Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = PFAK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6233 KiB  
Article
Multispectral Pulsed Photobiomodulation Enhances Diabetic Wound Healing via Focal Adhesion-Mediated Cell Migration and Extracellular Matrix Remodeling
by Jihye Choi, Myung Jin Ban, Chan Hee Gil, Sung Sik Hur, Laurensia Danis Anggradita, Min-Kyu Kim, Ji Won Son, Jung Eun Kim and Yongsung Hwang
Int. J. Mol. Sci. 2025, 26(13), 6232; https://doi.org/10.3390/ijms26136232 - 27 Jun 2025
Viewed by 475
Abstract
Chronic diabetic wounds affect 15–20% of patients and are characterized by impaired healing due to disrupted hemostasis, inflammation, proliferation, and extracellular matrix (ECM) remodeling. Low-level light therapy (LLLT) has emerged as a promising noninvasive strategy for enhancing tissue regeneration. Here, we developed a [...] Read more.
Chronic diabetic wounds affect 15–20% of patients and are characterized by impaired healing due to disrupted hemostasis, inflammation, proliferation, and extracellular matrix (ECM) remodeling. Low-level light therapy (LLLT) has emerged as a promising noninvasive strategy for enhancing tissue regeneration. Here, we developed a multispectral pulsed LED system combining red and near-infrared light to stimulate wound healing. In vitro photostimulation of human keratinocytes and fibroblasts on biomimetic hydrogels enhanced adhesion, spreading, migration, and proliferation via increased focal adhesion kinase (pFAK), paxillin, and F-actin expression. In vivo, daily LED treatment of streptozotocin-induced diabetic wounds accelerated closure and improved ECM remodeling. Histological and molecular analyses revealed elevated levels of MMPs, interleukins, collagen, fibronectin, FGF2, and TGF-β1, supporting regenerative healing without excessive fibrosis. These findings demonstrate that multispectral pulsed photobiomodulation enhances diabetic wound healing through focal adhesion-mediated cell migration and ECM remodeling, offering a cost-effective and clinically translatable approach for chronic wound therapy. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

14 pages, 3305 KiB  
Article
mCRP-Induced Focal Adhesion Kinase-Dependent Monocyte Aggregation and M1 Polarization, Which Was Partially Blocked by the C10M Inhibitor
by Ylenia Pastorello, Doina Manu, Xenia Sawkulycz, Vittorio Caprio, Claudia Banescu, Minodora Dobreanu, Lawrence Potempa, Mario Di Napoli and Mark Slevin
Int. J. Mol. Sci. 2024, 25(6), 3097; https://doi.org/10.3390/ijms25063097 - 7 Mar 2024
Cited by 5 | Viewed by 1683
Abstract
Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of [...] Read more.
Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1β (IL-1β), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells—for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of C-Reactive Protein)
Show Figures

Figure 1

13 pages, 6706 KiB  
Article
Resistin Induces Migration and Invasion in PC3 Prostate Cancer Cells: Role of Extracellular Vesicles
by Mario Israel Oregel-Cortez, Héctor Frayde-Gómez, Georgina Quintana-González, Victor García-González, Jose Gustavo Vazquez-Jimenez and Octavio Galindo-Hernández
Life 2023, 13(12), 2321; https://doi.org/10.3390/life13122321 - 10 Dec 2023
Cited by 10 | Viewed by 3037
Abstract
Resistin is an adipokine with metabolic and inflammatory functions. Epidemiological and translational studies report that an increase in plasma levels and tissue expression of resistin increases the aggressiveness of prostate tumor cells. Extracellular vesicles (EVs) are secreted constitutively and induced by cytokines, growth [...] Read more.
Resistin is an adipokine with metabolic and inflammatory functions. Epidemiological and translational studies report that an increase in plasma levels and tissue expression of resistin increases the aggressiveness of prostate tumor cells. Extracellular vesicles (EVs) are secreted constitutively and induced by cytokines, growth factors, and calcium and are found in multiple biological fluids such as saliva, serum, semen, and urine. In particular, EVs have been shown to promote tumor progression through the induction of proliferation, growth, angiogenesis, resistance to chemotherapy, and metastasis. However, the role of resistin in the migration, invasion, and secretion of EVs in invasive prostate tumor cells remains to be studied. In the present study, we demonstrate that resistin induces increased migration and invasion in PC3 cells. In addition, these phenomena are accompanied by increased p-FAK levels and increased secretion of MMP-2 and MMP-9 in resistin-treated PC3 cells. Interestingly, EVs isolated from supernatants of PC3 cells treated with resistin induce an increase in migration and invasion accompanied by high MMP-2 and MMP-9 secretion in an autocrine stimulation model. In summary, our data for the first time demonstrate that resistin induces migration and invasion, partly through the secretion of EVs with pro-invasive characteristics in PC3 cells. Full article
(This article belongs to the Special Issue New Insights into Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

18 pages, 7739 KiB  
Article
Unraveling Connective Tissue Growth Factor as a Therapeutic Target and Assessing Kahweol as a Potential Drug Candidate in Triple-Negative Breast Cancer Treatment
by Jeong Hee Lee, Jongsu Kim, Hong Sook Kim and Young Jin Kang
Int. J. Mol. Sci. 2023, 24(22), 16307; https://doi.org/10.3390/ijms242216307 - 14 Nov 2023
Cited by 5 | Viewed by 1946
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressive behavior and limited treatment options, necessitating the identification of novel therapeutic targets. In this study, we investigated the clinical significance of connective tissue growth factor (CTGF) as a prognostic marker and explored the potential therapeutic [...] Read more.
Triple-negative breast cancer (TNBC) is characterized by aggressive behavior and limited treatment options, necessitating the identification of novel therapeutic targets. In this study, we investigated the clinical significance of connective tissue growth factor (CTGF) as a prognostic marker and explored the potential therapeutic effects of kahweol, a coffee diterpene molecule, in TNBC treatment. Initially, through a survival analysis on breast cancer patients from The Cancer Genome Atlas (TCGA) database, we found that CTGF exhibited significant prognostic effects exclusively in TNBC patients. To gain mechanistic insights, we performed the functional annotation and gene set enrichment analyses, revealing the involvement of CTGF in migratory pathways relevant to TNBC treatment. Subsequently, in vitro experiments using MDA-MB 231 cells, a representative TNBC cell line, demonstrated that recombinant CTGF (rCTGF) administration enhanced cell motility, whereas CTGF knockdown using CTGF siRNA resulted in reduced motility. Notably, rCTGF restored kahweol-reduced cell motility, providing compelling evidence for the role of CTGF in mediating kahweol’s effects. At the molecular level, kahweol downregulated the protein expression of CTGF as well as critical signaling molecules, such as p-ERK, p-P38, p-PI3K/AKT, and p-FAK, associated with cell motility. In summary, our findings propose CTGF as a potential prognostic marker for guiding TNBC treatment and suggest kahweol as a promising antitumor compound capable of regulating CTGF expression to suppress cell motility in TNBC. These insights hold promise for the development of targeted therapies and improved clinical outcomes for TNBC patients. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers 2.0)
Show Figures

Figure 1

14 pages, 5441 KiB  
Article
Pyk2/FAK Signaling Is Upregulated in Recurrent Glioblastoma Tumors in a C57BL/6/GL261 Glioma Implantation Model
by Jescelica Ortiz Rivera, Grace Velez Crespo, Mikhail Inyushin, Yuriy Kucheryavykh and Lilia Kucheryavykh
Int. J. Mol. Sci. 2023, 24(17), 13467; https://doi.org/10.3390/ijms241713467 - 30 Aug 2023
Cited by 5 | Viewed by 2148
Abstract
The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal [...] Read more.
The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal adhesion kinase (FAK) phosphorylation levels—pPyk2 (579/580) and pFAK (925)—without significant modifications in total Pyk2 and FAK protein expression in tumors regrown after surgical resection, compared with primary implanted tumors. Previously, we demonstrated that Pyk2 and FAK are involved in the regulation of tumor cell invasion and proliferation and are associated with reduced overall survival. We hypothesized that the use of inhibitors of Pyk2/FAK in the postsurgical period may reduce the growth of recurrent tumors. Using Western blot analysis and confocal immunofluorescence approaches, we demonstrated upregulation of Cyclin D1 and the Ki67 proliferation index in tumors regrown after resection, compared with primary implanted tumors. Treatment with Pyk2/FAK inhibitor PF-562271, administered through oral gavage at 50 mg/kg daily for two weeks beginning 2 days before tumor resection, reversed Pyk2/FAK signaling upregulation in recurrent tumors, reduced tumor volume, and increased animal survival. In conclusion, the use of Pyk2/FAK inhibitors can contribute to a delay in GBM tumor regrowth after surgical resection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 16514 KiB  
Article
A Triazaspirane Derivative Inhibits Migration and Invasion in PC3 Prostate Cancer Cells
by Javier de Jesús Vasconcelos-Ulloa, Victor García-González, Benjamín Valdez-Salas, José Gustavo Vázquez-Jiménez, Ignacio Rivero-Espejel, Raúl Díaz-Molina and Octavio Galindo-Hernández
Molecules 2023, 28(11), 4524; https://doi.org/10.3390/molecules28114524 - 2 Jun 2023
Cited by 3 | Viewed by 2456
Abstract
Cancer is a serious health problem due to the complexity of establishing an effective treatment. The purpose of this work was to evaluate the activity of a triazaspirane as a migration and invasion inhibitor in PC3 prostatic tumor cells through a possible negative [...] Read more.
Cancer is a serious health problem due to the complexity of establishing an effective treatment. The purpose of this work was to evaluate the activity of a triazaspirane as a migration and invasion inhibitor in PC3 prostatic tumor cells through a possible negative regulation of the FAK/Src signal transduction pathway and decreased secretion of metalloproteinases 2 and 9. Molecular docking analysis was performed using Moe 2008.10 software. Migration (wound-healing assay) and invasion (Boyden chamber assay) assays were performed. In addition, the Western blot technique was used to quantify protein expression, and the zymography technique was used to observe the secretion of metalloproteinases. Molecular docking showed interactions in regions of interest of the FAK and Src proteins. Moreover, the biological activity assays demonstrated an inhibitory effect on cell migration and invasion, an important suppression of metalloproteinase secretion, and a decrease in the expression of p-FAK and p-Src proteins in treated PC3 cells. Triazaspirane-type molecules have important inhibitory effects on the mechanisms associated with metastasis in PC3 tumor cells. Full article
(This article belongs to the Special Issue Synthesis and Application of Anticancer Inhibitors)
Show Figures

Figure 1

18 pages, 5114 KiB  
Article
Biomechanical Modulation of Dental Pulp Stem Cell (DPSC) Properties for Soft Tissue Engineering
by Tara Gross, Martin Philipp Dieterle, Kirstin Vach, Markus Joerg Altenburger, Elmar Hellwig and Susanne Proksch
Bioengineering 2023, 10(3), 323; https://doi.org/10.3390/bioengineering10030323 - 3 Mar 2023
Cited by 8 | Viewed by 3405
Abstract
Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were [...] Read more.
Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as “trophic mediators”. Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation. Full article
(This article belongs to the Special Issue Advances in Dental and Maxillofacial Tissue Engineering)
Show Figures

Figure 1

18 pages, 4118 KiB  
Article
Recombinant Human Prolidase (rhPEPD) Induces Wound Healing in Experimental Model of Inflammation through Activation of EGFR Signalling in Fibroblasts
by Weronika Baszanowska, Magdalena Niziol, Ilona Oscilowska, Justyna Czyrko-Horczak, Wojciech Miltyk and Jerzy Palka
Molecules 2023, 28(2), 851; https://doi.org/10.3390/molecules28020851 - 14 Jan 2023
Cited by 6 | Viewed by 2459
Abstract
The potential of recombinant human prolidase (rhPEPD) to induce wound healing in an experimental model of IL-1β-induced inflammation in human fibroblasts was studied. It was found that rhPEPD significantly increased cell proliferation and viability, as well as the expression of the epidermal growth [...] Read more.
The potential of recombinant human prolidase (rhPEPD) to induce wound healing in an experimental model of IL-1β-induced inflammation in human fibroblasts was studied. It was found that rhPEPD significantly increased cell proliferation and viability, as well as the expression of the epidermal growth factor receptor (EGFR) and downstream signaling proteins, such as phosphorylated PI3K, AKT, and mTOR, in the studied model. Moreover, rhPEPD upregulated the expression of the β1 integrin receptor and its downstream signaling proteins, such as p-FAK, Grb2 and p-ERK 1/2. The inhibition of EGFR signaling by gefitinib abolished rhPEPD-dependent functions in an experimental model of inflammation. Subsequent studies showed that rhPEPD augmented collagen biosynthesis in IL-1β-treated fibroblasts as well as in a wound healing model (wound closure/scratch test). Although IL-1β treatment of fibroblasts increased cell migration, rhPEPD significantly enhanced this process. This effect was accompanied by an increase in the activity of MMP-2 and MMP-9, suggesting extracellular matrix (ECM) remodeling during the inflammatory process. The data suggest that rhPEPD may play an important role in EGFR-dependent cell growth in an experimental model of inflammation in human fibroblasts, and this knowledge may be useful for further approaches to the treatment of abnormalities of wound healing and other skin diseases. Full article
Show Figures

Figure 1

13 pages, 6165 KiB  
Article
Cycloartocarpin Inhibits Migration through the Suppression of Epithelial-to-Mesenchymal Transition and FAK/AKT Signaling in Non-Small-Cell Lung Cancer Cells
by Sucharat Tungsukruthai, Boonchoo Sritularak and Pithi Chanvorachote
Molecules 2022, 27(23), 8121; https://doi.org/10.3390/molecules27238121 - 22 Nov 2022
Cited by 4 | Viewed by 1980
Abstract
Lung cancer metastasis is a multifaceted process that accounts for 90% of cancer deaths. According to several studies, the epithelial–mesenchymal transition (EMT) plays an essential role in lung cancer metastasis. Therefore, this study aimed to investigate the potential pharmacological effect of cycloartocarpin on [...] Read more.
Lung cancer metastasis is a multifaceted process that accounts for 90% of cancer deaths. According to several studies, the epithelial–mesenchymal transition (EMT) plays an essential role in lung cancer metastasis. Therefore, this study aimed to investigate the potential pharmacological effect of cycloartocarpin on the suppression of metastasis-related behaviors and EMT. An MTT assay was used to examine cell viability. Cell migration was determined using a wound healing assay. Anchorage-independent cell growth was also performed. Western blot analysis was used to identify the key signaling proteins involved in the regulation of EMT and migration. The results found that non-toxic concentrations of cycloartocarpin (10–20 μM) effectively suppressed cell migration and attenuated anchorage-independent growth in H292, A549, and H460 cells. Interestingly, these effects were consistent with the findings of Western blot analysis, which revealed that the level of phosphorylated focal adhesion kinase (p-FAK), phosphorylated ATP-dependent tyrosine kinase (p-AKT), and cell division cycle 42 (Cdc42) were significantly reduced, resulting in the inhibition of the EMT process, as evidenced by decreased N-cadherin, vimentin, and slug expression. Taken together, the results suggest that cycloartocarpin inhibits EMT by suppressing the FAK/AKT signaling pathway, which is involved in Cdc42 attenuation. Our findings demonstrated that cycloartocarpin has antimetastatic potential for further research and development in lung cancer therapy. Full article
(This article belongs to the Special Issue Natural and Synthetic Anti-cancer Drug Discovery)
Show Figures

Figure 1

15 pages, 3756 KiB  
Article
Fabricated AIE-Based Probe to Detect the Resistance to Anoikis of Cancer Cells Detached from Tumor Tissue
by Ya-Nan Chang, Yuelan Liang, Jiayi Wang, Ziteng Chen, Ruyu Yan, Kui Chen, Juan Li, Jiacheng Li, Haojun Liang and Gengmei Xing
Cells 2022, 11(21), 3478; https://doi.org/10.3390/cells11213478 - 3 Nov 2022
Viewed by 2204
Abstract
(1) Background: Resisting anoikis is a vital and necessary characteristic of malignant cancer cells, but there is no existing quantification method. Herein, a sensitive probe for assessing anoikis resistance of cancer cells detached from the extracellular matrix was developed based on the aggregation-induced [...] Read more.
(1) Background: Resisting anoikis is a vital and necessary characteristic of malignant cancer cells, but there is no existing quantification method. Herein, a sensitive probe for assessing anoikis resistance of cancer cells detached from the extracellular matrix was developed based on the aggregation-induced emission (AIE) of AIEgens. It has been reported that detached cancer cell endocytose activated integrin clusters, and in the endosome these clusters recruit and activate phosphorylate focal adhesion kinase (pFAK) in the cytoplasm to induce signaling that supports the growth of detached cancer cells. (2) Methods: We established a lost nest cell model of cancer cells and determined their ability to resist anoikis. The colocalization of the activated integrin, pFAK, and endosomes in model cells was observed and calculated. (3) Results: The fluorescence signal intensity of the probe was significantly higher than that of the integrin antibody in the model cells and the fluorescence signal of probe signal was better overlapped with labeled pFAK by fluorescence in endosomes in model cells. (4) Conclusions: We developed a quantitative multi-parametric image analysis program to calculate fluorescent intensity of the probe and antibodies against pFAK and Rab5 in the areas of colocalization. A positive correlation of fluorescence signal intensity between the probe and pFAK on the endosome was observed. Therefore, the probe was used to quantitatively evaluate resisting anoikis of different cancer cell lines under the lost nest condition. Full article
Show Figures

Figure 1

16 pages, 3017 KiB  
Article
Anti-Cancer Activity of the Combinational Treatment of Noozone Cold Plasma with p-FAK Antibody-Conjugated Gold Nanoparticles in OSCC Xenograft Mice
by Jeong-Hae Choi, Hee-Jin Gu, Kwang-Ha Park, Dae-Seok Hwang and Gyoo-Cheon Kim
Biomedicines 2022, 10(9), 2259; https://doi.org/10.3390/biomedicines10092259 - 12 Sep 2022
Cited by 5 | Viewed by 2570
Abstract
Oral squamous cell cancer (OSCC) is the most common type of oral cancer (about 80–90% of cases) and various research is being done to cure the disease. This paper aims to verify whether treatment with no-ozone cold plasma (NCP), which is designed for [...] Read more.
Oral squamous cell cancer (OSCC) is the most common type of oral cancer (about 80–90% of cases) and various research is being done to cure the disease. This paper aims to verify whether treatment with no-ozone cold plasma (NCP), which is designed for safe usage of the plasma on oral cavities, in combination with gold nanoparticles conjugated with p-FAK antibody (p-FAK/GNP) can trigger the selective and instant killing of SCC-25 cells both in vitro and in vivo. When SCC25 and HaCaT cells are exposed to p-FAK/GNP+NCP, the instant cell death was observed only in SCC25 cells. Such p-FAK/GNP+NCP-mediated cell death was observed only when NCP was directly treated on SCC25 harboring p-FAK/GNP. During NCP treatment, the removal of charged particles from NCP using grounded electric mesh radically decreased the p-FAK/GNP+NCP-mediated cell death. This p-FAK/GNP+NCP-mediated selective cell death of OSCC was also observed in mice xenograft models using SCC25 cells. The mere treatment of p-FAK/GNP and NCP on the xenograft tumor slowly decreased the size of the tumor, and only about 50% of the tumor remained at the end of the experiment. On the other hand, 1 week of p-FAK/GNP+NCP treatment was enough to reduce half of the tumor size, and most of tumor tissue had vanished at the end. An analysis of isolated tissues showed that in the case of individual treatment with p-FAK/GNP or NCP, the cancer cell population was reduced due to apoptotic cell death. However, in the case of p-FAK/GNP+NCP, apoptotic cell death was unobserved, and most tissues were composed of collagen. Thus, this paper suggests the possibility of p-FAK/GNP+NCP as a new method for treating OSCC. Full article
(This article belongs to the Special Issue The Advances of Cold Plasma in the Biomedicines)
Show Figures

Figure 1

20 pages, 3570 KiB  
Article
In Vitro Effects of Papaverine on Cell Migration and Vascular Endothelial Growth Factor in Cancer Cell Lines
by Daniella Anthea Gomes, Anna Margaretha Joubert and Michelle Helen Visagie
Int. J. Mol. Sci. 2022, 23(9), 4654; https://doi.org/10.3390/ijms23094654 - 22 Apr 2022
Cited by 3 | Viewed by 2628
Abstract
Papaverine (PPV) is a benzylisoquinoline alkaloid isolated from Papaver somniferum that exerts antiproliferative activity. However, several questions remain regarding the biochemical pathways affected by PPV in tumourigenic cells. In this study, the influence of PPV on cell migration (light microscopy), expression of vascular [...] Read more.
Papaverine (PPV) is a benzylisoquinoline alkaloid isolated from Papaver somniferum that exerts antiproliferative activity. However, several questions remain regarding the biochemical pathways affected by PPV in tumourigenic cells. In this study, the influence of PPV on cell migration (light microscopy), expression of vascular endothelial growth factor (VEGF) B, VEGF R1, VEGF R2, and phosphorylated focal adhesion kinase (pFAK) were investigated using spectrophotometry in MDA-MB-231-, A549- and DU145 cell lines. The migration assay revealed that, after 48 h, PPV (100 µM) reduced cell migration to 81%, 91%, and 71% in MDA-MB-231-, A549-, and DU145 cells, respectively. VEGF B expression was reduced to 0.79-, 0.71-, and 0.73-fold after 48 h of exposure to PPV in MDA-MB-231-, A549- and DU145 cells, while PPV exposure of 48 h increased VEGF R1 expression in MDA-MB-231- and DU145 cells to 1.38 and 1.46. A fold decrease in VEGF R1 expression was observed in A549 cells to 0.90 after exposure to 150 µM. No statistically significant effects were observed on VEGF R2- and FAK expression after exposure to PPV. This study contributes to the understanding of the effects of a phytomedicinal alkaloid compound in cancer cells and may provide novel approaches to the application of non-addictive alkaloids. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 2027 KiB  
Article
Elucidation of Focal Adhesion Kinase as a Modulator of Migration and Invasion and as a Potential Therapeutic Target in Chronic Lymphocytic Leukemia
by Thomas A. Burley, Andrew Hesketh, Giselda Bucca, Emma Kennedy, Eleni E. Ladikou, Benjamin P. Towler, Simon Mitchell, Colin P. Smith, Christopher Fegan, Rosalynd Johnston, Andrea Pepper and Chris Pepper
Cancers 2022, 14(7), 1600; https://doi.org/10.3390/cancers14071600 - 22 Mar 2022
Cited by 8 | Viewed by 3424
Abstract
The retention and re-migration of Chronic Lymphocytic Leukemia cells into cytoprotective and proliferative lymphoid niches is thought to contribute to the development of resistance, leading to subsequent disease relapse. The aim of this study was to elucidate the molecular processes that govern CLL [...] Read more.
The retention and re-migration of Chronic Lymphocytic Leukemia cells into cytoprotective and proliferative lymphoid niches is thought to contribute to the development of resistance, leading to subsequent disease relapse. The aim of this study was to elucidate the molecular processes that govern CLL cell migration to elicit a more complete inhibition of tumor cell migration. We compared the phenotypic and transcriptional changes induced in CLL cells using two distinct models designed to recapitulate the peripheral circulation, CLL cell migration across an endothelial barrier, and the lymph node interaction between CLL cells and activated T cells. Initially, CLL cells were co-cultured with CD40L-expressing fibroblasts and exhibited an activated B-cell phenotype, and their transcriptional signatures demonstrated the upregulation of pro-survival and anti-apoptotic genes and overrepresentation of the NF-κB signaling pathway. Using our dynamic circulating model, we were able to study the transcriptomics and miRNomics associated with CLL migration. More than 3000 genes were altered when CLL cells underwent transendothelial migration, with an overrepresentation of adhesion and cell migration gene sets. From this analysis, an upregulation of the FAK signaling pathway was observed. Importantly, PTK2 (FAK) gene expression was significantly upregulated in migrating CLL cells (PTK2 Fold-change = 4.9). Here we demonstrate that TLR9 agonism increased levels of p-FAK (p ≤ 0.05), which could be prevented by pharmacological inhibition of FAK with defactinib (p ≤ 0.01). Furthermore, a reduction in CLL cell migration and invasion was observed when FAK was inhibited (p ≤ 0.0001), supporting a role for FAK in both CLL migration and tissue invasion. When taken together, our data highlights the potential for combining FAK inhibition with current targeted therapies as a more effective treatment regime for CLL. Full article
(This article belongs to the Special Issue Therapeutic Targets in Chronic Lymphocytic Leukemia)
Show Figures

Figure 1

20 pages, 4268 KiB  
Article
Caffeine Induces G0/G1 Cell Cycle Arrest and Inhibits Migration through Integrin αv, β3, and FAK/Akt/c-Myc Signaling Pathway
by Pichitchai Meisaprow, Nithikoon Aksorn, Chanida Vinayanuwattikun, Pithi Chanvorachote and Monruedee Sukprasansap
Molecules 2021, 26(24), 7659; https://doi.org/10.3390/molecules26247659 - 17 Dec 2021
Cited by 18 | Viewed by 5291 | Correction
Abstract
Lung cancer is recognized as a major cause of mortality worldwide owing to its metastatic activity. Given the lack of solid information regarding the possible effects of caffeine, one of the most consumed natural psychoactive substances, on molecular signaling pathways implicated in the [...] Read more.
Lung cancer is recognized as a major cause of mortality worldwide owing to its metastatic activity. Given the lack of solid information regarding the possible effects of caffeine, one of the most consumed natural psychoactive substances, on molecular signaling pathways implicated in the aggressive behavior of lung cancer, our study aimed to evaluate the effect and mechanism of caffeine on metastasis-related mechanisms. The results revealed that caffeine treatment at concentrations of 0–500 µM caused no direct cytotoxic effects on NCI-H23 cells. Treatment of cells with caffeine showed good potential to inhibit cell proliferation at 48 h and induced significant cell cycle arrest at the G0/G1 phase. Concerning metastasis, caffeine was shown to reduce filopodia formation, inhibit migration and invasion capability, and reduce the ability of cancer cells to survive and grow in an anchorage-independent manner. Moreover, caffeine could attenuate the formation of 3D tumor spheroids in cancer stem cell (CSC)-enriched populations. With regard to mechanisms, we found that caffeine significantly altered the integrin pattern of the treated cells and caused the downregulation of metastasis-associated integrins, namely, integrins αv and β3. Subsequently, the downstream signals, including protein signaling and transcription factors, namely, phosphorylated focal adhesion kinase (p-FAK), phosphorylated protein kinase B (p-Akt), cell division cycle 42 (Cdc42), and c-Myc, were significantly decreased in caffeine-exposed cells. Taken together, our novel data on caffeine-inhibiting mechanism in relation to metastasis in lung cancer could provide insights into the impact of caffeine intake on human diseases and conditions. Full article
(This article belongs to the Special Issue Natural and Synthetic Anti-cancer Drug Discovery)
Show Figures

Figure 1

15 pages, 6796 KiB  
Article
MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells
by Gaëlle Tachon, Konstantin Masliantsev, Pierre Rivet, Amandine Desette, Serge Milin, Elise Gueret, Michel Wager, Lucie Karayan-Tapon and Pierre-Olivier Guichet
Cancers 2021, 13(23), 5943; https://doi.org/10.3390/cancers13235943 - 25 Nov 2021
Cited by 9 | Viewed by 2731
Abstract
The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for [...] Read more.
The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC. Full article
Show Figures

Figure 1

Back to TopTop