Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = PHYTOENE DESATURASE (PDS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3335 KiB  
Article
Efficient Virus-Induced Gene Silencing (VIGS) Method for Discovery of Resistance Genes in Soybean
by Kelin Deng, Zihua Lu, Hongli Yang, Shuilian Chen, Chao Li, Dong Cao, Hongwei Wang, Qingnan Hao, Haifeng Chen and Zhihui Shan
Plants 2025, 14(10), 1547; https://doi.org/10.3390/plants14101547 - 21 May 2025
Viewed by 667
Abstract
Soybean (Glycine max L.) is a vital grain and oil crop, serving as a primary source of edible oil, plant-based protein, and livestock feed. Its production is crucial for ensuring global food security. However, soybean yields are severely impacted by various diseases, [...] Read more.
Soybean (Glycine max L.) is a vital grain and oil crop, serving as a primary source of edible oil, plant-based protein, and livestock feed. Its production is crucial for ensuring global food security. However, soybean yields are severely impacted by various diseases, and the development of disease-resistant cultivars remains the most sustainable strategy for mitigating these losses. While stable genetic transformation is a common approach for studying gene function, virus-induced gene silencing (VIGS) offers a rapid and powerful alternative for functional genomics, enabling efficient screening of candidate genes. Nevertheless, the application of VIGS in soybean has been relatively limited. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for soybean, utilizing Agrobacterium tumefaciens-mediated infection. The TRV vector was delivered through cotyledon nodes, facilitating systemic spread and effective silencing of endogenous genes. Our results demonstrate that this TRV–VIGS system efficiently silences target genes in soybean, inducing significant phenotypic changes with a silencing efficiency ranging from 65% to 95%. Key genes, including phytoene desaturase (GmPDS), the rust resistance gene GmRpp6907, and the defense-related gene GmRPT4, were successfully silenced, confirming the system’s robustness. This work establishes a highly efficient TRV–VIGS platform for rapid gene function validation in soybean, providing a valuable tool for future genetic and disease resistance research. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

15 pages, 8553 KiB  
Article
Highly Efficient Homozygous CRISPR/Cas9 Gene Editing Based on Single-Cell-Originated Somatic Embryogenesis in Liriodendron tulipifera
by Cairong Li, Pengshuo Jiang, Jiaji Zhang, Dingjie Yang, Lu Lu, Zhaodong Hao, Yingxuan Ma, Jisen Shi and Jinhui Chen
Plants 2025, 14(3), 472; https://doi.org/10.3390/plants14030472 - 5 Feb 2025
Cited by 1 | Viewed by 1152
Abstract
The clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is the most widely used gene-editing tool to date. However, its application in the genetic improvement of forestry trees has been largely limited. Here, we first established a highly efficient multi-target editing [...] Read more.
The clustered, regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system is the most widely used gene-editing tool to date. However, its application in the genetic improvement of forestry trees has been largely limited. Here, we first established a highly efficient multi-target editing system in the magnoliid woody plant Liriodendron tulipifera. Using phytoene desaturase gene (PDS) as an example, we systematically compared CRISPR/Cas9 and CRSPR/Cpf1 expression systems for loss-of-function analysis and conducted genetic transformations using transient and stable transformation. Ultimately, our findings indicated that the CRISPR/Cas9 system, when applied to transformation based on single-cell-originated somatic embryogenesis, yielded the highest gene-editing efficiency, with mutation rates of nearly 100%. Furthermore, we obtained a total of 137 regeneration plantlets via somatic embryogenesis, of which 82.48% exhibited an albino phenotype. The Illumina sequencing results of albino seedlings and the callus tissue obtained from dedifferentiation of mutant plants revealed that the mutation at the T1 target site was homozygous. These results indicate that CRISPR/Cas9-based multiplex genome-editing technology can not only accelerate the identification of gene function but also be incorporated into the genetic improvement and breeding of tulip trees, supporting the scale propagation of genome-edited plantlets via somatic embryogenesis. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

23 pages, 7855 KiB  
Article
Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application
by Qing Ji, Kurt P. Kowalski, Edward M. Golenberg, Seung Ho Chung, Natalie D. Barker, Wesley A. Bickford and Ping Gong
Plants 2025, 14(3), 458; https://doi.org/10.3390/plants14030458 - 5 Feb 2025
Viewed by 1646
Abstract
As a popular tool for gene function characterization and gene therapy, RNA interference (RNAi)-based gene silencing has been increasingly explored for potential applications to control invasive species. At least two major hurdles exist when applying this approach to invasive plants: (1) the design [...] Read more.
As a popular tool for gene function characterization and gene therapy, RNA interference (RNAi)-based gene silencing has been increasingly explored for potential applications to control invasive species. At least two major hurdles exist when applying this approach to invasive plants: (1) the design and screening of species- and gene-specific biomacromolecules (i.e., gene-silencing agents or GSAs) made of DNA, RNA, or peptides that can suppress the expression of target genes efficiently, and (2) the delivery vehicle needed to penetrate plant cell walls and other physical barriers (e.g., leaf cuticles). In this study, we investigated the cell-penetrating peptide (CPP)-mediated delivery of multiple types of GSAs (e.g., double-stranded RNA (dsRNA), artificial microRNA (amiRNA), and antisense oligonucleotide (ASO)) to knock down a putative phytoene desaturase (PDS) gene in the invasive common reed (Phragmites australis spp. australis). Both microscopic and quantitative gene expression evidence demonstrated the CPP-mediated internalization of GSA cargos and transient suppression of PDS expression in both treated and systemic leaves up to 7 days post foliar application. Although various GSA combinations and application rates and frequencies were tested, we observed limitations, including low gene-silencing efficiency and a lack of physiological trait alteration, likely owing to low CPP payload capacity and the incomplete characterization of the PDS-coding genes (e.g., the recent discovery of two PDS paralogs) in P. australis. Our work lays a foundation to support further research toward the development of convenient, cost-effective, field-deployable, and environmentally benign gene-silencing technologies for invasive P. australis management. Full article
Show Figures

Figure 1

14 pages, 2840 KiB  
Article
Establishment of a Virus-Induced Gene Silencing System in Abelmoschus manihot L.
by Ting Zhang, Jiaqi Hou, Hongtao Chu, Pengyu Guo, Qianzi Sang, Zhongxu Liu and Li Cao
Plants 2025, 14(2), 150; https://doi.org/10.3390/plants14020150 - 7 Jan 2025
Viewed by 930
Abstract
Abelmoschus manihot L. (Jinhuakui, JHK) is widely cultivated for its pharmacological properties owing to its high flavonoid content and is commonly used as a garden landscape plant. However, the absence of an efficient genetic transformation system poses significant challenges for functional gene studies [...] Read more.
Abelmoschus manihot L. (Jinhuakui, JHK) is widely cultivated for its pharmacological properties owing to its high flavonoid content and is commonly used as a garden landscape plant. However, the absence of an efficient genetic transformation system poses significant challenges for functional gene studies in this species. Virus-induced gene silencing (VIGS) is a well-established technique for exploring plant gene functions; however, this technique has not been applied to JHK. Here, a tobacco rattle virus (TRV)–VIGS system was successfully developed for the first time in JHK using the gene encoding phytoene desaturase (AmPDS) as a marker gene. This study investigated the impact of various Agrobacterium infection methods on the efficiency of AmPDS silencing. The results demonstrated that administering two injections—the first on the day of complete cotyledon expansion and the second 14 days later—using pTRV1 and pTRV2–AmPDS cultures resuspended to an OD600 of 1.0 and via the backside of the blade—led to significant photobleaching in the cotyledons 2 days after the second injection. Subsequent analyses revealed a marked reduction in both chlorophyll content and AmPDS expression. These findings suggest that a VIGS system was successfully developed in JHK, thus providing a rapid and effective method for studying gene function in this species and facilitating future research in JHK genetics. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 2393 KiB  
Article
Salicylic Acid Improved the Growth of Dunaliella salina and Increased the Proportion of 9-cis-β-Carotene Isomers
by Shuaicheng Xiang, Xiaoting Qiu, Xiaojun Yan, Roger Ruan and Pengfei Cheng
Mar. Drugs 2025, 23(1), 18; https://doi.org/10.3390/md23010018 - 1 Jan 2025
Cited by 1 | Viewed by 1990
Abstract
Dunaliella salina is an important source of natural β-carotene (containing 9-cis and all trans isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. [...] Read more.
Dunaliella salina is an important source of natural β-carotene (containing 9-cis and all trans isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in D. salina under different salt concentrations were investigated. The results were shown that at concentrations of 1.5, 2, and 2.5 M NaCl, the antioxidant enzyme activity and key enzymes for β-carotene synthesis in algal cells were significantly increased, but the content and proportion of 9-cis isomer in β-carotene isomers decreased. The addition of SA significantly increased the growth and antioxidant enzyme (SOD, MDA) activity, as well as the synthesis of key enzyme phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene β cyclase (LCYB) of D. salina under high-salinity conditions. It is worth noting that under the treatment of SA, the proportion of 9-cis isomer in the three salt concentrations (1.5, 2, 2.5 M NaCl) significantly increased by 32.09%, 20.30%, and 11.32%, respectively. Moreover, SA can not only improve the salt tolerance of D. salina, but also increase the proportion of 9-cis isomer, with higher physiological activity in β-carotene, thereby enhancing the application value of D. salina. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Photosynthetic Microorganisms)
Show Figures

Figure 1

16 pages, 3466 KiB  
Article
Construction and Validation of CRISPR/Cas Vectors for Editing the PDS Gene in Banana (Musa spp.)
by Marcelly Santana Mascarenhas, Fernanda dos Santos Nascimento, Luana Maria Pacheco Schittino, Livia Batista Galinari, Lucymeire Souza Morais Lino, Andresa Priscila de Souza Ramos, Leandro Eugenio Cardamone Diniz, Tiago Antônio de Oliveira Mendes, Claudia Fortes Ferreira, Janay Almeida dos Santos-Serejo and Edson Perito Amorim
Curr. Issues Mol. Biol. 2024, 46(12), 14422-14437; https://doi.org/10.3390/cimb46120865 - 20 Dec 2024
Viewed by 2155
Abstract
Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with [...] Read more.
Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout. Here we use the phytoene desaturase (PDS) gene as a case study in Prata-Anã banana by the nonhomologous end junction (NHEJ) method. PDS is a key gene in the carotenoid production pathway in plants and its knockout leads to easily visualized phenotypes such as dwarfism and albinism in plants. Agrobacterium-mediated transformation delivered CRISPR/Cas9 constructs containing gRNAs were inserted into embryogenic cell suspension cultures. This is the first study to provide an effective method/protocol for constructing gene knockout vectors, demonstrating gene editing potential in a Brazilian banana variety. The constitutive (CaMV 35S) and root-specific vectors were successfully assembled and confirmed in transformed Agrobacterium by DNA extraction and PCR. The specificity of transformation protocols makes it possible to use the CRISPR-Cas9 technique to develop Prata-Anã banana plants with enhanced tolerance/resistance to major biotic and abiotic factors. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants, 2nd Edition)
Show Figures

Figure 1

12 pages, 5307 KiB  
Article
Virus-Induced Gene Silencing (VIGS) in Hydrangea macrophylla and Functional Analysis of HmF3′5′H
by Qiyu Yang, Youwei Fan, Shuwen Luo, Chun Liu and Suxia Yuan
Plants 2024, 13(23), 3396; https://doi.org/10.3390/plants13233396 - 3 Dec 2024
Cited by 1 | Viewed by 1113
Abstract
Hydrangea macrophylla, renowned for its large inflorescences and a diverse range of colors, highlights a significant limitation in current gene function research, which is the lack of effective molecular genetic tools. This study utilized a tobacco rattle virus (TRV)-based virus-induced gene silencing [...] Read more.
Hydrangea macrophylla, renowned for its large inflorescences and a diverse range of colors, highlights a significant limitation in current gene function research, which is the lack of effective molecular genetic tools. This study utilized a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate gene function through posttranscriptional gene silencing in H. macrophylla for the first time. The ortholog of phytoene desaturase (PDS) in H. macrophylla, termed HmPDS, was identified. Infection of tissue-cultured seedlings with TRV-HmPDS led to photobleaching of the leaves. Additionally, infection with TRV containing the HmCHS1 fragment in the flowers resulted in decreased anthocyanin production in sepals and a lightening of sepal coloration in the infected flowers. The phenomena and RT-qPCR results proved that the PDS and CHS genes of hydrangea were successfully silenced via the vacuum infiltration method. Furthermore, the introduction of TRV-HmF3′5′H revealed a decrease in delphinidin-3-glucoside content in sepals and caused a color change in the sepals from blue to pink. This study demonstrated that the TRV-VIGS system was successfully established in H. macrophylla and effectively applied to the function analysis of HmF3′5′H. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 7723 KiB  
Article
Improving the Genome Editing Efficiency of CRISPR/Cas9 in Melon and Watermelon
by Zhuanrong Wang, Lili Wan, Jian Ren, Na Zhang, Hongxia Zeng, Jiaqi Wei and Mi Tang
Cells 2024, 13(21), 1782; https://doi.org/10.3390/cells13211782 - 28 Oct 2024
Cited by 4 | Viewed by 2545
Abstract
CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (PDS) [...] Read more.
CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (PDS) gene in melon. The constructed vectors were delivered to host plants using Agrobacterium-mediated transformation. Phenotypic and genotypic analyses of the edited melon seedlings revealed that the CRISPR systems with tRNA and Csy4 spacers driven by the Pol II-type promoter significantly improved mutation efficiency, reaching 25.20% and 42.82%, respectively. Notably, 78.95% of the mutations generated by the Csy4 system involved large-fragment deletions (LDs) between the two target sites. In watermelon, the Csy4 system achieved a PDS editing efficiency of 41.48%, with 71.43% of the edited seedlings showing LD between the two target sites. Sequencing analysis indicated that the edited melon seedlings exhibited heterozygous, three-allele mutation and chimeric events; the edited watermelon seedlings included 2/14 homozygous mutations. Compared to the commonly used Pol III promoter, using the Pol II promoter to drive sgRNA expression cassettes containing Csy4 showed the best improvement in CRISPR/Cas9 editing efficiency in melon; this system was also effective in watermelon. Full article
Show Figures

Figure 1

8 pages, 1005 KiB  
Communication
Establishment of a Genetic Transformation and Gene Editing Method by Floral Dipping in Descurainia sophia
by Tianjiao Jia, Hua Yang, Dingding Zhou, Sanzeng Zhao, Jianyong Wang, Tao Zhang, Mingkun Huang, Danyu Kong and Yi Liu
Plants 2024, 13(20), 2833; https://doi.org/10.3390/plants13202833 - 10 Oct 2024
Cited by 1 | Viewed by 1754
Abstract
Descurainia sophia L. Webb ex Prantl is used in traditional medicine globally. However, the lack of an efficient and reliable genetic transformation system has seriously limited the investigation of gene function and further utilization of D. sophia. In this study, a highly [...] Read more.
Descurainia sophia L. Webb ex Prantl is used in traditional medicine globally. However, the lack of an efficient and reliable genetic transformation system has seriously limited the investigation of gene function and further utilization of D. sophia. In this study, a highly efficient, time-saving, and cost-effective Agrobacterium tumefaciens-mediated genetic transformation system has been developed in D. sophia. In this method, the transformation was accomplished by simply dipping developing D. sophia inflorescences for 45 s into an Agrobacterium suspension (OD600 = 0.6) containing 5% sucrose and 0.03% (v/v) Silwet L-77. Treated plants were allowed to set seeds which were then plated on a selective medium with hygromycin B (HygB) to screen transformants. Additionally, the CRISPR/Cas9 genomic editing system was validated by targeting phytoene desaturase (PDS) gene using this floral dip method, and mutant plants with the expected albino phenotype could be obtained in 2.5 months. This genetic transformation and targeted editing system will be a valuable tool for routine investigation of gene function and further exploitation in D. sophia. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
Show Figures

Figure 1

13 pages, 3126 KiB  
Article
Light Intensity Enhances the Lutein Production in Chromochloris zofingiensis Mutant LUT-4
by Qiaohong Chen, Mingmeng Liu, Wujuan Mi, Dong Wan, Gaofei Song, Weichao Huang and Yonghong Bi
Mar. Drugs 2024, 22(7), 306; https://doi.org/10.3390/md22070306 - 29 Jun 2024
Cited by 1 | Viewed by 1634
Abstract
Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L−1 [...] Read more.
Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L−1, and 0.209% of dry weight (DW) on Day 3, which was 49.4%, and 33% higher than that of wild-type (WT), respectively. The biomass yields of LUT-4 under 100, 300, and 500 µmol/m2/s reached 8.4 g·L−1, 7.75 g·L−1, and 6.6 g·L−1, which was 10.4%, 21%, and 29.6% lower compared with the control, respectively. Under mixotrophic conditions, the lutein yields were significantly higher than that obtained in the control. The light intensity of 300 µmol/m2/s was optimal for lutein biosynthesis and the content of lutein reached 0.294% of DW on Day 3, which was 40.7% more than that of the control. When LUT-4 was grown under 300 µmol/m2/s, a significant increase in expression of genes implicated in lutein biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene epsilon cyclase (LCYe) was observed. The changes in biochemical composition, Ace-CoA, pyruvate, isopentenyl pyrophosphate (IPP), and geranylgeranyl diphosphate (GGPP) contents during lutein biosynthesis were caused by utilization of organic carbon. It was thereby concluded that 300 µmol/m2/s was the optimal culture light intensity for the mutant LUT-4 to synthesize lutein. The results would be helpful for the large-scale production of lutein. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products)
Show Figures

Graphical abstract

11 pages, 1922 KiB  
Article
Phytoene Desaturase (PDS) Gene-Derived Markers Identify “A” and “B” Genomes in Banana (Musa spp.)
by Fernanda dos Santos Nascimento, Marcelly Santana Mascarenhas, Samantha Costa Boaventura, Carla Catharina Hora de Souza, Andresa Priscila de Souza Ramos, Anelita de Jesus Rocha, Julianna Matos da Silva Soares, Leandro Eugenio Cardamone Diniz, Tiago Antônio de Oliveira Mendes, Claudia Fortes Ferreira and Edson Perito Amorim
Horticulturae 2024, 10(3), 294; https://doi.org/10.3390/horticulturae10030294 - 19 Mar 2024
Cited by 2 | Viewed by 3345
Abstract
Phytoene desaturase (PDS) is a plant enzyme involved in carotenoid biosynthesis. The PDS gene has been used as a selective marker for genome editing in several plant species, including banana (Musa spp.). Its knockout promotes dwarfism and albinism, characteristics that are easily [...] Read more.
Phytoene desaturase (PDS) is a plant enzyme involved in carotenoid biosynthesis. The PDS gene has been used as a selective marker for genome editing in several plant species, including banana (Musa spp.). Its knockout promotes dwarfism and albinism, characteristics that are easily recognizable and highly favorable. In Musa spp., the A genome increases fruit production and quality, whereas the B genome is associated with tolerance to biotic and abiotic stresses. The objective of this study was to identify a molecular marker in the PDS gene to easily discriminate the A and B genomes of banana. A 2166 bp fragment for the “PDSMa” marker was identified as polymorphic for the A genome (identification accuracy of 99.33%), whereas ~332 and ~225 bp fragments were detected for the “PDSMb” marker with 100% accuracy using MedCalc software. In this study, we used genotypes with A and B genomes that are used in the genetic improvement of bananas and an accession with the BT genome. It was not possible to differentiate the accession with the BT genome from the others, suggesting that the markers do not have the capacity to separate the T genome from the A and B genomes. To the best of our knowledge, this is the first study to use the PDS gene to determine doses of the A genome and identify the B genome in Musa spp., which will aid in evaluating the genomic constitution of banana hybrids and accessions at the seedling stage and accelerating their classification in crop genetic improvement programs. Full article
(This article belongs to the Special Issue Developments in the Genetics and Breeding of Banana Species)
Show Figures

Figure 1

10 pages, 1918 KiB  
Brief Report
Analysis of the Time Course of the Establishment of Systemic Gene Silencing by Barley Stripe Mosaic Virus Virus-Induced Gene Silencing in Wheat
by Anshu Garg, Amanda S. Brandt and Steven R. Scofield
Int. J. Plant Biol. 2024, 15(1), 122-131; https://doi.org/10.3390/ijpb15010011 - 14 Feb 2024
Cited by 1 | Viewed by 1478
Abstract
Wheat is one of the major sources of protein worldwide. Its hexaploidy significantly complicates the identification of genes that may be crucial for improving wheat production to meet the challenges of an increased world population and climate change. Virus-induced gene silencing (VIGS) using [...] Read more.
Wheat is one of the major sources of protein worldwide. Its hexaploidy significantly complicates the identification of genes that may be crucial for improving wheat production to meet the challenges of an increased world population and climate change. Virus-induced gene silencing (VIGS) using Barley stripe mosaic virus (BSMV)-based constructs has proven to be a very useful tool in the analysis of gene function in the hexaploid plant, wheat. However, most published applications of this technique focus on phenotypes that can be observed in the leaves of wheat. A few studies have reported successful VIGS in the spikes of wheat, but this has proven to be more difficult than the seedling leaf assays. This study reports a time course analysis of the movement of BSMV from the site of inoculation into the meristematic region of wheat. It also describes how the photobleaching phenotype resulting from silencing phytoene desaturase (PDS), which is often used as a reporter for VIGS, does not indicate the full extent of where VIGS occurs, and this can mislead scientists as they design silencing studies. These findings provide guidance for more effective VIGS studies to determine the function of genes expressed in the spikes of wheat and may be important for wheat improvement. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

17 pages, 4215 KiB  
Article
15-cis-Phytoene Desaturase and 15-cis-Phytoene Synthase Can Catalyze the Synthesis of β-Carotene and Influence the Color of Apricot Pulp
by Ningning Gou, Xuchun Zhu, Mingyu Yin, Han Zhao, Haikun Bai, Nan Jiang, Wanyu Xu, Chu Wang, Yujing Zhang and Tana Wuyun
Foods 2024, 13(2), 300; https://doi.org/10.3390/foods13020300 - 17 Jan 2024
Cited by 3 | Viewed by 2362
Abstract
Fruit color affects its commercial value. β-carotene is the pigment that provides color for many fruits and vegetables. However, the molecular mechanism of β-carotene metabolism during apricot ripening is largely unknown. Here, we investigated whether β-carotene content affects apricot fruit color. First, the [...] Read more.
Fruit color affects its commercial value. β-carotene is the pigment that provides color for many fruits and vegetables. However, the molecular mechanism of β-carotene metabolism during apricot ripening is largely unknown. Here, we investigated whether β-carotene content affects apricot fruit color. First, the differences in β-carotene content between orange apricot ‘JTY’ and white apricot ‘X15’ during nine developmental stages (S1–S9) were compared. β-carotene contents highly significantly differed between ‘JTY’ and ‘X15’ from S5 (color transition stage) onwards. Whole-transcriptome analysis showed that the β-carotene synthesis genes 15-cis-phytoene desaturase (PaPDS) and 15-cis-phytoene synthase (PaPSY) significantly differed between the two cultivars during the color transition stage. There was a 5 bp deletion in exon 11 of PaPDS in ‘X15’, which led to early termination of amino acid translation. Gene overexpression and virus-induced silencing analysis showed that truncated PaPDS disrupted the β-carotene biosynthesis pathway in apricot pulp, resulting in decreased β-carotene content and a white phenotype. Furthermore, virus-induced silencing analysis showed that PaPSY was also a key gene in β-carotene biosynthesis. These findings provide new insights into the molecular regulation of apricot carotenoids and provide a theoretical reference for breeding new cultivars of apricot. Full article
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
Improvements in the Appearance and Nutritional Quality of Tomato Fruits Resulting from Foliar Spraying with Silicon
by Li Wang, Ning Jin, Yandong Xie, Wen Zhu, Ye Yang, Jiaying Wang, Yongzhong Lei, Wenkai Liu, Shuya Wang, Li Jin, Jihua Yu and Jian Lyu
Foods 2024, 13(2), 223; https://doi.org/10.3390/foods13020223 - 10 Jan 2024
Cited by 13 | Viewed by 3216
Abstract
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels [...] Read more.
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L−1 [CK], 0.6 mmol·L−1 [T1], 1.2 mmol·L−1 [T2], and 1.8 mmol·L−1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L−1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions. Full article
Show Figures

Figure 1

12 pages, 3253 KiB  
Article
Virus-Induced Gene Silencing in the Tea Plant (Camellia sinensis)
by Wei Yang, Xianya Chen, Jiahao Chen, Peng Zheng, Shaoqun Liu, Xindong Tan and Binmei Sun
Plants 2023, 12(17), 3162; https://doi.org/10.3390/plants12173162 - 3 Sep 2023
Cited by 16 | Viewed by 3222
Abstract
The recent availability of a number of tea plant genomes has sparked substantial interest in using reverse genetics to explore gene function in tea (Camellia sinensis). However, a hurdle to this is the absence of an efficient transformation system, and virus-induced [...] Read more.
The recent availability of a number of tea plant genomes has sparked substantial interest in using reverse genetics to explore gene function in tea (Camellia sinensis). However, a hurdle to this is the absence of an efficient transformation system, and virus-induced gene silencing (VIGS), a transient transformation system, could be an optimal choice for validating gene function in the tea plant. In this study, phytoene desaturase (PDS), a carotenoid biosynthesis gene, was used as a reporter to evaluate the VIGS system. The injection sites of the leaves (leaf back, petiole, and stem) for infiltration were tested, and the results showed that petiole injection had the most effective injection, without leading to necrotic lesions that cause the leaves to drop. Tea leaves were inoculated with Agrobacterium harboring a tobacco rattle virus plasmid (pTRV2) containing a CsPDS silencing fragment. The tea leaves exhibited chlorosis symptoms 7–14 days after inoculation, depending on the cultivar. In the chlorosis plants, the coat protein (CP) of tobacco rattle virus (TRV) was detected and coincided with the lower transcription of CsPDS and reduced chlorophyll content compared with the empty vector control, with 81.82% and 54.55% silencing efficiency of ‘LTDC’ and ‘YSX’, respectively. These results indicate that the VIGS system with petiole injection could quickly and effectively silence a gene in tea plants. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

Back to TopTop