error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = PBZT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4558 KB  
Article
Impedance Spectroscopy of Lanthanum-Doped (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3 Ceramics
by Małgorzata Adamczyk-Habrajska, Jolanta Makowska, Tomasz Pikula, Beata Wodecka-Duś, Joanna A. Bartkowska, Rafał Panek and Katarzyna Osińska
Appl. Sci. 2024, 14(21), 9854; https://doi.org/10.3390/app14219854 - 28 Oct 2024
Cited by 3 | Viewed by 1521
Abstract
This study examines the effects of La3+ doping on (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3(PBZT) ceramics, which were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed that the PBZT structure, including PBZT doped with [...] Read more.
This study examines the effects of La3+ doping on (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3(PBZT) ceramics, which were synthesized using the conventional solid-state reaction method. X-ray diffraction analysis confirmed that the PBZT structure, including PBZT doped with La3+ at concentrations x = 1 at.% and x = 2 at.%, exhibited a rhombohedral (R3c) space group, while higher doping levels of x = 3 at.% and x = 4 at.% led to a dominant cubic (Pm-3m) phase with approximately 30% of a remnant rhombohedral component. Scanning electron microscopy (SEM, JEOL JSM-7100F TTL LV, Jeol Ltd., Tokyo, Japan) and energy dispersive X-ray spectroscopy (EDS) were utilized to investigate the structure and morphology of these ceramics. The findings indicated that the chemical composition of the ceramic samples closely corresponded to the initial stoichiometry of the ceramic powder. An increase in the amount of lanthanum results in a decrease in the average grain size of the ceramics. The electrical properties were further evaluated using complex impedance spectroscopy (IS) over a range of temperatures and frequencies, as well as temperature dependence of DC conductivity. The similarity in the changes in activation energy for DC conductivity and grain boundary conductivity, caused by lanthanum ion modification, allows for the conclusion that grain boundaries are the primary microstructural element responsible for conductivity in these materials. Full article
Show Figures

Figure 1

19 pages, 10316 KB  
Article
Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method
by Dagmara Brzezińska, Dariusz Bochenek, Maciej Zubko, Przemysław Niemiec and Izabela Matuła
Materials 2024, 17(20), 5072; https://doi.org/10.3390/ma17205072 - 17 Oct 2024
Cited by 2 | Viewed by 1215
Abstract
This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00–0.08. Synthesis [...] Read more.
This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00–0.08. Synthesis was carried out using the powder calcination method, and sintering was carried out using the hot-pressing method. For all the PBZT_xSn samples at room temperature, X-ray diffractograms confirmed the presence of an orthorhombic (OR) crystal structure with space group Pnnm, and the microstructure is characterized by densely packed and properly shaped grains with an average size of 1.36 µm to 1.73 µm. At room temperature, PBZT_xSn materials have low permittivity values ε′ ranging from 265 to 275, whereas, at the ferroelectric–paraelectric phase transition temperature (RE–C), the permittivity is high (from 8923 to 12,141). The increase in the tin dopant in PBZT_xSn lowers permittivity and dielectric loss and changes the scope of occurrence of phase transitions. The occurring dispersion of the dielectric constant and dielectric loss at low frequencies, related to the Maxwell–Wagner behavior, decreases with increasing tin content in the composition of PBZT_xSn. Temperature studies of the dielectric and ferroelectric properties revealed anomalies related to the phase transitions occurring in the PBZT_xSn material. With increasing temperature in PBZT_xSn, phase transitions occur from orthorhombic (OR) to rhombohedral (RE) and cubic (C). The cooling cycle shifts the temperatures of the phase transitions towards lower temperatures. The test results were confirmed by XRD Rietveld analysis at different temperatures. The beneficial dielectric and ferroelectric properties suggest that the PBZT_xSn materials are suitable for micromechatronic applications as pulse capacitors or actuator elements. Full article
(This article belongs to the Special Issue Mechanical and Thermal Properties Analysis of Ceramic Composites)
Show Figures

Figure 1

11 pages, 7831 KB  
Article
Investigation of Piezoelectric Properties in Ca-Doped PbBa(Zr,Ti)O3 (PBZT) Ceramics
by Jolanta Makowska, Marian Pawełczyk, Andrzej Soszyński, Tomasz Pikula and Małgorzata Adamczyk-Habrajska
Micromachines 2024, 15(8), 1018; https://doi.org/10.3390/mi15081018 - 9 Aug 2024
Viewed by 1483
Abstract
The perovskite-structured materials Pb0.75Ba0.251xCax(Zr0.7Ti0.3)O3 for x = 1 and 2 at.% were synthesized using the conventional mixed-oxide method and carbonates. Microstructural analysis, [...] Read more.
The perovskite-structured materials Pb0.75Ba0.251xCax(Zr0.7Ti0.3)O3 for x = 1 and 2 at.% were synthesized using the conventional mixed-oxide method and carbonates. Microstructural analysis, performed using a scanning electron microscope, revealed rounded grains with relatively inhomogeneous sizes and distinct grain boundaries. X-ray diffraction confirmed that the materials exhibit a rhombohedral structure with an R3c space group at room temperature. Piezoelectric resonance measurements were conducted to determine the piezoelectric and elastic properties of the samples. The results indicated that a small amount of calcium doping significantly enhanced the piezoelectric coefficient d31. The calcium-doped ceramics exhibited higher electrical permittivity across the entire temperature range compared to the pure material, as well as a significant value of remanent polarization. These findings indicate that the performance parameters of the base material have been significantly improved, making these ceramics promising candidates for various applications. Full article
(This article belongs to the Special Issue Piezoelectric Materials, Devices and Systems)
Show Figures

Figure 1

14 pages, 6636 KB  
Article
Properties of PBZTS Ferroelectric Ceramics Obtained Using Spark Plasma Sintering
by Dagmara Brzezińska, Dariusz Bochenek, Przemysław Niemiec and Grzegorz Dercz
Materials 2023, 16(17), 5756; https://doi.org/10.3390/ma16175756 - 23 Aug 2023
Cited by 2 | Viewed by 1656
Abstract
In this paper, spark plasma sintering was used to obtain and investigate (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZTS) ceramic materials for x = 0, 0.02, 0.04, 0.06, and 0.08. Crystal structure, microstructure, dielectric [...] Read more.
In this paper, spark plasma sintering was used to obtain and investigate (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZTS) ceramic materials for x = 0, 0.02, 0.04, 0.06, and 0.08. Crystal structure, microstructure, dielectric and ferroelectric properties, and electrical conductivity tests of a series of samples were carried out. The SPS sintering method ensures favorable dielectric and ferroelectric properties of PBZTS ceramic materials. X-ray studies have shown that the material has a perovskite structure. The samples have a densely packed material structure with properly crystallized grains. The fine-grained microstructure of the PZBZTS material with high grain homogeneity allows the application of higher electric fields. Ceramic samples obtained by the SPS method have higher density values than samples obtained by the classical method (FS). The permittivity at room temperature is in the range of 245–282, while at the phase transition temperature is in the range of 10,259–12,221. At room temperature, dielectric loss factor values range from 0.006 to 0.036. The hysteresis loops of PBZTS ceramics have a shape typical for ferroelectric hard materials, and the remnant polarization values range from 0.32 to 0.39 µC/cm2. The activation energy Ea values of the PBZTS samples result mainly from the presence of oxygen vacancies. The PZT material doped with Ba and Sn and sintered via the SPS method has favorable physical parameters for applications in modern devices such as actuators or pulse capacitors. Full article
(This article belongs to the Special Issue Advances in Dielectric Ceramics)
Show Figures

Figure 1

24 pages, 2963 KB  
Article
Repeatedly Northwards and Upwards: Southern African Grasslands Fuel the Colonization of the African Sky Islands in Helichrysum (Compositae)
by Carme Blanco-Gavaldà, Mercè Galbany-Casals, Alfonso Susanna, Santiago Andrés-Sánchez, Randall J. Bayer, Christian Brochmann, Glynis V. Cron, Nicola G. Bergh, Núria Garcia-Jacas, Abel Gizaw, Martha Kandziora, Filip Kolář, Javier López-Alvarado, Frederik Leliaert, Rokiman Letsara, Lucía D. Moreyra, Sylvain G. Razafimandimbison, Roswitha Schmickl and Cristina Roquet
Plants 2023, 12(11), 2213; https://doi.org/10.3390/plants12112213 - 3 Jun 2023
Cited by 13 | Viewed by 4961
Abstract
The Afromontane and Afroalpine areas constitute some of the main biodiversity hotspots of Africa. They are particularly rich in plant endemics, but the biogeographic origins and evolutionary processes leading to this outstanding diversity are poorly understood. We performed phylogenomic and biogeographic analyses of [...] Read more.
The Afromontane and Afroalpine areas constitute some of the main biodiversity hotspots of Africa. They are particularly rich in plant endemics, but the biogeographic origins and evolutionary processes leading to this outstanding diversity are poorly understood. We performed phylogenomic and biogeographic analyses of one of the most species-rich plant genera in these mountains, Helichrysum (Compositae-Gnaphalieae). Most previous studies have focused on Afroalpine elements of Eurasian origin, and the southern African origin of Helichrysum provides an interesting counterexample. We obtained a comprehensive nuclear dataset from 304 species (≈50% of the genus) using target-enrichment with the Compositae1061 probe set. Summary-coalescent and concatenation approaches combined with paralog recovery yielded congruent, well-resolved phylogenies. Ancestral range estimations revealed that Helichrysum originated in arid southern Africa, whereas the southern African grasslands were the source of most lineages that dispersed within and outside Africa. Colonization of the tropical Afromontane and Afroalpine areas occurred repeatedly throughout the Miocene–Pliocene. This timing coincides with mountain uplift and the onset of glacial cycles, which together may have facilitated both speciation and intermountain gene flow, contributing to the evolution of the Afroalpine flora. Full article
(This article belongs to the Special Issue Systematics, Evolution and Biogeography of Mountain Plants)
Show Figures

Figure 1

12 pages, 31207 KB  
Article
The Thermo-Mechanical and Dielectric Properties of Superhydrophobic Pbz/TiO2 Composites
by Shakila Parveen Asrafali, Thirukumaran Periyasamy, Chaitany Jayprakash Raorane, Vinit Raj and Seong Cheol Kim
Sustainability 2022, 14(20), 13401; https://doi.org/10.3390/su142013401 - 18 Oct 2022
Cited by 2 | Viewed by 1594
Abstract
Polymer composites display the synergistic property of the polymer (matrix) and inorganic particles (filler material), when their combination is properly utilized. In the present work, polymer composites possessing a superhydrophobic property are fabricated by imposing the combination of both surface free energy and [...] Read more.
Polymer composites display the synergistic property of the polymer (matrix) and inorganic particles (filler material), when their combination is properly utilized. In the present work, polymer composites possessing a superhydrophobic property are fabricated by imposing the combination of both surface free energy and surface roughness. Polybenzoxazine (Pbz) is a choice of low surface free energy material and TiO2 particles contribute to create surface roughness. Thus, Pbz/TiO2 composites were fabricated by varying TiO2 contents to produce superhydrophobicity. The hydrophobicity increased from 94° for Pbz to 140° for Pbz/T5. The advantage of molecular design flexibility is also utilized to synthesize benzoxazine monomer (Bzo), which then undergoes thermally induced self-polymerization with different contents of TiO2 to produce Pbz-TiO2 composites. The structure analysis and curing behavior of the Bzo monomer was examined using FT-IR, NMR and DSC techniques. Whereas the properties of the Pbz/TiO2 composites were analyzed by WCA, SEM, DMA, TGA, and dielectric techniques. Full article
Show Figures

Figure 1

Back to TopTop