resolutions in the C and X bands. The findings reveal a strong correlation between the TerraSAR-X and Sentinel-1 time series. Notably, the analysis of the TerraSAR-X time series for one study area identified additional collapse-prone points near the accident site, attributed to the higher spatial resolution of these data. By leveraging the capabilities of InSAR and advanced algorithms, like SBAS, this study highlights the potential to identify areas at risk of collapse, enabling the implementation of preventive measures and reducing potential harm to residential communities. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

25 pages, 41258 KiB  
Article
The Deformation Monitoring Capability of Fucheng-1 Time-Series InSAR
by Zhouhang Wu, Wenjun Zhang, Jialun Cai, Hongyao Xiang, Jing Fan and Xiaomeng Wang
Sensors 2024, 24(23), 7604; https://doi.org/10.3390/s24237604 - 28 Nov 2024
Cited by 1 | Viewed by 1332
Abstract
The Fucheng-1 (FC-1) satellite has successfully transitioned from its initial operational phase and is now undergoing a detailed performance assessment for time-series deformation monitoring. This study evaluates the surface deformation monitoring capabilities of the newly launched FC-1 satellite using the interferometric synthetic aperture [...] Read more.
The Fucheng-1 (FC-1) satellite has successfully transitioned from its initial operational phase and is now undergoing a detailed performance assessment for time-series deformation monitoring. This study evaluates the surface deformation monitoring capabilities of the newly launched FC-1 satellite using the interferometric synthetic aperture radar (InSAR) technique, particularly in urban applications. By analyzing the observation data from 20 FC-1 scenes and 20 Sentinel-1 scenes, deformation velocity maps of a university in Mianyang city were obtained using persistent scatterer interferometry (PSI) and distributed scatterer interferometry (DSI) techniques. The results show that thanks to the high resolution of 3 × 3 m of the FC-1 satellite, significantly more PS points and DS points were detected than those detected by Sentinel-1, by 13.4 times and 17.9 times, respectively. The distribution of the major deformation areas detected by both satellites in the velocity maps is generally consistent. FC-1 performs better than Sentinel-1 in monitoring densely structured and vegetation-covered areas. Its deformation monitoring capability at the millimeter level was further validated through comparison with leveling measurements, with average errors and root mean square errors of 1.761 mm and 2.172 mm, respectively. Its high-resolution and high-precision interferometry capabilities make it particularly promising in the commercial remote sensing market. Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
Show Figures

Figure 1

17 pages, 12379 KiB  
Article
Artificial-Intelligence-Based Classification to Unveil Geodynamic Processes in the Eastern Alps
by Christian Bignami, Alessandro Pignatelli, Giulia Romoli and Carlo Doglioni
Remote Sens. 2024, 16(23), 4364; https://doi.org/10.3390/rs16234364 - 22 Nov 2024
Viewed by 967
Abstract
InSAR has emerged as a leading technique for studying and monitoring ground movements over large areas and across various geodynamic environments. Recent advancements in SAR sensor technology have enabled the acquisition of dense spatial datasets, providing substantial information at regional and national scales. [...] Read more.
InSAR has emerged as a leading technique for studying and monitoring ground movements over large areas and across various geodynamic environments. Recent advancements in SAR sensor technology have enabled the acquisition of dense spatial datasets, providing substantial information at regional and national scales. Despite these improvements, classifying and interpreting such vast datasets remains a significant challenge. InSAR analysts and geologists frequently have to manually analyze the time series from Persistent Scatterer Interferometry (PSI) to model the complexity of geological and tectonic phenomena. This process is time-consuming and impractical for large-scale monitoring. Utilizing Artificial Intelligence (AI) to classify and detect deformation processes presents a promising solution. In this study, vertical ground deformation time series from northeastern Italy were obtained from the European Ground Motion Service and classified by experts into different deformation categories. Convolutional and pre-trained neural networks were then trained and tested using both numerical time-series data and trend images. The application of the best performing trained network to test data showed an accuracy of 83%. Such a result demonstrates that neural networks can successfully identify areas experiencing distinct geodynamic processes, emphasizing the potential of AI to improve PSI data interpretation. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning for Space Geodesy Applications)
Show Figures

Figure 1

10 pages, 1598 KiB  
Article
Standard Total Ankle Arthroplasty vs. Patient-Specific Instrumentation: A Comparative Study
by Alberto Arceri, Pejman Abdi, Antonio Mazzotti, Simone Ottavio Zielli, Elena Artioli, Laura Langone, Federico Sgubbi and Cesare Faldini
J. Pers. Med. 2024, 14(7), 770; https://doi.org/10.3390/jpm14070770 - 19 Jul 2024
Cited by 2 | Viewed by 1619
Abstract
Purpose: This retrospective study aims to compare surgical outcomes between two cohorts of patients who underwent total ankle arthroplasty (TAA) using either standard technique or patient-specific instrumentation (PSI). Methods: A consecutive series of patients who affected of end-staged ankle osteoarthritis were retrospectively assessed [...] Read more.
Purpose: This retrospective study aims to compare surgical outcomes between two cohorts of patients who underwent total ankle arthroplasty (TAA) using either standard technique or patient-specific instrumentation (PSI). Methods: A consecutive series of patients who affected of end-staged ankle osteoarthritis were retrospectively assessed and divided into two groups based on TAA techniques: a TAA standard technique group and a TAA-using PSI group. The two groups were compared in terms of operative time, additional procedures, complications (neurovascular and wound problems, infection, loosening and osteolysis, revision and explantation rates, and perioperative fracture), clinical scores, and range of motion (ROM). Result: Fifty-one patients underwent standard TAA, while 13 patients underwent TAA with PSI. At 1-year follow-up, there were no significant differences in complication rates between the two groups (p > 0.05). AOFAS scores were similar, with the standard TAA group scoring 83.33 ± 7.55 and the PSI group scoring 82.92 ± 9.7 (p = 0.870). Likewise, the postoperative ROM did not differ significantly, with 15.12 ± 7.6 degrees for the standard TAA group and 16.05 ± 6.7 degrees for the PSI group (p = 0.689). However, the standard TAA group experienced significantly longer operative time (107.1 ± 22.1 min) compared to the PSI group (91.92 ± 22.9 min, p = 0.032). Additionally, the standard TAA group required more adjunctive procedures (29.7%) compared to the PSI group (7.7%, p = 0.04). Residual pain was also more frequently reported in the standard TAA group (62.7%) than in the PSI group (30.7%, p = 0.038). Conclusion: While both techniques resulted in comparable complication rates, clinical scores and ROM, the PSI group reported significantly shorter operative time and less residual pain, thus requiring fewer postoperative procedures. Full article
(This article belongs to the Special Issue Personalized Management in Orthopedics and Traumatology)
Show Figures

Figure 1

18 pages, 6121 KiB  
Article
Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry
by Panagiotis Kalaitzis, Michael Foumelis, Antonios Mouratidis, Dimitris Kavroudakis and Nikolaos Soulakellis
ISPRS Int. J. Geo-Inf. 2024, 13(7), 236; https://doi.org/10.3390/ijgi13070236 - 2 Jul 2024
Cited by 1 | Viewed by 1667
Abstract
Persistent scatterer interferometry (PSI) has been proven to be a robust method for studying complex and dynamic phenomena such as ground displacement over time. Proper visualization of PSI measurements is both crucial and challenging from a cartographic standpoint. This study focuses on the [...] Read more.
Persistent scatterer interferometry (PSI) has been proven to be a robust method for studying complex and dynamic phenomena such as ground displacement over time. Proper visualization of PSI measurements is both crucial and challenging from a cartographic standpoint. This study focuses on the development of an interactive cartographic web map application, providing suitable visualization of PSI data, and exploring their geographic, cartographic, spatial, and temporal attributes. To this end, PSI datasets, generalized at different resolutions, are visualized in eight predefined cartographic scales. A multiscale generalization algorithm is proposed. The automation of this procedure, spurred by the development of a web application, offers users the flexibility to properly visualize PSI datasets according to the specific cartographic scale. Additionally, the web map application provides a toolset, offering state-of-the-art cartographic approaches for exploring PSI datasets. This toolset consists of exploration, measurement, filtering (based on the point’s spatial attributes), and exporting tools customized for PSI measurement. Furthermore, a graph tool, offering users the capability to interactively plot PSI time-series and investigate the evolution of ground deformation over time, has been developed and integrated into the web interface. This study reflects the need for appropriate visualization of PSI datasets at different cartographic scales. It is shown that each original PSI dataset possesses a suitable cartographic scale at which it should be visualized. Innovative cartographic approaches, such as web applications, can prove to be effective tools for users working in the domain of mapping and monitoring the dynamic behavior of surface motion. Full article
Show Figures

Figure 1

23 pages, 4800 KiB  
Article
Blockchain Interoperability in Data Exchange Logistics Integration
by Kaiye Li, Chun Wang, Xia Feng and Songze Wu
Mathematics 2024, 12(10), 1516; https://doi.org/10.3390/math12101516 - 13 May 2024
Cited by 2 | Viewed by 2100
Abstract
Logistics companies are increasingly adopting private blockchains for enhanced data management because of the trends in cooperation. Nevertheless, this practice poses new challenges concerning the security and sharing of data. The real-time nature and diversity of logistics data increase the difficulty of protecting [...] Read more.
Logistics companies are increasingly adopting private blockchains for enhanced data management because of the trends in cooperation. Nevertheless, this practice poses new challenges concerning the security and sharing of data. The real-time nature and diversity of logistics data increase the difficulty of protecting the data. Additionally, when transportation information changes, downstream enterprises must promptly adjust their production plans to accommodate these alterations. The strict access controls of private blockchains can obstruct downstream enterprises from obtaining data, posing a challenge to the overall operational efficiency. In this paper, we propose an innovative logistics data protection scheme that employs private set intersection (PSI) and blockchain cross-chain technology to achieve data security. In our scheme, logistics companies within the logistics consortium are added as trusted agents to the public blockchain, enabling downstream enterprises to acquire logistics data integration from the public blockchain. Utilizing an RSA-based PSI protocol, our approach enhances exchange efficiency while protecting private data without transmitting additional information. We evaluate the performance of the proposed solution through a series of experiments, and the results demonstrate that our solution can achieve secure and efficient logistics data exchange. Full article
Show Figures

Figure 1

22 pages, 27029 KiB  
Article
Reduction of Subsidence and Large-Scale Rebound in the Beijing Plain after Anthropogenic Water Transfer and Ecological Recharge of Groundwater: Evidence from Long Time-Series Satellites InSAR
by Chaodong Zhou, Qiuhong Tang, Yanhui Zhao, Timothy A. Warner, Hongjiang Liu and John J. Clague
Remote Sens. 2024, 16(9), 1528; https://doi.org/10.3390/rs16091528 - 26 Apr 2024
Cited by 5 | Viewed by 2414
Abstract
Beijing, China’s capital city, has experienced decades of severe land subsidence due to the long-term overexploitation of groundwater. The implementation of the South-to-North Water Diversion Project (SNWDP) and artificial ecological restoration have significantly changed Beijing’s hydro-ecological and geological environment in recent years, leading [...] Read more.
Beijing, China’s capital city, has experienced decades of severe land subsidence due to the long-term overexploitation of groundwater. The implementation of the South-to-North Water Diversion Project (SNWDP) and artificial ecological restoration have significantly changed Beijing’s hydro-ecological and geological environment in recent years, leading to a widespread rise in groundwater levels. However, whether the related land subsidence has slowed down or reversed under these measures has not yet been effectively monitored and quantitatively analyzed in terms of time and space. Accordingly, in this study, we proposed using an improved time-series deformation method, which combines persistent scatterers and distributed scatterers, to process Sentinel-1 images from 2015 to 2022 in the Beijing Plain region. We performed a geospatial analysis to gain a better understanding of how the new hydrological conditions changed the pattern of deformation on the Beijing Plain. The results indicated that our combined PS and DS method provided more measurements both in total quantity and spatial density than conventional PSI methods. The land subsidence in the Beijing Plain area has been effectively alleviated from a subsidence region of approximately 1377 km2 in 2015 to only approximately 78 km2 in 2022. Ecological restoration areas in the northeastern part of the Plain have even rebounded over this period, at a maximum of approximately 40 mm in 2022. The overall pattern of ground deformation (subsidence and uplift) is negatively correlated with changes in the groundwater table (decline and rise). Local deformation is controlled by the thickness of the compressible layer and an active fault. The year 2015, when anthropogenic water transfers were eliminated and ecological measures to recharge groundwater were implemented, was the crucial turning point of the change in the deformation trend in the subsidence history of Beijing. Our findings carry significance, not only for China, but also for other areas where large-scale groundwater extractions are causing severe ground subsidence or rebound. Full article
Show Figures

Graphical abstract

19 pages, 41235 KiB  
Article
Exploring the InSAR Deformation Series Using Unsupervised Learning in a Built Environment
by Mengshi Yang, Menghua Li, Cheng Huang, Ruisi Zhang and Rui Liu
Remote Sens. 2024, 16(8), 1375; https://doi.org/10.3390/rs16081375 - 13 Apr 2024
Cited by 6 | Viewed by 2122
Abstract
As a city undergoes large-scale construction and expansion, there is an urgent need to monitor the stability of the ground and infrastructure. The time-series InSAR technique is an effective tool for measuring surface displacements. However, interpreting these displacements in a built environment, where [...] Read more.
As a city undergoes large-scale construction and expansion, there is an urgent need to monitor the stability of the ground and infrastructure. The time-series InSAR technique is an effective tool for measuring surface displacements. However, interpreting these displacements in a built environment, where observed displacements consist of mixed signals, poses a challenge. This study uses principal component analysis (PCA) and the k-means clustering method for exploring deformation series within an unsupervised learning context. The PCA method extracts the dominant components in deformation series, whereas the clustering method identifies similar deformation series. This method was tested on Kunming City (KMC) using C-band Sentinel-1, X-band TerraSAR-X, and L-band ALOS-2 PALSAR-2 data acquired between 2017 to 2022. The experiment demonstrated that the suggested unsupervised learning approach can group PS points with similar kinematic characteristics. Five types of deformation kinematic characteristics were discovered in the three SAR datasets: upward, slight upward, stability, slight downward, and downward. According to the results, less than 20% of points exhibit significant motion trends, whereas 50% show small velocity values but still demonstrate movement trends. The remaining 30% are relatively stable. Similar clustering results were obtained from the three datasets using unsupervised methods, highlighting the effectiveness of identifying spatial–temporal patterns over the study area. Moreover, It was found that clustering based on kinematic characteristics enhances the interpretation of InSAR deformation, particularly for points with small deformation velocities. Finally, the significance of PCA decomposition in interpreting InSAR deformation was discussed, as it can better represent series with noise, enabling their accurate identification. Full article
(This article belongs to the Special Issue Imaging Geodesy and Infrastructure Monitoring II)
Show Figures

Figure 1

10 pages, 379 KiB  
Article
The Acute Effects of Ball Pressure on Anticipation Timing Following a Series of Purposeful Headers in Adult Football (Soccer) Players
by Chad McLean, Andrew P. Lavender, Ethan Pereira, Kerry Peek, Paul Davey, Fadi Ma’ayah, Susan Morris and Julia Georgieva
Sports 2024, 12(4), 102; https://doi.org/10.3390/sports12040102 - 2 Apr 2024
Viewed by 2319
Abstract
The purpose of this study is to investigate the acute effects of ball pressure on anticipation timing following a series of purposeful headers in adult football (soccer) players. There is evidence to suggest acute neurophysiological changes to the brain following purposeful heading; this [...] Read more.
The purpose of this study is to investigate the acute effects of ball pressure on anticipation timing following a series of purposeful headers in adult football (soccer) players. There is evidence to suggest acute neurophysiological changes to the brain following purposeful heading; this may lead to altered anticipation timing as a result, potentially having future safety implications for players. A repeated measures crossover design was used. Seventeen participants aged between 20 and 30 years performed (i) 20 rotational headers with a lower-pressure match ball (58.6 kPa; 8.5 psi), (ii) 20 rotational headers with a higher-pressure match ball (103.4 kPa; 15 psi), or (iii) 20 non-headers (kicks) as a control each on separate days. The effect of ball pressure on anticipation timing accuracy, measured as absolute, constant, and variable errors, was assessed before and immediately after each intervention session using an anticipation timing task. Differences between group means were compared using repeated measures ANOVA and linear mixed effects models, with p-values of <0.05 considered statistically significant. No significant differences in anticipation timing accuracy across interventions were detected between control, occluded, and non-occluded trials. This finding differs from the previous literature regarding the measurable, acute effects of purposeful heading. The anticipation timing task may lack sensitivity for detecting the effects of repeated heading on brain function. Full article
Show Figures

Figure 1

20 pages, 18614 KiB  
Article
Surface Displacements Monitoring in Cyprus via InSAR and Field Investigation: The Case Studies of Pyrgos-Parekklisia and Pedoulas Villages
by Stavroula Alatza, Constantinos Loupasakis, Alexis Apostolakis, Marios Tzouvaras, Kyriacos Themistocleous, Charalampos Kontoes, Chris Danezis and Diofantos G. Hadjimitsis
Remote Sens. 2024, 16(6), 960; https://doi.org/10.3390/rs16060960 - 9 Mar 2024
Cited by 3 | Viewed by 2717
Abstract
The island of Cyprus is characterised by a complex geological environment as it overlies a boundary zone of three tectonic plates, leading to high seismicity and intensive tectonism. It consists highly of Neogene marls, exhibiting serious geotechnical problems due to their high content [...] Read more.
The island of Cyprus is characterised by a complex geological environment as it overlies a boundary zone of three tectonic plates, leading to high seismicity and intensive tectonism. It consists highly of Neogene marls, exhibiting serious geotechnical problems due to their high content of clay minerals. Along with strong, destructive earthquakes, various geohazards have been identified in Cyprus, including landslides, swelling/shrinking phenomena and land subsidence etc. Pedoulas is a village in Cyprus experiencing ground deformation due to landslide phenomena. Conversely, Pyrgos and Parekklisia villages in Limassol, Cyprus are experiencing a long-term swelling/shrinking phenomenon. To further investigate this surface deformation, a time-series InSAR analysis of Sentinel-1 SLC images of ascending satellite passes was performed, with a parallelised version of PSI (Persistent Scatterers Interferometry), along with field investigation, for the time period of 2016 to 2021. Negative vertical displacements with maximum rates of −10 mm/y, were identified in Pedoulas village, while positive vertical displacements with a maximum rate of 10 mm/y, dominated in Pyrgos and Parekklisia villages. The analysis of precipitation data from 2017 to 2021, presented a correlation between annual fluctuations in precipitation in the affected areas and changes in the InSAR time-series deformation trends. In Pedoulas village, landslide movements sped up during spring and summer, when the infiltration of waste water in the ground intensified due to the increase in the tourist population. In Pyrgos-Parekklisia villages, higher positive deformation rates were identified in winter months, while during summer, when the formations dried out, uplifting phenomena stopped evolving. The integration of InSAR displacements with field investigation provided validation of the observed ground failures and added valuable insights into the driving mechanisms of the deformation phenomena. Finally, the assessment of the impact of the triggering factor in the evolution of the deformation phenomena, can serve as a valuable tool for risk mitigation. Full article
Show Figures

Graphical abstract

17 pages, 3597 KiB  
Article
Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs
by Yaser Ahmadi, Mohamed Arselene Ayari, Meysam Olfati, Seyyed Hossein Hosseini, Amith Khandakar, Behzad Vaferi and Martin Olazar
Polymers 2023, 15(14), 3064; https://doi.org/10.3390/polym15143064 - 17 Jul 2023
Cited by 21 | Viewed by 2576
Abstract
This study experimentally investigates the effect of green polymeric nanoparticles on the interfacial tension (IFT) and wettability of carbonate reservoirs to effectively change the enhanced oil recovery (EOR) parameters. This experimental study compares the performance of xanthan/magnetite/SiO2 nanocomposites (NC) and several green [...] Read more.
This study experimentally investigates the effect of green polymeric nanoparticles on the interfacial tension (IFT) and wettability of carbonate reservoirs to effectively change the enhanced oil recovery (EOR) parameters. This experimental study compares the performance of xanthan/magnetite/SiO2 nanocomposites (NC) and several green materials, i.e., eucalyptus plant nanocomposites (ENC) and walnut shell ones (WNC) on the oil recovery with performing series of spontaneous imbibition tests. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), and BET (Brunauer, Emmett, and Teller) surface analysis tests are also applied to monitor the morphology and crystalline structure of NC, ENC, and WNC. Then, the IFT and contact angle (CA) were measured in the presence of these materials under various reservoir conditions and solvent salinities. It was found that both ENC and WNC nanocomposites decreased CA and IFT, but ENC performed better than WNC under different salinities, namely, seawater (SW), double diluted salted (2 SW), ten times diluted seawater (10 SW), formation water (FW), and distilled water (DIW), which were applied at 70 °C, 2000 psi, and 0.05 wt.% nanocomposites concentration. Based on better results, ENC nanofluid at salinity concentrations of 10 SW and 2 SW ENC were selected for the EOR of carbonate rocks under reservoir conditions. The contact angles of ENC nanocomposites at the salinities of 2 SW and 10 SW were 49 and 43.4°, respectively. Zeta potential values were −44.39 and −46.58 for 2 SW and 10 SW ENC nanofluids, which is evidence of the high stability of ENC nanocomposites. The imbibition results at 70 °C and 2000 psi with 0.05 wt.% ENC at 10 SW and 2 SW led to incremental oil recoveries of 64.13% and 60.12%, respectively, compared to NC, which was 46.16%. Full article
(This article belongs to the Special Issue New Strategies for the Application of Biopolymer-Based Materials)
Show Figures

Figure 1

16 pages, 24299 KiB  
Article
PSI Spatially Constrained Clustering: The Sibari and Metaponto Coastal Plains
by Nicola Amoroso, Roberto Cilli, Davide Oscar Nitti, Raffaele Nutricato, Muzaffer Can Iban, Tommaso Maggipinto, Sabina Tangaro, Alfonso Monaco and Roberto Bellotti
Remote Sens. 2023, 15(10), 2560; https://doi.org/10.3390/rs15102560 - 14 May 2023
Cited by 5 | Viewed by 2483
Abstract
PSI data are extremely useful for monitoring on-ground displacements. In many cases, clustering algorithms are adopted to highlight the presence of homogeneous patterns; however, clustering algorithms can fail to consider spatial constraints and be poorly specific in revealing patterns at lower scales or [...] Read more.
PSI data are extremely useful for monitoring on-ground displacements. In many cases, clustering algorithms are adopted to highlight the presence of homogeneous patterns; however, clustering algorithms can fail to consider spatial constraints and be poorly specific in revealing patterns at lower scales or possible anomalies. Hence, we proposed a novel framework which combines a spatially-constrained clustering algorithm (SKATER) with a hypothesis testing procedure which evaluates and establishes the presence of significant local spatial correlations, namely the LISA method. The designed workflow ensures the retrieval of homogeneous clusters and a reliable anomaly detection; to validate this workflow, we collected Sentinel-1 time series from the Sibari and Metaponto coastal plains in Italy, ranging from 2015 to 2021. This particular study area is interesting due to the presence of important industrial and agricultural settlements. The proposed workflow effectively outlines the presence of both subsidence and uplifting that deserve to be focused and continuous monitoring, both for environmental and infrastructural purposes. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

Back to TopTop