A Bibliometric Review of Environmental Pollution Research in Major Global Gulfs
Abstract
1. Introduction
2. Materials and Methods
2.1. Gulf Information Determination
2.2. Retrieval Strategy
2.2.1. Overall Research
2.2.2. Environmental Investigations and Environmental Media
2.2.3. Types of Pollutants
3. Results
3.1. Research Publications of Major Global Gulfs
3.2. Publications in Different Types of Pollutants
4. Discussion
5. Conclusions
- (1)
- Scientific output in bay regions correlates with bay size; however, the Gulf of Mexico and the Gulf of St. Lawrence exhibit significantly higher publication volumes, likely influenced by economic activity and major environmental events. In contrast, the Bay of Bengal and the Gulf of Aden, despite facing severe pollution, show insufficient research investment, necessitating increased research efforts in these areas.
- (2)
- Water quality research accounts for the largest proportion of publications (27.3–54.2%), whereas sediment research is relatively sparse, particularly in high-latitude bays such as Hudson Bay (12.9%) and the Gulf of St. Lawrence (9.6%). This may be attributed to the constraints imposed by extreme climatic conditions, leading to weaker research focus.
- (3)
- Research on traditional pollutants, especially HMs and POPs, continues to dominate bay environmental studies.
- (4)
- Research on emerging pollutants shows significant regional variation, the Bay of Bengal and the Gulf of Thailand focus on microplastics; the Gulf of Mexico, the Gulf of St. Lawrence, and the Gulf of Guinea have the highest concentration of pesticide-related research; Hudson Bay is more focused on the bioaccumulation effects of flame retardants; while regions such as the Gulf of Alaska and the Gulf of Aden show insufficient research investment (publication numbers < 10). We recommend increasing funding and fostering international collaboration in these regions.
- (5)
- The international community has already undertaken a series of proactive measures to promote gulf environmental governance. However, continued emphasis on strengthening international cooperation, data sharing, and leveraging advanced technologies to improve research efficiency is essential for future progress.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosenne, S. The United Nations Convention on the Law of the Sea, 1982. Isr. Law Rev. 1995, 29, 491–505. [Google Scholar] [CrossRef]
- Verschuur, J.; Koks, E.; Hall, J. Ports’ criticality in international trade and global supply-chains. Nat. Commun. 2022, 13, 4351. [Google Scholar] [CrossRef]
- Gorman, D.; Beale, D.J.; Crosswell, J.; Stephenson, S.A.; Shah, R.M.; Hillyer, K.E.; Steven, A.D. Multiple-biomarkers show the importance of blue carbon to commercially important fishery species. Sci. Total Environ. 2023, 881, 163162. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Mendoza, Z.; Sosa-Nishizaki, O.; Pardo, M.A.; Herzka, S.Z.; Wells, R.D.; Rooker, J.R.; Falterman, B.J.; Dreyfus-León, M.J. Mesoscale activity drives the habitat suitability of yellowfin tuna in the Gulf of Mexico. Sci. Rep. 2024, 14, 8256. [Google Scholar] [CrossRef]
- Adams, C.M.; Hernandez, E.; Cato, J.C. The economic significance of the Gulf of Mexico related to population, income, employment, minerals, fisheries and shipping. Ocean Coast. Manag. 2004, 47, 565–580. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E. Gulf of Mexico hypoxia: Past, present, and future. Limnol. Oceanogr. Bull. 2019, 28, 117–124. [Google Scholar] [CrossRef]
- Payo, A.; Mukhopadhyay, A.; Hazra, S.; Hazra, S.; Ghosh, T.; Ghosh, S.; Brown, S.; Nicholls, R.J.; Bricheno, L.; Wolf, J. Projected changes in area of the Sundarban mangrove forest in Bangladesh due to SLR by 2100. Clim. Change 2016, 139, 279–291. [Google Scholar] [CrossRef]
- Ukwe, C.; Ibe, C. A regional collaborative approach in transboundary pollution management in the guinea current region of western Africa. Ocean Coast. Manag. 2010, 53, 493–506. [Google Scholar] [CrossRef]
- Mccrea-Strub, A.; Kleisner, K.; Sumaila, U.R.; Swartz, W.; Watson, R.; Zeller, D.; Pauly, D. Potential impact of the Deepwater Horizon oil spill on commercial fisheries in the Gulf of Mexico. Fisheries 2011, 36, 332–336. [Google Scholar] [CrossRef]
- Nabizadeh, R.; Sajadi, M.; Rastkari, N.; Yaghmaeian, K. Microplastic pollution on the Persian Gulf shoreline: A case study of Bandar Abbas city, Hormozgan Province, Iran. Mar. Pollut. Bull. 2019, 145, 536–546. [Google Scholar] [CrossRef]
- Khan, M.; Hasan, M.R.; Khan, M.; Aktar, S.; Fatema, K. Distribution of heavy metals in surface sediments of the Bay of Bengal Coast. J. Toxicol. 2017, 2017, 9235764. [Google Scholar] [CrossRef]
- Benson, N.U.; Adedapo, A.E.; Fred-Ahmadu, O.H.; Williams, A.B.; Udosen, E.D.; Ayejuyo, O.O.; Olajire, A.A. New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: A case study of the Gulf of Guinea. Reg. Stud. Mar. Sci. 2018, 18, 44–56. [Google Scholar] [CrossRef]
- Brown, T.M.; Macdonald, R.W.; Muir, D.C.; Letcher, R.J. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s Eastern Arctic. Sci. Total Environ. 2018, 618, 500–517. [Google Scholar] [CrossRef]
- Sonne, C.; Siebert, U.; Gonnsen, K.; Desforges, J.-P.; Eulaers, I.; Persson, S.; Roos, A.; Bäcklin, B.-M.; Kauhala, K.; Olsen, M.T. Health effects from contaminant exposure in Baltic Sea birds and marine mammals: A review. Environ. Int. 2020, 139, 105725. [Google Scholar] [CrossRef]
- de Assis Costa, L.A.; Pessoa, D.M.M.; da Silva Carreira, R. Chemical and biological indicators of sewage river input to an urban tropical estuary (Guanabara Bay, Brazil). Environ. Int. 2018, 90, 513–518. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Hosseinzadeh, S.; Khataee, A.; Dragoi, E.N. The concentration of persistent organic pollutants in water resources: A global systematic review, meta-analysis and probabilistic risk assessment. Sci. Total Environ. 2021, 796, 149000. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef]
- González-González, R.B.; Sharma, P.; Singh, S.P.; Américo-Pinheiro, J.H.P.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M. Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Sci. Total Environ. 2022, 821, 153329. [Google Scholar] [CrossRef]
- Ahn, C.; Jeung, E.-B. Endocrine-disrupting chemicals and disease endpoints. Int. J. Mol. Sci. 2023, 24, 5342. [Google Scholar] [CrossRef]
- Ríos-Bonilla, K.M.; Aga, D.S.; Lee, J.; König, M.; Qin, W.; Cristobal, J.R.; Atilla-Gokcumen, G.E.; Escher, B.I. Neurotoxic effects of mixtures of perfluoroalkyl substances (PFAS) at environmental and human blood concentrations. Environ. Sci. Technol. 2024, 58, 16774–16784. [Google Scholar] [CrossRef] [PubMed]
- Nordquist, M. United Nations Convention on the Law of the Sea 1982, Volume VII: A Commentary; Martinus Nijhoff Publishers: Boston, MA, USA, 2011; Volume 7. [Google Scholar]
- Pan, B.; Zhang, F.; Zhu, X.; Huang, L.; Wu, Y.; Tang, J.Q.; Feng, N.X. Global trends and hotspots evolution in soil microplastic pollution research: A bibliometric analysis based on the Web of Science. Ecol. Indic. 2024, 161, 111974. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Yao, B.; Zhou, Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. Sci. Total Environ. 2024, 923, 171388. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energ. Nexus 2023, 6, 74795. [Google Scholar] [CrossRef]
- Liu, X.; Sathishkumar, K.; Zhang, H.; Saxena, K.K.; Zhang, F.; Naraginiti, S.; Rajendiran, R.; Aruliah, R.; Guo, X. Frontiers in environmental cleanup: Recent advances in remediation of emerging pollutants from soil and water. J. Hazard. Mater. Adv. 2024, 16, 100461. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Leung, K.S.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A one health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Liu, Z.; Gan, Y.; Luo, J.; Luo, X.; Ding, C.; Cui, Y. Current Status of Emerging Contaminant Models and Their Applications Concerning the Aquatic Environment: A Review. Water 2025, 17, 85. [Google Scholar] [CrossRef]
- Afzali, S.F.; Bourdages, H.; Laporte, M.; Mérot, C.; Normandeau, E.; Audet, C.; Bernatchez, L. Comparing environmental metabarcoding and trawling survey of demersal fish communities in the Gulf of St. Lawrence, Canada. Environ. DNA 2021, 3, 22–42. [Google Scholar] [CrossRef]
- Crone, T.J.; Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 2010, 330, 634. [Google Scholar] [CrossRef]
- Meyer-Gutbrod, E.L.; Greene, C.H.; Davies, K.T. Marine species range shifts necessitate advanced policy planning: The case of the North Atlantic right whale. Oceanography 2018, 31, 19–23. [Google Scholar] [CrossRef]
- Schuur, E.A.; Abbott, B.W.; Commane, R.; Ernakovich, J.; Euskirchen, E.; Hugelius, G.; Grosse, G.; Jones, M.; Koven, C.; Leshyk, V.; et al. Permafrost and climate change: Carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 2022, 47, 343–371. [Google Scholar] [CrossRef]
- Frankham, R. Evaluation of proposed genetic goals and targets for the Convention on Biological Diversity. Conserv. Genet. 2022, 23, 865–870. [Google Scholar] [CrossRef]
- Kumar, R.; Sinha, R.; Rakib, M.R.; Padha, S.; Ivy, N.; Bhattacharya, S.; Dhar, A.; Sharma, P. Microplastics pollution load in Sundarban delta of Bay of Bengal. J. Hazard. Mater. Adv. 2022, 7, 100099. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A.; Almahasheer, H.; Dawoud, T.; Alwakeel, S.; AlMaarofi, S. Biomonitoring coastal pollution on the Arabian Gulf and the Gulf of Aden using macroalgae: A review. Mar. Pollut. Bull. 2022, 175, 113156. [Google Scholar] [CrossRef] [PubMed]
- Gignac, C.; Bernier, M.; Chokmani, K. IcePAC–a probabilistic tool to study sea ice spatio-temporal dynamics: Application to the Hudson Bay area. Cryosphere 2019, 13, 451–468. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends. Geophys. Res. Lett. 2016, 43, 3150–3159. [Google Scholar] [CrossRef]
- Picard, J.C.; Munoz, G.; Duy, S.V.; Sauvé, S. Longitudinal and vertical variations of waterborne emerging contaminants in the St. Lawrence Estuary and Gulf during winter conditions. Sci. Total Environ. 2021, 777, 146073. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Freeman, D.; Lascelles, N.; Drayton, D. Pyrolysis GC-MS Characterization of Plastic Debris from the Northern Gulf of Alaska Shorelines. ACS Es&t Water 2023, 3, 1364–1373. [Google Scholar]
- Brown, T.M.; Takada, H. Indicators of marine pollution in the North Pacific Ocean. Environ. Contam. Toxicol. 2017, 73, 171–175. [Google Scholar] [CrossRef]
- Theocharis, D.; Pettit, S.; Rodrigues, V.S.; Haider, J. Arctic shipping: A systematic literature review of comparative studies. J. Transp. Geogr. 2018, 69, 112–128. [Google Scholar] [CrossRef]
- Stern, G.A.; Macdonald, C.R.; Carvalho, P.C.; Wolfe, T.; Ferraz, F. Baseline levels and characterization of hydrocarbons in surface marine sediments along the transportation corridor in Hudson Bay: A multivariate analysis of n-alkanes, PAHs and biomarkers. Sci. Total Environ. 2023, 855, 158718. [Google Scholar] [CrossRef] [PubMed]
- Corsolini, S.; Sarà, G. The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs. Chemosphere 2017, 177, 189–199. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future; Springer: Singapore, 2019; pp. 103–125. [Google Scholar]
- Youssef, M.; El-Sorogy, A.; Al Kahtany, K.; Al Otiaby, N. Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia). Mar. Pollut. Bull. 2015, 96, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Lallas, P.L. The Stockholm Convention on persistent organic pollutants. Am. J. Int. Law 2001, 95, 692–708. [Google Scholar] [CrossRef]
- Selin, H. Global environmental law and treaty-making on hazardous substances: The Minamata Convention and mercury abatement. Glob. Environ. Politics 2014, 14, 1–19. [Google Scholar] [CrossRef]
- Ying, S.; Liu, Z.; Hu, Y.; Peng, R.; Zhu, X.; Dong, S.; Yan, D.; Huang, Y. Location-dependent occurrence and distribution of metal-based nanoparticles in bay environments. J. Hazard. Mater. 2024, 476, 134972. [Google Scholar] [CrossRef]
- Cui, K.; Wang, S.; Pei, Y.; Zhou, B. Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Sci. Total Environ. 2024, 935, 173438. [Google Scholar] [CrossRef]
- Proshad, R.; Rahim, M.A.; Rahman, M.; Asif, M.R.; Dey, H.C.; Al, M.A.; Islam, M.; Idris, A.M. Utilizing machine learning to evaluate heavy metal pollution in the world’s largest mangrove forest. Sci. Total Environ. 2024, 951, 175746. [Google Scholar] [CrossRef]
- Marghade, D.; Shelare, S.; Prakash, C.; Soudagar, M.E.M.; Khan, T.Y.; Kalam, M.A. Innovations in metal-organic frameworks (MOFs): Pioneering adsorption approaches for persistent organic pollutant (POP) removal. Environ. Res. 2024, 258, 119404. [Google Scholar] [CrossRef]
- Rostami, M.S.; Khodaei, M.M. Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions. Int. J. Biol. Macromol. 2024, 270, 132386. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Olmstead, S.M.; Wietelman, D.C.; Zheng, J. Trends in nutrient-related pollution as a source of potential water quality damages: A case study of Texas, USA. Sci. Total Environ. 2020, 724, 137962. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef]
- Nakano, H.; Alfonso, M.B.; Jandang, S.; Phinchan, N.; Chavanich, S.; Viyakarn, V.; Isobe, A. Influence of monsoon seasonality and tidal cycle on microplastics presence and distribution in the Upper Gulf of Thailand. Sci. Total Environ. 2024, 920, 170787. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Sec. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Mazlan, N.; Ahmed, M.; Muharam, F.M.; Alam, M.A. Status of persistent organic pesticide residues in water and food and their effects on environment and farmers: A comprehensive review in Nigeria. Semin. Ciên. Agr. 2017, 38, 2221–2236. [Google Scholar] [CrossRef]
- Haine, T.W.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet. Change 2015, 125, 13–35. [Google Scholar] [CrossRef]
- Sonne, C.; Dietz, R.; Jenssen, B.M.; Lam, S.S.; Letcher, R.J. Emerging contaminants and biological effects in Arctic wildlife. Trends Ecol. Evol. 2021, 36, 421–429. [Google Scholar] [CrossRef]
- Houde, M.; Wang, X.; Ferguson, S.H.; Gagnon, P.; Brown, T.M.; Tanabe, S.; Kunito, T.; Kwan, M.; Muir, D.C. Spatial and temporal trends of alternative flame retardants and polybrominated diphenyl ethers in ringed seals (Phoca hispida) across the Canadian Arctic. Environ. Pollut. 2017, 223, 266–276. [Google Scholar] [CrossRef]
- Jahan, S.; Strezov, V.; Weldekidan, H.; Kumar, R.; Kan, T.; Sarkodie, S.A.; He, J.; Dastjerdi, B.; Wilson, S.P. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Sci. Total Environ. 2019, 695, 133924. [Google Scholar] [CrossRef]
- Raubenheimer, K.; Mcilgorm, A. Can the Basel and Stockholm Conventions provide a global framework to reduce the impact of marine plastic litter? Mar. Policy 2018, 96, 285–290. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Cai, Z. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Anal. Chim. Acta 2013, 790, 1–13. [Google Scholar] [CrossRef]
- Grizzetti, B.; Vigiak, O.; Udias, A.; Aloe, A.; Zanni, M.; Bouraoui, F.; Pistocchi, A.; Dorati, C.; Friedland, R.; de Roo, A.; et al. How EU policies could reduce nutrient pollution in European inland and coastal waters. Glob. Environ. Change 2021, 69, 102281. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Lykaki, M.; Markiewicz, M.; Alrajoula, M.T.; Kraas, C.; Stolte, S. Environmental contamination by microplastics originating from textiles: Emission, transport, fate and toxicity. J. Hazard. Mater. 2022, 430, 128453. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Fowler, S.W.; Saeed, T.; Naji, A.; Al-Jandal, N. Standardized protocols for microplastics determinations in environmental amples from the Gulf and marginal seas. Mar. Pollut. Bull. 2020, 158, 111374. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, Z.; Liu, Y. Ecological risk assessment of a coastal area using multi-source remote sensing images and in-situ sample data. Ecol. Indic. 2024, 158, 111470. [Google Scholar] [CrossRef]
- Karmakar, J.; Mondal, I.; Hossain, S.A.; Jose, F.; Pichuka, S.; Ghosh, D.; De, T.K.; Lu, Q.O.; Elkhrachy, I.; Nguyen, N.M. Analyzing spatio-temporal variability of aquatic productive components in Northern Bay of Bengal using advanced machine learning models. Ocean Coast. Manag. 2024, 251, 107074. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Niu, Z. Modelling based study on the occurrence characteristics and influencing factors of the typical antibiotics in Bohai Bay. Sci. Total Environ. 2024, 906, 167853. [Google Scholar] [CrossRef]
Rank | Name of the Gulf | Gulf Alias | Name of Coastal Zone | Country | Area (km2) |
---|---|---|---|---|---|
1 | Bay of Bengal | East Indian Bay | East Indian Coast, Bangladesh coast, Coromandel Coast, Odisha Coast, Rakhine Coast, Sundarbans Coast, Andaman and Nicobar Coast, Southwest Coast of Myanmar, Sri Lanka Coast | Sri Lanka, India, Myanmar, Bangladesh, Indonesia | 2,267,997.98 |
2 | Gulf of Mexico | Louisiana Wetlands, Texas Coast, West Florida Coast, Mexican Gulf Coast, Veracruz Coast, Cuban North Coast | United States, Mexico, Cuba | 1,566,726.05 | |
3 | Hudson Bay | Northern Ontario Coast, Northwestern Coast of Québec | Canada | 820,284.67 | |
4 | Gulf of Guinea | West Africa Gulf | Niger Delta, Ivory Coast, Slave Coast, West Africa Coast | Liberia, Côte d’Ivoire, Ghana, Togo, Benin, Nigeria, Cameroon, Equatorial Guinea, Gabon, Sao Tome, Principe | 730,152.63 |
5 | Gulf of Alaska | Southern Coast of Alaska | United States | 355,017.32 | |
6 | Gulf of Carpentaria | North Queensland Coast, Eastern Northern Territory Coast, Carpentaria Plains Coast | Australia | 328,054.45 | |
7 | Gulf of Thailand | Siam Gulf | Eastern Coast of Thailand, Western Coast of Vietnam, Cambodian Coast | Thailand, Cambodia, Vietnam | 294,806.36 |
8 | Gulf of Aden | Pirate Corridor | Southern Coast of Yemeni, Northern Coast of Somali, Djibouti Coast | Yemen, Djibouti, Somalia | 278,502.95 |
9 | Great Australian Bight | Nullarbor Coast, Eyre Peninsula Coast, South Australian Coast | Australia | 273,641.06 | |
10 | Gulf of Saint Lawrence (Gulf of St. Lawrence) | Western Newfoundland Coast, Eastern New Brunswick Coast, Québec West Coast, Magdalen Islands Coast, Prince Edward Island Coast, St. Lawrence Estuary | Canada | 250,642.38 |
Type of Pollutant | Category |
---|---|
Traditional Pollutants | Heavy Metals (HMs) a Persistent Organic Pollutants (POPs) b Polycyclic Aromatic Hydrocarbons (PAHs) c Nutrient-Related Pollutants (NRPs) d Radioactive Substances (RASs) e Pathogenic microorganisms (PMs) f |
Emerging Contaminants | Pesticides g Personal Care Products (PCPs) h Pharmaceutically Active Compounds (PhACs) i Endocrine Disruptors (EDCs) j Perfluoroalkyl Substances (PFASs) k Microplastics l Flame Retardants (FRs) m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Yang, Q.; Fang, Y.; Zhang, X.; Song, J. A Bibliometric Review of Environmental Pollution Research in Major Global Gulfs. Water 2025, 17, 1455. https://doi.org/10.3390/w17101455
Jiang D, Yang Q, Fang Y, Zhang X, Song J. A Bibliometric Review of Environmental Pollution Research in Major Global Gulfs. Water. 2025; 17(10):1455. https://doi.org/10.3390/w17101455
Chicago/Turabian StyleJiang, Daoyuan, Qiao Yang, Yang Fang, Xiaoling Zhang, and Jing Song. 2025. "A Bibliometric Review of Environmental Pollution Research in Major Global Gulfs" Water 17, no. 10: 1455. https://doi.org/10.3390/w17101455
APA StyleJiang, D., Yang, Q., Fang, Y., Zhang, X., & Song, J. (2025). A Bibliometric Review of Environmental Pollution Research in Major Global Gulfs. Water, 17(10), 1455. https://doi.org/10.3390/w17101455