Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = POPs (persistent organic pollutants)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

19 pages, 1050 KiB  
Article
Fungal Communities in Soils Contaminated with Persistent Organic Pollutants: Adaptation and Potential for Mycoremediation
by Lazaro Alexis Pedroso Guzman, Lukáš Mach, Jiřina Marešová, Jan Wipler, Petr Doležal, Jiřina Száková and Pavel Tlustoš
Appl. Sci. 2025, 15(15), 8607; https://doi.org/10.3390/app15158607 - 4 Aug 2025
Viewed by 132
Abstract
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal [...] Read more.
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal mining, coal processing, and the chemical industry, predominantly petrochemistry. The elevated contents of persistent organic pollutants (POPs) such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were identified in urban soils due to the long-term industrial pollution. The results confirmed elevated contents of PAHs in all the analyzed soil samples with high variability ranging between 0.5 and 23.3 mg/kg regardless of the position of the sampling area on the city map. PCBs and PCDD/Fs exceeded the detection limits in the soil at the sampling points, and several hotspots were revealed at some locations. All the sampling points contained a diverse community of saprotrophic and mycorrhizal fungi, as determined according to abundant basidiomycetes. Fungal species with a confirmed ability to degrade organic pollutants were found, such as species representing the genera Agaricus from the Agaricaceae family, Coprinopsis from the Psathyrellaceae family, Hymenogaster from the Hymenogasteraceae family, and Pluteus from the Pluteaceae family. These species are accustomed to particular soil conditions as well as the elevated contents of the POPs in them. Therefore, these species could be taken into account when developing potential bioremediation measures to apply in the most polluted areas, and their biodegradation ability should be elucidated in further research. The results of this study contribute to the investigation of the potential use of fungal species for mycoremediation of the areas polluted by a wide spectrum of organic pollutants. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

16 pages, 1192 KiB  
Article
Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
by Gordana Jovanović, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić and Mirjana Perišić
Toxics 2025, 13(8), 631; https://doi.org/10.3390/toxics13080631 - 27 Jul 2025
Viewed by 332
Abstract
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence [...] Read more.
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside p,p’-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138–PCB-153, PCB-138–PCB-180, and PCB-180–PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios. Full article
Show Figures

Figure 1

23 pages, 2150 KiB  
Review
Nanomaterials for Persistent Organic Pollutants Decontamination in Water: Mechanisms, Challenges, and Future Perspectives
by Risky Ayu Kristanti, Tony Hadibarata, Adelina-Gabriela Niculescu, Dan Eduard Mihaiescu and Alexandru Mihai Grumezescu
Nanomaterials 2025, 15(14), 1133; https://doi.org/10.3390/nano15141133 - 21 Jul 2025
Viewed by 384
Abstract
Nanomaterials possess unique physicochemical properties that position them as promising candidates for environmental remediation, particularly in the removal of persistent organic pollutants (POPs) from aqueous systems. Their high surface area, tunable functionality, and strong adsorption capabilities have attracted significant attention. In this context, [...] Read more.
Nanomaterials possess unique physicochemical properties that position them as promising candidates for environmental remediation, particularly in the removal of persistent organic pollutants (POPs) from aqueous systems. Their high surface area, tunable functionality, and strong adsorption capabilities have attracted significant attention. In this context, this paper reviews the mechanisms of nanomaterial-based POP decontamination, also providing a critical overview of the limitations and challenges in applying these methods. Specifically, issues of stability, reusability, and aggregation are discussed, which can lead to performance decay during repeated use. In addition, the practical application requires nanocomposites to enable efficient separation and mitigate agglomeration. Environmental concerns also arise from nanomaterials’ fate, transport, and potential toxicity, which may impact aquatic ecosystems and non-target organisms. When checking for large-scale application feasibility, impurities typically add to production costs, recovery problems, and general infrastructure limitations. In addition to these points, there are no standard guidelines or clear risk assessment procedures for registering a product. Unprecedented cross-disciplinary research between natural, human, and technological studies and outreach programs is needed to facilitate the development and diffusion of the results. The barriers will eventually be breached to move from laboratory success in developing the desperately needed new water purification technologies to field-ready water treatment solutions that can address the global POP contamination problem. Full article
Show Figures

Figure 1

25 pages, 1034 KiB  
Article
A Human Health Risk Assessment of Persistent Organic Pollutants in Wild Marine Mussels from the Western Cape Province of South Africa
by Deborah Caitlin Firth, Philip E. Strydom, Lutz Auerswald and Louwrens Christiaan Hoffman
Foods 2025, 14(13), 2226; https://doi.org/10.3390/foods14132226 - 24 Jun 2025
Viewed by 287
Abstract
Persistent Organic Pollutants (POPs) are contaminants that pose potential harm to environments and human consumers. Wild mussels (Mytilus galloprovincialis, Choromytilus meridionalis, and Perna perna) were collected from the coastline of the Western Cape Province of South Africa and analysed [...] Read more.
Persistent Organic Pollutants (POPs) are contaminants that pose potential harm to environments and human consumers. Wild mussels (Mytilus galloprovincialis, Choromytilus meridionalis, and Perna perna) were collected from the coastline of the Western Cape Province of South Africa and analysed for polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polyaromatic hydrocarbon (PAHs) via gas chromatography tandem mass spectrometry. The results showed eleven PAHs at concentrations ranging from NF to 50.3 ng g−1 d.w., five PCBs at concentrations between 4.1 and 18.6 ng g−1 d.w., and two OCPs, namely β-hexachlorocyclohexane (NF–7.9 ng g−1 d.w.) and chlordane (7.2–14.5 µg g−1 d.w.). A Human Health Risk Assessment (HHRA) determined PAH concentrations to pose little health risk to adults and children consuming < 1000 g and 500 g per month (g m−1) wild mussel meat, respectively. The HHRA of PCBs found adults and children would experience negative health effects at a consumption rate of 250 g m−1. HHRAs determined chlordane concentrations to pose unacceptable health risks for adults and children at all consumption rates (similar results for lindane). To avoid unnecessary POP-related health risks over a lifetime, it is recommended that adults consume < 250 g m−1 of wild mussels from the Western Cape Province, and children should avoid consuming mussels. This research demonstrates the legacy of POP contamination along the coastline of the Western Cape Province; more monitoring of these contaminants is imperative to protect marine ecosystems and food chains. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 703 KiB  
Systematic Review
Associations Between Endocrine-Disrupting Chemical Exposure and Fertility Outcomes: A Decade of Human Epidemiological Evidence
by Zoe Tzouma, Panagiota Dourou, Athina Diamanti, Vikentia Harizopoulou, Petros Papalexis, Grigorios Karampas, Alina Liepinaitienė, Audrius Dėdelė and Antigoni Sarantaki
Life 2025, 15(7), 993; https://doi.org/10.3390/life15070993 - 21 Jun 2025
Viewed by 1387
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system by mimicking or blocking the action of endogenous hormones such as estrogens, androgens, and thyroid hormones. This systematic review aims to evaluate the current epidemiological evidence linking EDC exposure with adverse [...] Read more.
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interfere with the endocrine system by mimicking or blocking the action of endogenous hormones such as estrogens, androgens, and thyroid hormones. This systematic review aims to evaluate the current epidemiological evidence linking EDC exposure with adverse reproductive outcomes in males and females of reproductive age. A total of 14 observational studies published between 2014 and 2024 were included following structured searches in PubMed, Scopus, and Google Scholar. The most commonly studied EDCs included bisphenol A (BPA), its analogs (such as bisphenol S, BPS), phthalates, parabens, per- and polyfluoroalkyl substances (PFAS), and persistent organic pollutants (POPs). The review found consistent associations between EDC exposure and multiple reproductive endpoints, such as impaired semen quality, decreased ovarian reserve, infertility, polycystic ovary syndrome (PCOS), altered hormone levels—specifically estradiol (E2), luteinizing hormone (LH), and follicle-stimulating hormone (FSH)—and adverse outcomes in assisted reproductive technologies (ART), including in vitro fertilization (IVF). Despite methodological heterogeneity, the findings support the biological plausibility of EDCs in disrupting reproductive function. The review highlights the urgent need for regulatory measures, increased public awareness, and longitudinal studies to assess the cumulative effects of chronic EDC exposure on human fertility. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

20 pages, 453 KiB  
Review
Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems
by Adenike A. Akinsemolu and Helen N. Onyeaka
Appl. Sci. 2025, 15(12), 6921; https://doi.org/10.3390/app15126921 - 19 Jun 2025
Viewed by 518
Abstract
The natural and biological processes of organisms offer significant potential for the removal and remediation of environmental contaminants including organic pollutants such as persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), pesticides, herbicides, industrial chemicals, and pharmaceuticals. Biotechnology provides various approaches to detoxify [...] Read more.
The natural and biological processes of organisms offer significant potential for the removal and remediation of environmental contaminants including organic pollutants such as persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), pesticides, herbicides, industrial chemicals, and pharmaceuticals. Biotechnology provides various approaches to detoxify or remove these pollutants from ecosystems through the use of microorganisms and plants. This review explores the application of biotechnology for the remediation of organic pollutants in coastal marine ecosystems. A thorough analysis of the existing literature highlights bioremediation methods, such as biostimulation, bioaugmentation, and bioattenuation, and phytoremediation methods, like phytoextraction, phytostabilization, phytovolatilization, phytodegradaton, and phytofiltration. as the most widely used techniques in biotechnology. While bioremediation has advanced substantially in fields such as electrochemistry, genetic engineering, and nanotechnology, there is still limited research on the compatibility and application of these technologies in phytoremediation. This paper therefore aims to examine biotechnological methods for tackling organic pollutants in coastal marine environments with an emphasis on the need for further research on enhancing phytoremediation through microbial inoculation and nanomaterial-assisted uptake. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

29 pages, 2667 KiB  
Review
From Harm to Hope: Tackling Microplastics’ Perils with Recycling Innovation
by Irene Dini, Andrea Mancusi and Serenella Seccia
Molecules 2025, 30(12), 2535; https://doi.org/10.3390/molecules30122535 - 10 Jun 2025
Viewed by 806
Abstract
This review examines how plastics break down into dangerous pollutants like microplastics, nanoplastics, and persistent organic pollutants (POPs) that can contaminate the environment, make their way into the human food chain, and provoke toxicological effects in humans. According to the reviewed literature, new [...] Read more.
This review examines how plastics break down into dangerous pollutants like microplastics, nanoplastics, and persistent organic pollutants (POPs) that can contaminate the environment, make their way into the human food chain, and provoke toxicological effects in humans. According to the reviewed literature, new biomarkers associated with their exposure should be identified, and new methods for detecting them in the environment and in food should be developed and validated. It would also be interesting to improve research on the interaction between micro- and nanoplastics and human cells, their impact on DNA, and their long-term health effects. Promoting sustainable practices and adherence to the 3R strategies (reduce, reuse, and recycle) to transform hazardous waste into valuable resources is crucial to protecting public health from dangerous contaminants as we wait on the development of new diagnostic methods and more stringent legislation. Full article
Show Figures

Figure 1

24 pages, 2758 KiB  
Review
Persistent Organic Pollutants’ Threats and Impacts on Food Safety in the Polar Regions—A Concise Review
by Dele Raheem, Marco Trovò, Constanza Carmona Mora and Clara Vassent
Pollutants 2025, 5(2), 14; https://doi.org/10.3390/pollutants5020014 - 3 Jun 2025
Viewed by 2606
Abstract
The threats posed by Persistent Organic Pollutants (POPs) impact food safety and, by implication, food security in the polar regions. POPs tend to persist in the environment and the fatty tissues of animals, thereby constituting long-term contamination. Due to the cold climate and [...] Read more.
The threats posed by Persistent Organic Pollutants (POPs) impact food safety and, by implication, food security in the polar regions. POPs tend to persist in the environment and the fatty tissues of animals, thereby constituting long-term contamination. Due to the cold climate and geography of these polar regions, they create a sink for these pollutants, which travel from their source of production and accumulate in food chains, resulting in health risks to the ecosystem, animals, and humans of the Arctic and Antarctica. In this paper, we draw attention to the threats posed by POPs and how they can lead to food insecurity, negatively affecting health due to unsafe traditional foods. A narrative synthesis methodology was employed, systematically analyzing historical data, activities, and research trends on POP contamination in polar ecosystems. We also highlight resilience promoted by Arctic governance, with a focus on how the issues of POPs became an international matter from the 1970s, with three United Nations (UN) conventions: the UN-Environment Stockholm Convention on Persistent Organic Pollutants, the UN Minamata Convention on mercury, and the UN-ECE Convention on Long-range Transboundary Air Pollution. These conventions led to the start of several monitoring activities in the polar regions, transforming the POPs into a global topic. We also consider the intertwined effect of climate change on POPs. Additionally, the human rights paradigm in relation to food security and sovereignty for polar communities is explored. Strengthening the resilience of communities in the polar regions requires recognition of these nutritious traditional foods as an aspect of cultural identity that must be safe and easily accessible. We focus on developments, improvements, the role of international cooperation, and frameworks to assist in research and regulations. Furthermore, establishing systems that engage local communities to consistently monitor POPs regularly will lead to a better understanding of these threats. Ultimately, this narrative provides a look into the past and current research of POPs and their monitoring in the polar regions. Full article
Show Figures

Figure 1

20 pages, 15011 KiB  
Article
Glacial Waters Under Threat: Risk Assessment and Source Identification of Polychlorinated Biphenyls in Meili Snow Mountains, Southeastern Tibetan Plateau
by Huawei Zhang, Yan Yao, Xinyu Wen, Rui Zhang and Rui Liu
Toxics 2025, 13(5), 391; https://doi.org/10.3390/toxics13050391 - 13 May 2025
Viewed by 517
Abstract
Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) due to their potential threat to both ecosystems and human health. The Tibetan Plateau (TP), characterized by its low temperatures, pristine ecological conditions, and remoteness from anthropogenic influences, serves as the investigation region. [...] Read more.
Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) due to their potential threat to both ecosystems and human health. The Tibetan Plateau (TP), characterized by its low temperatures, pristine ecological conditions, and remoteness from anthropogenic influences, serves as the investigation region. This study analyzed water samples from the temperature glacial watershed and employed the risk assessment method established by the United States Environmental Protection Agency (US EPA) to assess both carcinogenic and non-carcinogenic risks of PCBs in five age groups. The total concentrations of PCBs (∑3PCBs) varied from 738 to 1914 ng/L, with a mean value of 1058 ng/L, which was comparable to or exceeded levels reported in the surface water around the TP. Notably, the riverine sites located near the villages and towns exhibited the highest pollution levels. Our analyses indicated that glacier melting, long-range atmospheric transport (LRAT), reductive dechlorination processes, and various anthropogenic activities might be potential sources of PCB emission in the Meili Snow Mountains. According to the established national and international water quality standards, as well as toxic equivalency concentrations (TEQs) for dioxin-like PCBs (DL PCBs), the PCB concentrations detected in this study could result in serious biological damage and adverse ecological toxicological effects. However, the PCBs in all samples posed a negligible cancer risk to five age groups, and a non-carcinogenic risk to adults. These findings contribute valuable insights into the risks and sources of PCBs and may serve as a foundational reference for subsequent study of these compounds in the Meili Snow Mountains area of the southeastern TP. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

15 pages, 1259 KiB  
Article
A Bibliometric Review of Environmental Pollution Research in Major Global Gulfs
by Daoyuan Jiang, Qiao Yang, Yang Fang, Xiaoling Zhang and Jing Song
Water 2025, 17(10), 1455; https://doi.org/10.3390/w17101455 - 12 May 2025
Viewed by 554
Abstract
Major global gulfs are essential for economic development but remain highly vulnerable to environmental pollutants. Despite progress in gulf environmental research, the extent of research investment in gulf environments across different regions worldwide remains unclear, which hinders the development of a unified global [...] Read more.
Major global gulfs are essential for economic development but remain highly vulnerable to environmental pollutants. Despite progress in gulf environmental research, the extent of research investment in gulf environments across different regions worldwide remains unclear, which hinders the development of a unified global framework for bay environmental management. We aim to fill this gap by integrating GIS and Python-based methods to identify the ten largest gulfs globally and conducting a statistical analysis of research publications from 2000 to 2024 for these gulfs, based on the Web of Science core database. We find that the publication numbers show a correlation with the size of the gulf. However, the Gulf of Mexico and the Gulf of St. Lawrence show higher publication volumes, likely influenced by economic activities and major environmental incidents. In contrast, regions such as Hudson Bay and the Gulf of Carpentaria receive relatively less research attention. This suggests that scientific output in gulf regions may be attributed to economic activities and significant environmental events. Water quality research predominates, while sediment studies, particularly in high-latitude gulf areas (such as Hudson Bay), account for the lowest proportion, possibly due to sampling costs and challenges. Traditional pollutants, especially heavy metals (HMs) and persistent organic pollutants (POPs), are the primary focus of research. The investigation of emerging contaminants reveals significant regional disparities, emphasizing the necessity for further research and enhanced regulatory frameworks. This study provides scientific evidence for the unified governance of gulf environments. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

24 pages, 3124 KiB  
Article
Trends in Polychlorinated Biphenyl Contamination in Bucharest’s Urban Soils: A Two-Decade Perspective (2002–2022)
by Mirela Alina Sandu, Mihaela Preda, Veronica Tanase, Denis Mihailescu, Ana Virsta and Veronica Ivanescu
Processes 2025, 13(5), 1357; https://doi.org/10.3390/pr13051357 - 29 Apr 2025
Viewed by 693
Abstract
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that were widely used in industrial applications throughout the 20th century. Due to their chemical stability, resistance to degradation and ability to bioaccumulate and biomagnify through food chains, PCBs pose long-term environmental and health risks. Due [...] Read more.
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that were widely used in industrial applications throughout the 20th century. Due to their chemical stability, resistance to degradation and ability to bioaccumulate and biomagnify through food chains, PCBs pose long-term environmental and health risks. Due to these characteristics, PCBs have been globally regulated as persistent organic pollutants (POPs), despite being banned from production in most countries decades ago. This study investigates temporal trends in PCB contamination in urban soils of Bucharest over a 20-year period (2002–2022), focusing on six principal congeners (PCB 28, 52, 101, 138, 153, and 180) sampled from 13 locations, including roadsides and urban parks. Gas chromatography and spatial analysis using inverse distance weighting (IDW) revealed a marked reduction in Σ6PCB concentrations, declining from 0.0159 mg/kg in 2002 to 0.0065 mg/kg in 2022, with statistically significant differences confirmed by Kruskal–Wallis analysis (p < 0.05). This decline is primarily attributed to reduced emissions, source control measures, and natural attenuation. However, the persistence of PCBs in localized hotspots is influenced by secondary dispersion mechanisms, such as atmospheric deposition and surface runoff, which redistribute contaminants rather than eliminate them. Health risk assessments via ingestion, dermal absorption, and inhalation routes confirmed negligible carcinogenic risk for both adults and children. Although measurable progress has been achieved, the persistence of localized contamination underscores the need for targeted remediation strategies and sustained environmental monitoring to protect vulnerable urban areas from recontamination. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

12 pages, 1370 KiB  
Article
Contamination Level, Distribution, and Inventory of Dechlorane Plus (DP) in the Surface Soil of Shenyang City, China
by Hui Wang, Siyi Yu, Tony R. Walker, Hao Wu, Xiaoxu Wang, Yueli Yang and Yinggang Wang
Toxics 2025, 13(5), 335; https://doi.org/10.3390/toxics13050335 - 24 Apr 2025
Viewed by 506
Abstract
Dechlorane Plus (DP), an emerging type of persistent organic pollutant (POP), poses potential harmful effects on plants, animals, and humans alike, garnering increasing attention. Urban surface soil is easily accessible to urban residents, and its environmental conditions have a more significant impact on [...] Read more.
Dechlorane Plus (DP), an emerging type of persistent organic pollutant (POP), poses potential harmful effects on plants, animals, and humans alike, garnering increasing attention. Urban surface soil is easily accessible to urban residents, and its environmental conditions have a more significant impact on urban residents. However, there are few studies on related DP contamination. In this study, the contamination of DP in surface soil from Shenyang City, Liaoning Province, China, was investigated. Soil samples were collected from 33 different locations in May and June 2023. The total DP (∑DP), anti-DP, and syn-DP were determined by gas chromatography and ranged from not detected (ND) to 77.80 ng/g, from ND to 61.50 ng/g, and from ND to 16.30 ng/g, respectively. The mean values were 33.60 ± 18.93 ng/g, 27.01 ± 14.32 ng/g, and 8.57 ± 4.55 ng/g. The findings indicate that anti-DP is more readily detectable than syn-DP, attributable to the lower proportion of syn-DP in the overall DP production and the distinct physicochemical properties of DP isomers. The fsyn [syn-DP/(anti-DP + syn-DP)] is 0.14–0.40, with a mean value of 0.22. This aligns closely with the values observed in commercial DP formulations, suggesting that the primary sources are derived from commercial DP products. Contour maps show that DP concentrations are influenced by urban land use and DP production. Based on the Tyson polygon method, the DP inventory was calculated at approximately 1.18 tons, with the unit area load exceeding previously reported values. The results also show that the health risks of DP are minimal, but children are more susceptible to the impacts of DP than adults, and oral ingestion is a more critical exposure pathway. Full article
Show Figures

Figure 1

20 pages, 3616 KiB  
Article
Long-Term Heavy Metal Bioaccumulation in Sprat (Sprattus sprattus) from the Romanian Black Sea: Ecological and Human Health Risks in the Context of Sustainable Fisheries
by Andra Oros and Madalina Galatchi
Fishes 2025, 10(4), 178; https://doi.org/10.3390/fishes10040178 - 15 Apr 2025
Cited by 1 | Viewed by 855
Abstract
This study evaluates the heavy metals concentrations in sprat (Sprattus sprattus, Linnaeus, 1758) from the Romanian Black Sea, assessing both ecological implications and human health risks associated with consumption. Using long-term data spanning 1994–2019, levels of copper (Cu), cadmium (Cd), lead [...] Read more.
This study evaluates the heavy metals concentrations in sprat (Sprattus sprattus, Linnaeus, 1758) from the Romanian Black Sea, assessing both ecological implications and human health risks associated with consumption. Using long-term data spanning 1994–2019, levels of copper (Cu), cadmium (Cd), lead (Pb), nickel (Ni), and chromium (Cr) in dorsal muscle tissues were analyzed to identify contamination trends and episodic pollution events. Although most concentrations remained below regulatory thresholds, occasional exceedances of Cd and Pb suggest intermittent pollution inputs. Health risks were assessed using dietary indices including estimated daily intake (EDI), target hazard quotient (THQ), total hazard quotient (TTHQ), and carcinogenic risk index (CRI). Findings indicate that, under current exposure levels, regular sprat consumption poses minimal risk. However, prolonged intake during peak contamination periods may contribute to cumulative toxic effects, with implications for ecosystem stability and food safety. Given the persistence of heavy metals and their interactions with co-occurring pollutants, such as persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), ongoing monitoring remains essential. This study supports the development of sustainable environmental policies aimed at protecting marine biodiversity and consumer health in the Black Sea region. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

17 pages, 5149 KiB  
Article
Impact of a Nanoscale Iron–Chlorobenzene Mixture on Pulmonary Injury in Rat Pups: Extending Exposure Knowledge Using Network Technology
by Kezhou Liu, Ying Xu, Mengjie Ying and Meiling Chen
Toxics 2025, 13(3), 221; https://doi.org/10.3390/toxics13030221 - 17 Mar 2025
Viewed by 638
Abstract
Particulate matter coexists with persistent organic pollutants (POPs) in the atmosphere, which can enter the human body by accompanying inhalable particles in the respiratory tract. Photochemical conversion further alters the chemical composition of the precursor particles and secondary products. This study investigated the [...] Read more.
Particulate matter coexists with persistent organic pollutants (POPs) in the atmosphere, which can enter the human body by accompanying inhalable particles in the respiratory tract. Photochemical conversion further alters the chemical composition of the precursor particles and secondary products. This study investigated the effects of nanoscale iron–chlorobenzene mixtures and their photochemical conversion products on early lung development in rat pups. Using network toxicology and animal experiments, we constructed a compound toxicity–target network and developed air exposure models. This study revealed that both pollutants, before and after photochemical conversion, bound to the aryl hydrocarbon receptor (AhR), increased oxidative stress, altered lung tissue morphology, and reduce inflammatory factor expression. Rat pups were highly sensitive to pollutants during critical stages of lung development. However, no significant differences in oxidative stress or inflammation were observed between the pollutants, likely because of immature lung tissues. Once tissue damage reached a threshold, the response to increasing pollutant concentrations diminished. This study provides insights into atmospheric pollutant toxicity and scientific evidence for the risk assessment of dioxin-like nanoscale mixtures. Full article
Show Figures

Graphical abstract

Back to TopTop