Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = PNU-282987 (PNU)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16746 KiB  
Article
An Experimental Investigation of Low-Frequency Active Excitation in Scramjet Combustor Using a Micro-Pulse Detonation Engine
by Keon-Hyeong Lee, Min-Su Kim, Jeong-Yeol Choi and Kenneth H. Yu
Aerospace 2024, 11(7), 559; https://doi.org/10.3390/aerospace11070559 - 8 Jul 2024
Cited by 2 | Viewed by 1847
Abstract
A micro-pulse detonation engine (μPDE) was designed and installed to a direct-connect scramjet combustor of Pusan National University (PNU-DCSC). The active excitation on the scramjet combustor was experimentally studied using the μPDE operating at frequencies of 10–20 Hz. A vitiation air heater (VAH) [...] Read more.
A micro-pulse detonation engine (μPDE) was designed and installed to a direct-connect scramjet combustor of Pusan National University (PNU-DCSC). The active excitation on the scramjet combustor was experimentally studied using the μPDE operating at frequencies of 10–20 Hz. A vitiation air heater (VAH) was used to supply high-enthalpy vitiated air to the isolator and the scramjet combustor at a Mach number of 2.0, with a total temperature of 1600 K and a total pressure of 1.68 MPa. The exit of μPDE was located at the center of the cavity of the scramjet combustor. Active excitation was performed at equivalence ratios of 0.111 and 0.163, and characteristics were analyzed through Schlieren recording and bottom wall pressure measurement. As a result, when the detonation emitted from the μPDE entered the scramjet combustor, it instantly formed a shock train and moved forward within the scramjet combustor. The flame instantaneously changed from the cavity shear layer flame to the cavity flame. Through bottom wall pressure measurement, it was also observed that active excitation resulted in a significant pressure increase near the cavity compared to when active excitation was not performed. This revealed combustion characteristics, indicating improved combustion efficiency from the pressure increase in the scramjet combustor. Full article
(This article belongs to the Special Issue Supersonic Combustion and Scramjet Propulsion)
Show Figures

Figure 1

16 pages, 2387 KiB  
Article
The α-7 Nicotinic Receptor Positive Allosteric Modulator Alleviates Lipopolysaccharide Induced Depressive-like Behavior by Regulating Microglial Function, Trophic Factor, and Chloride Transporters in Mice
by Sami Alzarea, Amna Khan, Patrick J. Ronan, Kabirullah Lutfy and Shafiqur Rahman
Brain Sci. 2024, 14(3), 290; https://doi.org/10.3390/brainsci14030290 - 19 Mar 2024
Cited by 5 | Viewed by 2713
Abstract
Neuroinflammation contributes to the pathophysiology of major depressive disorder (MDD) by inducing neuronal excitability via dysregulation of microglial brain-derived neurotrophic factor (BDNF), Na-K-Cl cotransporter-1 (NKCC1), and K-Cl cotransporter-2 (KCC2) due to activation of BDNF-tropomyosin receptor kinase B (TrkB) signaling. Allosteric modulation of α7 [...] Read more.
Neuroinflammation contributes to the pathophysiology of major depressive disorder (MDD) by inducing neuronal excitability via dysregulation of microglial brain-derived neurotrophic factor (BDNF), Na-K-Cl cotransporter-1 (NKCC1), and K-Cl cotransporter-2 (KCC2) due to activation of BDNF-tropomyosin receptor kinase B (TrkB) signaling. Allosteric modulation of α7 nAChRs has not been investigated on BDNF, KCC2, and NKCC1 during LPS-induced depressive-like behavior. Therefore, we examined the effects of PNU120596, an α7 nAChR positive allosteric modulator, on the expression of BDNF, KCC2, and NKCC1 in the hippocampus and prefrontal cortex using Western blot analysis, immunofluorescence assay, and real-time polymerase chain reaction. The effects of ANA12, a TrkB receptor antagonist, on LPS-induced cognitive deficit and depressive-like behaviors were determined using the Y-maze, tail suspension test (TST), and forced swim test (FST). Pharmacological interactions between PNU120596 and ANA12 were also examined. Experiments were conducted in male C57BL/6J mice. LPS administration (1 mg/kg) resulted in increased expression of BDNF and the NKCC1/KCC2 ratio and decreased expression of KCC2 in the hippocampus and prefrontal cortex. PNU120596 pretreatment (4 mg/kg) attenuated the LPS-induced increase in the expression of BDNF and NKCC1/KCC2 ratio and the reduction in KCC2 expression in these brain regions. In addition, ANA12 (0.25 or 0.50 mg/kg) reduced the LPS-induced cognitive deficit and depressive-like behaviors measured by a reduced spontaneous alternation in the Y-maze and increased immobility duration in TST and FST. Coadministration of PNU120596 (1 mg/kg) and ANA12 (0.25 mg/kg) prevented the LPS-induced cognitive deficit and depressive-like behaviors. Overall, PNU120596 prevented the LPS-induced depressive-like behavior by likely decreasing neuronal excitability via targeting microglial α7 nAChR in the hippocampus and prefrontal cortex. Full article
Show Figures

Figure 1

20 pages, 4277 KiB  
Article
Using Constellation Pharmacology to Characterize a Novel α-Conotoxin from Conus ateralbus
by Jorge L. B. Neves, Cristoval Urcino, Kevin Chase, Cheryl Dowell, Arik J. Hone, David Morgenstern, Victor M. Chua, Iris Bea L. Ramiro, Julita S. Imperial, Lee S. Leavitt, Jasmine Phan, Fernando A. Fisher, Maren Watkins, Shrinivasan Raghuraman, Jortan O. Tun, Beatrix M. Ueberheide, J. Michael McIntosh, Vitor Vasconcelos, Baldomero M. Olivera and Joanna Gajewiak
Mar. Drugs 2024, 22(3), 118; https://doi.org/10.3390/md22030118 - 29 Feb 2024
Cited by 2 | Viewed by 3531
Abstract
The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function [...] Read more.
The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs. Here, we describe the discovery and characterization of a novel conotoxin from Conus ateralbus, αCtx-AtIA, which has an amino acid sequence homologous to the well-described αCtx-PeIA, but with a different selectivity profile towards nAChRs. We tested the synthetic αCtx-AtIA using the calcium imaging-based Constellation Pharmacology assay on mouse DRG neurons and found that αCtx-AtIA significantly inhibited ACh-induced calcium influx in the presence of an α7 positive allosteric modulator, PNU-120596 (PNU). However, αCtx-AtIA did not display any activity in the absence of PNU. These findings were further validated using two-electrode voltage clamp electrophysiology performed on oocytes overexpressing mouse α3β4, α6/α3β4 and α7 nAChRs subtypes. We observed that αCtx-AtIA displayed no or low potency in blocking α3β4 and α6/α3β4 receptors, respectively, but improved potency and selectivity to block α7 nAChRs when compared with αCtx-PeIA. Through the synthesis of two additional analogs of αCtx-AtIA and subsequent characterization using Constellation Pharmacology, we were able to identify residue Trp18 as a major contributor to the activity of the peptide. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

16 pages, 4471 KiB  
Article
Weak Points of Double-Plate Stabilization Used in the Treatment of Distal Humerus Fracture through Finite Element Analysis
by Artur Kruszewski, Szczepan Piszczatowski, Piotr Piekarczyk, Piotr Cieślik and Krzysztof Kwiatkowski
J. Clin. Med. 2024, 13(4), 1034; https://doi.org/10.3390/jcm13041034 - 11 Feb 2024
Cited by 1 | Viewed by 1770
Abstract
Background: Multi-comminuted, intra-articular fractures of the distal humerus still pose a challenge to modern orthopedics due to unsatisfactory treatment results and a high percentage (over 50%) of postoperative complications. When surgical treatment is chosen, such fractures are fixed using two plates with locking [...] Read more.
Background: Multi-comminuted, intra-articular fractures of the distal humerus still pose a challenge to modern orthopedics due to unsatisfactory treatment results and a high percentage (over 50%) of postoperative complications. When surgical treatment is chosen, such fractures are fixed using two plates with locking screws, which can be used in three spatial configurations: either parallel or one of two perpendicular variants (posterolateral and posteromedial). The evaluation of the fracture healing conditions for these plate configurations is unambiguous. The contradictions between the conclusions of biomechanical studies and clinical observations were the motivation to undertake a more in-depth biomechanical analysis aiming to indicate the weak points of two-plate fracture stabilization. Methods: Research was conducted using the finite element method based on an experimentally validated model. Three variants of distal humerus fracture (Y, λ, and H) were fixed using three different plate configurations (parallel, posterolateral, and posteromedial), and they were analyzed under six loading conditions, covering the whole range of flexion in the elbow joint (0–145°). A joint reaction force equal to 150 N was assumed, which corresponds with holding a weight of 1 kg in the hand. The biomechanical conditions of bone union were assessed based on the interfragmentary movement (IFM) and using criteria formulated by Steiner et al. Results: The IFMs were established for particular regions of all of the analyzed types of fracture, with distinction to the normal and tangential components. In general, the tangential component of IFM was greater than normal. A strong influence of the elbow joint’s angular position on the IFM was observed, with excessive values occurring for flexion angles greater than 90°. In most cases, the smallest IFM values were obtained for the parallel plaiting, while the greatest values were obtained for the posteromedial plating. Based on IFM values, fracture healing conditions in particular cases (fracture type, plate configuration, loading condition, and fracture gap localization) were classified into one of four groups: optimal bone union (OPT), probable union (PU), probable non-union (PNU), and non-union (NU). Conclusions: No plating configuration is able to ensure distal humerus fracture union when the full elbow flexion is allowed while holding a weight of 1 kg in the hand. However, flexion in the range of 0–90° with such loadings is acceptable when using parallel plating, which is a positive finding in the context of the early rehabilitation process. In general, parallel plating ensures better conditions for fracture healing than perpendicular plate configurations, especially the posteromedial version. Full article
(This article belongs to the Special Issue Advances in Trauma and Orthopedic Surgery)
Show Figures

Figure 1

14 pages, 256 KiB  
Article
Factors Associated with Lifestyle Behaviors among University Students—A Cross-Sectional Study
by Shaima A. Alothman, Alia Abdulaziz Al Baiz, Abeer Salman Alzaben, Ruqaiyah Khan, Ali Faris Alamri and Asma B. Omer
Healthcare 2024, 12(2), 154; https://doi.org/10.3390/healthcare12020154 - 9 Jan 2024
Cited by 10 | Viewed by 3653
Abstract
Lifestyle behaviors are daily habits influenced by social and environmental factors. This study examined lifestyle behaviors and their associations with sociodemographics, comorbidities, and pain in Saudi university students during the academic year 2021 and 2022. All students received the study invitation via university [...] Read more.
Lifestyle behaviors are daily habits influenced by social and environmental factors. This study examined lifestyle behaviors and their associations with sociodemographics, comorbidities, and pain in Saudi university students during the academic year 2021 and 2022. All students received the study invitation via university emails to complete an online questionnaire. The questionnaire included four sections (sociodemographics, health-related information, desired health promotion activities, and a lifestyle behavior assessment) via Health-Promoting Lifestyle Profile II (HPLP-II). The associations between study variables were assessed using Pearson’s correlation and multiple linear regression. The study questionnaire was completed by 1112 students. No correlation was found between sociodemographics and lifestyle-behavior-related factors except for students in the College of Science who appeared to have good lifestyle behaviors (an increase in HPLP II total scores of 3.69). Students with mental health issues have poorer lifestyle behaviors and spend more time sitting (p < 0.00). Students without disabilities have lower scores in health responsibility, physical activity, nutrition, and stress management, while auditory disability specifically lowers health responsibility (p < 0.00). Pain was not associated with any assessed lifestyle behaviors. This study identified several significant correlations and differences between variables such as age, sedentary behavior, sleep duration, disability status, college major, and lifestyle behaviors among PNU students. These findings provide insights into the factors that influence students’ health-promoting behaviors and can help guide interventions for promoting healthier lifestyles on campus. Targeted health promotion strategies at an early age could help in decreasing overall noncommunicable disease incidents later in life. The study results should be interpreted taking into consideration that the collected data were cross-sectional and self-reported. In conclusion, the findings of this study clearly demonstrate the need for specific lifestyle and health-promoting programs that are directed toward university students. Full article
(This article belongs to the Section Health Assessments)
18 pages, 6686 KiB  
Article
Modeling of Artificial Intelligence-Based Automated Climate Control with Energy Consumption Using Optimal Ensemble Learning on a Pixel Non-Uniformity Metro System
by Shekaina Justin, Wafaa Saleh, Maha M. A. Lashin and Hind Mohammed Albalawi
Sustainability 2023, 15(18), 13302; https://doi.org/10.3390/su151813302 - 5 Sep 2023
Cited by 4 | Viewed by 2328 | Correction
Abstract
Climate control in a pixel non-uniformity metro system includes regulating the air, humidity, and temperature quality within metro trains and stations to ensure passenger comfort and safety. The climate control system in a PNU metro system combines intelligent algorithms, energy-efficient practices, and advanced [...] Read more.
Climate control in a pixel non-uniformity metro system includes regulating the air, humidity, and temperature quality within metro trains and stations to ensure passenger comfort and safety. The climate control system in a PNU metro system combines intelligent algorithms, energy-efficient practices, and advanced technologies to make a healthy and comfortable environment for passengers while reducing energy consumption. The proposed an automated climate control using an improved salp swarm algorithm with an optimal ensemble learning technique examines the underlying factors, including indoor air temperature, wind direction, indoor air relative humidity, light sensor 1 (wavelength), return air relative humidity, supply air temperature, wind speed, supply air relative humidity, airflow rate, and return air temperature. Moreover, this new proposed technique applies ISSA to elect an optimal set of features. Then, the climate control process takes place using an ensemble learning approach comprising long short-term memory, gated recurrent unit, and recurrent neural network. Lastly, the Harris hawks optimization algorithm can be employed to adjust the hyperparameters related to the ensemble learning models. The extensive results demonstrated the supremacy of the proposed algorithms over other approaches to the climate control process on PNU metro systems. Full article
Show Figures

Figure 1

12 pages, 2489 KiB  
Article
PNU-74654 Induces Cell Cycle Arrest and Inhibits EMT Progression in Pancreatic Cancer
by Tai-Long Chien, Yao-Cheng Wu, Hsiang-Lin Lee, Wen-Wei Sung, Chia-Ying Yu, Ya-Chuan Chang, Chun-Che Lin, Chi-Chih Wang and Ming-Chang Tsai
Medicina 2023, 59(9), 1531; https://doi.org/10.3390/medicina59091531 - 24 Aug 2023
Cited by 2 | Viewed by 2183
Abstract
Background and Objectives: PNU-74654, a Wnt/β-catenin pathway inhibitor, has an antiproliferative effect on many cancer types; however, its therapeutic role in pancreatic cancer (PC) has not yet been demonstrated. Here, the effects of PNU-74654 on proliferation and cell cycle phase distribution were [...] Read more.
Background and Objectives: PNU-74654, a Wnt/β-catenin pathway inhibitor, has an antiproliferative effect on many cancer types; however, its therapeutic role in pancreatic cancer (PC) has not yet been demonstrated. Here, the effects of PNU-74654 on proliferation and cell cycle phase distribution were studied in PC cell lines. Materials and Methods: The cancer-related molecular pathways regulated by PNU-74654 were determined by a proteome profiling oncology array and confirmed by western blotting. Results: The cell viability and proliferative ability of PC cells were decreased by PNU-74654 treatment. G1 arrest was observed, as indicated by the downregulation of cyclin E and cyclin-dependent kinase 2 (CDK2) and the upregulation of p27. PNU-74654 inhibited the epithelial–mesenchymal transition (EMT), as determined by an increase in E-cadherin and decreases in N-cadherin, ZEB1, and hypoxia-inducible factor-1 alpha (HIF-1α). PNU-74654 also suppressed cytoplasmic and nuclear β-catenin and impaired the NF-κB pathway. Conclusions: These results demonstrate that PNU-74654 modulates G1/S regulatory proteins and inhibits the EMT, thereby suppressing PC cell proliferation, migration, and invasion. The synergistic effect of PNU-74654 and chemotherapy or the exclusive use of PNU-74654 may be therapeutic options for PC and require further investigation. Full article
Show Figures

Figure 1

21 pages, 9116 KiB  
Article
Experimental Study on the Ignition Characteristics of Scramjet Combustor with Tandem Cavities Using Micro-Pulse Detonation Engine
by Min-Su Kim, In-Hoi Koo, Keon-Hyeong Lee, Eun-Sung Lee, Hyung-Seok Han, Seung-Min Jeong, Holak Kim and Jeong-Yeol Choi
Aerospace 2023, 10(8), 706; https://doi.org/10.3390/aerospace10080706 - 11 Aug 2023
Cited by 6 | Viewed by 2796
Abstract
This experimental investigation focused on the ignition and combustion characteristics of a tandem cavity-based scramjet combustor with side-by-side identical cavities. This study utilized the Pusan National University-direct connect scramjet combustor (PNU-DCSC), which was capable of simulating flight conditions at Mach number 4.0–5.0 and [...] Read more.
This experimental investigation focused on the ignition and combustion characteristics of a tandem cavity-based scramjet combustor with side-by-side identical cavities. This study utilized the Pusan National University-direct connect scramjet combustor (PNU-DCSC), which was capable of simulating flight conditions at Mach number 4.0–5.0 and altitudes of 20–25 km using the vitiated air heater (VAH). The combustion tests were conducted under off-design point conditions corresponding to low inlet enthalpy. It is a condition in which self-ignition does not occur, and a micro pulse detonation engine (μPDE) ignitor is used. The results revealed that as the injection pressure of the gaseous hydrogen fuel (GH2) and the corresponding equivalence ratio increased, the combustion mode transitioned from the cavity-shear layer flame to the jet-wake flame. Furthermore, the measured wall static pressure profiles along the isolator and scramjet combustor indicated that the region of elevated pressure distribution caused by the shock train expanded upstream with higher equivalence ratios. When ignited from the secondary cavity, the combustion area did not extend to the primary cavity at lower equivalence ratios, while it expanded upstream faster with higher equivalence ratios. Therefore, the combustion characteristics of the tandem cavity were found to vary based on the overall equivalence ratio of the main fuel (GH2) and ignition position. Full article
Show Figures

Figure 1

23 pages, 5612 KiB  
Article
Analogs of 6-Bromohypaphorine with Increased Agonist Potency for α7 Nicotinic Receptor as Anti-Inflammatory Analgesic Agents
by Igor A. Ivanov, Andrei E. Siniavin, Victor A. Palikov, Dmitry A. Senko, Irina V. Shelukhina, Lyubov A. Epifanova, Lucy O. Ojomoko, Svetlana Y. Belukhina, Nikita A. Prokopev, Mariia A. Landau, Yulia A. Palikova, Vitaly A. Kazakov, Natalia A. Borozdina, Arina V. Bervinova, Igor A. Dyachenko, Igor E. Kasheverov, Victor I. Tsetlin and Denis S. Kudryavtsev
Mar. Drugs 2023, 21(6), 368; https://doi.org/10.3390/md21060368 - 20 Jun 2023
Cited by 1 | Viewed by 2534
Abstract
Hypaphorines, tryptophan derivatives, have anti-inflammatory activity, but their mechanism of action was largely unknown. Marine alkaloid L-6-bromohypaphorine with EC50 of 80 μM acts as an agonist of α7 nicotinic acetylcholine receptor (nAChR) involved in anti-inflammatory regulation. We designed the 6-substituted hypaphorine analogs [...] Read more.
Hypaphorines, tryptophan derivatives, have anti-inflammatory activity, but their mechanism of action was largely unknown. Marine alkaloid L-6-bromohypaphorine with EC50 of 80 μM acts as an agonist of α7 nicotinic acetylcholine receptor (nAChR) involved in anti-inflammatory regulation. We designed the 6-substituted hypaphorine analogs with increased potency using virtual screening of their binding to the α7 nAChR molecular model. Fourteen designed analogs were synthesized and tested in vitro by calcium fluorescence assay on the α7 nAChR expressed in neuro 2a cells, methoxy ester of D-6-iodohypaphorine (6ID) showing the highest potency (EC50 610 nM), being almost inactive toward α9α10 nAChR. The macrophages cytometry revealed an anti-inflammatory activity, decreasing the expression of TLR4 and increasing CD86, similarly to the action of PNU282987, a selective α7 nAChR agonist. 6ID administration in doses 0.1 and 0.5 mg/kg decreased carrageenan-induced allodynia and hyperalgesia in rodents, in accord with its anti-inflammatory action. Methoxy ester of D-6-nitrohypaphorine demonstrated anti-oedemic and analgesic effects in arthritis rat model at i.p. doses 0.05–0.26 mg/kg. Tested compounds showed excellent tolerability with no acute in vivo toxicity in dosages up to 100 mg/kg i.p. Thus, combining molecular modelling and natural product-inspired drug design improved the desired activity of the chosen nAChR ligand. Full article
Show Figures

Figure 1

16 pages, 2443 KiB  
Article
Analysis of Attitudes towards Food Waste in the Kingdom of Saudi Arabia Using Fuzzy Logic
by Areej Malibari, Ghada Alsawah, Wafaa Saleh and Maha M. A. Lashin
Sustainability 2023, 15(4), 3668; https://doi.org/10.3390/su15043668 - 16 Feb 2023
Cited by 10 | Viewed by 3064
Abstract
Attitudes and feelings towards food waste and positions on management policies have been vastly increased over the past few decades. Most of the available research on the analysis of attitudes towards food waste have been carried out using conventional statistical methods. This paper [...] Read more.
Attitudes and feelings towards food waste and positions on management policies have been vastly increased over the past few decades. Most of the available research on the analysis of attitudes towards food waste have been carried out using conventional statistical methods. This paper aims to assess and analyse attitudes and preferences of young Saudi females towards a number of policies and plans that are designed to meeting sustainable targets, using fuzzy logic analysis. This is a very important aim, especially since Vision 2030 in Saudi Arabia puts a major emphasis on sustainability, setting many resources to tackle environmental problems and achieving better social standards. The Methodology includes designing and collecting data from 199 participants using a questionnaire that includes 23 questions. Data were obtained from students at Princess Nourah bint Abdulrahman University (PNU). The analysis includes utilising artificial intelligence (AI) techniques. Fuzzy logic analysis has been widely used in many fields, but has not seen many applications on food waste analysis and attitudes. Fuzzy logic analysis has the advantage of producing efficient results from smaller sample sizes and, in particular, with qualitative characteristics of the used indicators. The participants expressed positive preferences and attitudes towards the programs and policies that are designed to achieve sustainability and manage food waste. The results show that over 25% of them prefer the option of “storage for reuse” of food waste, over 35% prefer the option of distribute it to needed families and over 30% opted to the option of recycling to fertilisers. The study also reveals a very good level of awareness and appreciation of food waste and plans associated with it. The implications from this study suggest that despite the positive attitudes, there still is more research needed to obtain full understanding of attitudes towards food waste from the whole range of the population in order to gain knowledge and build specific programs to reduce food waste and achieve sustainability in the country. Full article
Show Figures

Figure 1

12 pages, 3950 KiB  
Article
Pharmacological Profiling of KATP Channel Modulators: An Outlook for New Treatment Opportunities for Migraine
by Tino Dyhring, Inger Jansen-Olesen, Palle Christophersen and Jes Olesen
Pharmaceuticals 2023, 16(2), 225; https://doi.org/10.3390/ph16020225 - 1 Feb 2023
Cited by 13 | Viewed by 3249
Abstract
Migraine is a highly disabling pain disorder with huge socioeconomic and personal costs. It is genetically heterogenous leading to variability in response to current treatments and frequent lack of response. Thus, new treatment strategies are needed. A combination of preclinical and clinical data [...] Read more.
Migraine is a highly disabling pain disorder with huge socioeconomic and personal costs. It is genetically heterogenous leading to variability in response to current treatments and frequent lack of response. Thus, new treatment strategies are needed. A combination of preclinical and clinical data indicate that ATP-sensitive potassium (KATP) channel inhibitors could be novel and highly effective drugs in the treatment of migraine. The subtype Kir6.1/SUR2B is of particular interest and inhibitors specific for this cranio-vascular KATP channel subtype may qualify as future migraine drugs. Historically, different technologies and methods have been undertaken to characterize KATP channel modulators and, therefore, a head-to-head comparison of potency and selectivity between the different KATP subtypes is difficult to assess. Here, we characterize available KATP channel activators and inhibitors in fluorescence-based thallium-flux assays using HEK293 cells stably expressing human Kir6.1/SUR2B, Kir6.2/SUR1, and Kir6.2/SUR2A KATP channels. Among the openers tested, levcromakalim, Y-26763, pinacidil, P-1075, ZM226600, ZD0947, and A-278637 showed preference for the KATP channel subtype Kir6.1/SUR2B, whereas BMS-191095, NN414, and VU0071306 demonstrated preferred activation of the Kir6.2/SUR1 subtype. In the group of KATP channel blockers, only Rosiglitazone and PNU-37783A showed selective inhibition of the Kir6.1/SUR2B subtype. PNU-37783A was stopped in clinical development and Rosiglitazone has a low potency for the vascular KATP channel subtype. Therefore, development of novel selective KATP channel blockers, having a benign side effect profile, are needed to clinically prove inhibition of Kir6.1/SUR2B as an effective migraine treatment. Full article
(This article belongs to the Special Issue Potassium Channels as Novel Therapeutic Targets)
Show Figures

Figure 1

8 pages, 1276 KiB  
Communication
The Effects of Positive Allosteric Modulators of α7–nAChR on Social Play Behavior in Adolescent Rats Prenatally Exposed to Valproic Acid
by Kinga Gzielo and Agnieszka Nikiforuk
Pharmaceuticals 2022, 15(11), 1417; https://doi.org/10.3390/ph15111417 - 16 Nov 2022
Cited by 6 | Viewed by 2095
Abstract
There is still no effective treatment that addresses the core symptoms of autism spectrum disorders (ASD), including social and communication deficits. A comprehensive body of evidence points to the cholinergic system, including alpha7–nicotinic acetylcholine receptors (α7–nAChRs), as a potential target of pharmacotherapy. A [...] Read more.
There is still no effective treatment that addresses the core symptoms of autism spectrum disorders (ASD), including social and communication deficits. A comprehensive body of evidence points to the cholinergic system, including alpha7–nicotinic acetylcholine receptors (α7–nAChRs), as a potential target of pharmacotherapy. A promising approach is based on positive allosteric modulators (PAMs) of these receptors due to their advantages over direct agonists. Nevertheless, α7 n–AChR ligands have not been widely studied in the context of autism. Therefore, using one of the most widely used rodent models of ASD, that is, prenatal exposure to valproic acid (VPA), we examined the impact of α7–nAChR PAMs (PNU–120596 and CCMI) on socio-communicative behavior during social play in adolescent male and female rats. The current study demonstrated that PAM treatment affected certain aspects of socio-communicative behavior in adolescent rats. Accordingly, PNU–120596 ameliorated deficient play abilities in VPA-exposed males, as revealed by increased play time during a social encounter. In addition, this compound enhanced the emission of ultrasonic vocalizations that accompanied playful interactions. Moreover, we observed the overall effect of PNU–120596 on non-playful forms of social behavior (i.e., social exploration) and acoustic parameters (i.e., the duration) of emitted calls. The present results suggest the ability of α7–nAChR PAMs to facilitate socio-communicative behavior in adolescent rats. Full article
(This article belongs to the Special Issue Advances in Behavioral Psychopharmacology)
Show Figures

Figure 1

25 pages, 3090 KiB  
Article
Germplasm Screening Using DNA Markers and Genome-Wide Association Study for the Identification of Powdery Mildew Resistance Loci in Tomato
by Jiyeon Park, Siyoung Lee, Yunseo Choi, Girim Park, Seoyeon Park, Byoungil Je and Younghoon Park
Int. J. Mol. Sci. 2022, 23(21), 13610; https://doi.org/10.3390/ijms232113610 - 6 Nov 2022
Cited by 2 | Viewed by 3303
Abstract
Powdery mildew (PM), caused by Oidium spp. in tomato, is a global concern that leads to diminished yield. We aimed to evaluate previously reported DNA markers linked to powdery mildew resistance (PMR) and identify novel quantitative trait loci (QTLs) for PMR through a [...] Read more.
Powdery mildew (PM), caused by Oidium spp. in tomato, is a global concern that leads to diminished yield. We aimed to evaluate previously reported DNA markers linked to powdery mildew resistance (PMR) and identify novel quantitative trait loci (QTLs) for PMR through a genome-wide association study in tomato. Sequencing analysis of the internal transcribed spacer (ITS) of a PM strain (PNU_PM) isolated from Miryang, Gyeongnam, led to its identification as Oidium neolycopersici. Thereafter, a PM bioassay was conducted for a total of 295 tomato accessions, among which 24 accessions (4 S. lycopersicum accessions and 20 accessions of seven wild species) showed high levels of resistance to PNU_PM. Subsequently, we genotyped 11 markers previously linked to PMR in 56 accessions. PMR-specific banding patterns were detected in 15/22 PMR accessions, while no such bands were observed in the powdery mildew-susceptible accessions. The genome-wide association study was performed using TASSEL and GAPIT, based on the phenotypic data of 290 accessions and 11,912 single nucleotide polymorphisms (SNPs) obtained from the Axiom® Tomato SNP Chip Array. Nine significant SNPs in chromosomes 1, 4, 6, 8, and 12, were selected and five novel QTL regions distinct from previously known PMR-QTL regions were identified. Of these QTL regions, three putative candidate genes for PMR were selected from chromosomes 4 and 8, including two nucleotide binding site-leucine rich repeat class genes and a receptor-like kinase gene, all of which have been identified previously as causative genes for PMR in several crop species. The SNPs discovered in these genes provide useful information for understanding the molecular basis of PMR and developing DNA markers for marker-assisted selection of PMR in tomato. Full article
(This article belongs to the Special Issue Plant Disease Resistance)
Show Figures

Figure 1

13 pages, 2933 KiB  
Article
The Effect of an α-7 Nicotinic Allosteric Modulator PNU120596 and NMDA Receptor Antagonist Memantine on Depressive-like Behavior Induced by LPS in Mice: The Involvement of Brain Microglia
by Sami Alzarea, Muzaffar Abbas, Patrick J. Ronan, Kabirullah Lutfy and Shafiqur Rahman
Brain Sci. 2022, 12(11), 1493; https://doi.org/10.3390/brainsci12111493 - 3 Nov 2022
Cited by 14 | Viewed by 2568
Abstract
Nicotinic acetylcholine receptors (nAChRs), particularly the α7 nAChR, play a critical role in neuroinflammation and microglial activation associated with major depressive disorder (MDD). Microglial quinolinic acid (QUIN), which is synthesized by 3-hydroxyanthranilic acid dioxygenase (HAAO), is an N-methyl-D-aspartate (NMDA) receptor agonist and has [...] Read more.
Nicotinic acetylcholine receptors (nAChRs), particularly the α7 nAChR, play a critical role in neuroinflammation and microglial activation associated with major depressive disorder (MDD). Microglial quinolinic acid (QUIN), which is synthesized by 3-hydroxyanthranilic acid dioxygenase (HAAO), is an N-methyl-D-aspartate (NMDA) receptor agonist and has been implicated in the development of MDD-related symptoms. In the present study, we assessed the effects of PNU120596, an α7 nAChR positive allosteric modulator (PAM), on HAAO expression and QUIN formation in the hippocampus and prefrontal cortex. We also investigated the effects of memantine, an NMDA receptor antagonist, alone and in combination with PNU120596 on cognitive deficit and depressive-like behaviors induced by lipopolysaccharide (LPS) in mice using the Y-maze and forced swim test, respectively. LPS (1 mg/kg, i.p.) elevated HAAO expression and QUIN formation in the hippocampus and prefrontal cortex, which were reduced with pretreatment with PNU120596 (4 mg/kg, i.p.). Furthermore, memantine (1 or 3 mg/kg, i.p.) prevented the cognitive deficit and depressive-like behaviors induced by LPS in mice. Together, these results suggest that the antidepressant-like effects of PNU120596 are mediated by attenuation of LPS-induced QUIN formation. Therefore, α7 nAChR PAM could be a potential therapeutic candidate for MDD associated with neurotoxic glutamatergic transmission. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

15 pages, 2352 KiB  
Article
A PNU-Based Methodology to Improve the Reliability of Biometric Systems
by Paola Capasso, Lucia Cimmino, Andrea F. Abate, Andrea Bruno and Giuseppe Cattaneo
Sensors 2022, 22(16), 6074; https://doi.org/10.3390/s22166074 - 14 Aug 2022
Cited by 8 | Viewed by 2489
Abstract
Face recognition is an important application of pattern recognition and image analysis in biometric security systems. The COVID-19 outbreak has introduced several issues that can negatively affect the reliability of the facial recognition systems currently available: on the one hand, wearing a face [...] Read more.
Face recognition is an important application of pattern recognition and image analysis in biometric security systems. The COVID-19 outbreak has introduced several issues that can negatively affect the reliability of the facial recognition systems currently available: on the one hand, wearing a face mask/covering has led to growth in failure cases, while on the other, the restrictions on direct contact between people can prevent any biometric data being acquired in controlled environments. To effectively address these issues, we designed a hybrid methodology that improves the reliability of facial recognition systems. A well-known Source Camera Identification (SCI) technique, based on Pixel Non-Uniformity (PNU), was applied to analyze the integrity of the input video stream as well as to detect any tampered/fake frames. To examine the behavior of this methodology in real-life use cases, we implemented a prototype that showed two novel properties compared to the current state-of-the-art of biometric systems: (a) high accuracy even when subjects are wearing a face mask; (b) whenever the input video is produced by deep fake techniques (replacing the face of the main subject) the system can recognize that it has been altered providing more than one alert message. This methodology proved not only to be simultaneously more robust to mask induced occlusions but also even more reliable in preventing forgery attacks on the input video stream. Full article
(This article belongs to the Special Issue Feature Extraction and Forensic Image Analysis)
Show Figures

Figure 1

Back to TopTop