Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = PAN precursor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2084 KiB  
Article
Recycling of PAN Waste into Nonwoven Materials Using Electrospinning Method
by Yaroslav V. Golubev, Igor S. Makarov, Denis N. Karimov, Natalia A. Arkharova, Radmir V. Gainutdinov, Sergey A. Legkov and Sergey V. Kotomin
Fibers 2025, 13(8), 102; https://doi.org/10.3390/fib13080102 - 30 Jul 2025
Viewed by 163
Abstract
For the first time, electrospinning has been used to recycle polyacrylonitrile terpolymer (PAN) waste following the solid-phase N-methylmorpholine-N-oxide (NMMO) process from PAN solutions in DMSO into nonwoven materials. The morphology of the obtained material has been studied. The material derived from secondary raw [...] Read more.
For the first time, electrospinning has been used to recycle polyacrylonitrile terpolymer (PAN) waste following the solid-phase N-methylmorpholine-N-oxide (NMMO) process from PAN solutions in DMSO into nonwoven materials. The morphology of the obtained material has been studied. The material derived from secondary raw materials was compared to the material from the original PAN using IR spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy. It has been demonstrated that the chemical changes of PAN that occur during NMMO processing do not interfere with nonwoven material manufacture. Spun PAN nonwovens with different histories have similar morphology. It has been shown that the elastic modulus of ultrafine fibers depends on the history of PAN. Single monofilaments produced from initial PAN have a threefold greater elastic modulus than fibers spun from NMMO-recycled polymer. The revealed structure and properties of PAN fibers allow them to be considered as filter materials, as well as precursors of carbon nonwoven fabrics. Full article
Show Figures

Graphical abstract

23 pages, 6315 KiB  
Article
BiOBr@PZT Nanocomposite Membranes via Electrospinning-SILAR Technology: A Sustainable Green Material for Photocatalytic Degradation in Coloration-Related Wastewater Remediation
by Zhengyu Ding, Jun Zhang, Zheyao Xia, Binjie Xin, Jiali Yu and Xiaoyuan Lei
Sustainability 2025, 17(11), 4984; https://doi.org/10.3390/su17114984 - 29 May 2025
Viewed by 609
Abstract
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic [...] Read more.
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic degradation. The hierarchical structure integrates leaf-like BiOBr nanosheets with PAN/ZnO/TiO2 (PZT) nanofibers, forming a Z-scheme heterojunction. This enhances the separation of photogenerated carriers while preserving mechanical integrity. SILAR-enabled low temperature deposition ensures eco-friendly fabrication by avoiding toxic precursors and cutting energy use. Optimized BiOBr@PZT-5 shows exceptional photocatalytic performance, achieving 97.6% tetracycline hydrochloride (TCH) degradation under visible light in 120 min. It also has strong tensile strength (4.29 MPa) and cycling stability. Mechanistic studies show efficient generation of O2 and OH radicals through synergistic light absorption, charge transfer, and turbulence-enhanced mass diffusion. The material’s flexibility allows reusable turbulent flow applications, overcoming rigid catalyst limitations. Aligning with green chemistry and UN SDGs, this work advances multifunctional photocatalytic systems for scalable, energy-efficient wastewater treatment, offering a paradigm that integrates environmental remediation with industrial adaptability. Full article
Show Figures

Figure 1

35 pages, 5451 KiB  
Review
Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer
by Juliane Blümke, Moritz Schameitat, Atul Verma, Celina Limbecker, Elise Arlt, Sonja M. Kessler, Heike Kielstein, Sebastian Krug, Ivonne Bazwinsky-Wutschke and Monika Haemmerle
Cancers 2025, 17(10), 1689; https://doi.org/10.3390/cancers17101689 - 17 May 2025
Viewed by 1340
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar–ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Figure 1

15 pages, 8197 KiB  
Article
Preparation and Characterization of Low-Molecular-Weight Polyacrylonitrile
by Yuanteng Yang, Xiaoli Jiang, Jing Jiang, Yang Liu, Lin Zhao, Hongyu Zhu, Junjie Wang, Zongkai Yan and Yagang Zhang
Polymers 2025, 17(8), 1112; https://doi.org/10.3390/polym17081112 - 19 Apr 2025
Viewed by 706
Abstract
Polyacrylonitrile (PAN) is renowned for its excellent physical and chemical properties, making it a promising candidate for producing high-performance and energetic materials. However, traditional high-molecular-weight PAN suffers from poor solubility and low reactivity, which limits its application as a precursor for advanced materials. [...] Read more.
Polyacrylonitrile (PAN) is renowned for its excellent physical and chemical properties, making it a promising candidate for producing high-performance and energetic materials. However, traditional high-molecular-weight PAN suffers from poor solubility and low reactivity, which limits its application as a precursor for advanced materials. To overcome these issues, this study successfully synthesized low-molecular-weight PAN (Mη: 6.808 kDa) using an environmentally friendly aqueous precipitation polymerization method, utilizing ammonium persulfate (6 wt% relative to the monomer mass) as the initiator and isopropanol (400 wt%) as the chain transfer agent. The structures and properties of the synthesized low-molecular-weight PAN were analyzed in depth. The morphology and chain structure of PAN were characterized using field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance hydrogen spectroscopy (1H NMR). The thermal properties were assessed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally, the state changes during the heating process of PAN with different molecular weights were directly observed using a visual melting point analyzer for the first time. Furthermore, the influence of molecular weight on PAN’s solubility was investigated in detail. Based on that, a linear regression between the viscosity average molecular weight (Mη) and the number average molecular weight (Mn) was established, providing simple and rapid access to the molecular weight of the synthesized PAN via viscosity measurements. Our study employed CTA-controlled aqueous precipitation polymerization to prepare low-molecular-weight PAN, which possesses significant potential in producing tetrazole-based energetic materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

24 pages, 5064 KiB  
Article
Predicting Ozone Concentrations in Ecologically Sensitive Coastal Zones Through Structure Mining and Machine Learning: A Case Study of Chongming Island, China
by Yan Liu, Tingting Hu, Yusen Duan and Jingqi Deng
Atmosphere 2025, 16(4), 457; https://doi.org/10.3390/atmos16040457 - 15 Apr 2025
Viewed by 548
Abstract
Elevated O3 concentrations pose a significant threat to human health and ecosystems, but little research has been performed on coastal wetlands near large cities. This study focuses on investigating the key factors affecting O3 formation in the ecologically sensitive Dongtan Wetland [...] Read more.
Elevated O3 concentrations pose a significant threat to human health and ecosystems, but little research has been performed on coastal wetlands near large cities. This study focuses on investigating the key factors affecting O3 formation in the ecologically sensitive Dongtan Wetland (Chongming District, Shanghai, China) area. By comparing the performance of O3 concentration prediction of multiple machine learning models, this study found that the random forest model achieved the highest accuracy (R2 = 0.9, RMSE = 11.5). Feature importance and structure mining showed that peroxyacetyl nitrate (PAN), nitrogen oxides (NOx), temperature, wind direction, and relative humidity were the main drivers of O3 formation. Specifically, PAN concentrations exceeding 0.1 ppb and temperatures above 3 °C were found to have a significant impact on O3 levels, especially in spring, summer, and autumn. Trajectory analysis showed that westward urban pollution and emissions transported from the ocean were the main factors in O3 formation in the area. This study highlights the need for targeted emission control strategies, especially for PAN precursors generated by ships and NOx generated by urban industries, providing important insights for improving air quality in ecologically sensitive coastal areas. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 1890 KiB  
Article
Development of RT-PCR Assays for Simple Detection and Identification of Sabin Virus Contaminants in the Novel Oral Poliovirus Vaccines
by Olga Singh, Hasmik Manukyan, Erman Tritama, Shwu-Maan Lee, Jerry P. Weir and Majid Laassri
Vaccines 2025, 13(1), 75; https://doi.org/10.3390/vaccines13010075 - 15 Jan 2025
Viewed by 1280
Abstract
Background/Objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) [...] Read more.
Background/Objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) among vaccinees and their contacts. A novel OPV2 vaccine (nOPV2) with enhanced genetic stability was developed recently; type 1 and type 3 nOPV strains were engineered using the nOPV2 genome as a backbone by replacing the capsid precursor polyprotein (P1) with that of Sabin strains type 1 and type 3, respectively. The nOPV vaccines have a high degree of sequence homology with the parental Sabin 2 genome, and some manufacturing facilities produce and store both Sabin OPV and nOPV. Therefore, detecting Sabin virus contaminations in nOPV lots is crucial. Methods: This study describes the development of pan quantitative reverse transcription polymerase chain reaction (panRT-PCR) and multiplex one-step RT-PCR (mosRT-PCR) assays for the straightforward detection and identification of contaminating Sabin viruses when present in significantly higher amounts of nOPV strains. Results: The two assays exhibit high specificity, reproducibility, and sensitivity to detect 0.0001% and 0.00001% of Sabin viruses in nOPV, respectively. Additionally, an analysis of 12 trivalent nOPV formulation lots using both methods confirmed that the nOPV lots were free from Sabin virus contamination. Conclusions: The results demonstrated that the RT-PCR assays are sensitive and specific. These assays are relevant for quality control and lot release of nOPV vaccines. Full article
(This article belongs to the Special Issue Recent Scientific Development of Poliovirus Vaccines)
Show Figures

Figure 1

16 pages, 7548 KiB  
Article
Flexible Phase Change Materials with High Energy Storage Density Based on Porous Carbon Fibers
by Xiangqin Peng, Lei Chen, Bohong Li, Zhe Tang, Yifan Jia, Zhenyu Jason Zhang, Qianqian Yu and LinGe Wang
Polymers 2024, 16(24), 3547; https://doi.org/10.3390/polym16243547 - 19 Dec 2024
Viewed by 1033
Abstract
Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of [...] Read more.
Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications. The flexible HCF/LA PCFs with high energy density were made by impregnating a small molecule LA solution, whereas the precursor of the PAN/ZIF-67 composite fibers was created by electrospinning. These PCFs have a high loading capacity for lauric acid (LA), demonstrating a 92% load percentage and a 153 J g−1 phase change enthalpy value. The effects of doping quantity (ZIF-67), fiber orientation, pre-oxidation treatment, and particle size on the morphological and structural characteristics of HCFs, as well as the impact of HCFs’ pore structure on PCM encapsulation, were investigated. It was found that the oriented fiber structure serves to reduce the likelihood of fracture and breakage of precursor fibers after carbonization, whilst the gradient pre-oxidation can maintain the original fiber morphology of the fibers after carbonization. These findings establish a solid theoretical foundation for the design and production of high-performance flexible porous carbon nanofiber wiping phase change composites. Full article
(This article belongs to the Special Issue Electrospinning of Polymer Systems)
Show Figures

Graphical abstract

23 pages, 2332 KiB  
Article
Concept for Predictive Quality in Carbon Fibre Manufacturing
by Sebastian Gellrich, Thomas Groetsch, Maxime Maghe, Claudia Creighton, Russell Varley, Anna-Sophia Wilde and Christoph Herrmann
J. Manuf. Mater. Process. 2024, 8(6), 272; https://doi.org/10.3390/jmmp8060272 - 28 Nov 2024
Cited by 1 | Viewed by 1054
Abstract
Remarkable mechanical properties make carbon fibres attractive for many industrial applications. However, up to today, carbon fibres come with a significant environmental backpack, undermining their advantages in light of a strong demand for absolute sustainability of new industrial products. Consequently, there is considerable [...] Read more.
Remarkable mechanical properties make carbon fibres attractive for many industrial applications. However, up to today, carbon fibres come with a significant environmental backpack, undermining their advantages in light of a strong demand for absolute sustainability of new industrial products. Consequently, there is considerable demand for high-quality carbon fibre manufacturing, low waste production, or alternative precursor systems allowing minimization of environmental impacts. Therefore, this paper investigates the capabilities of data analytics with a special emphasis on predictive quality in order to advance the quality management of carbon fibre manufacturing. Although existing research supports the applicability of machine learning in carbon fibre production, there is a notable scarcity of case studies and a lack of a structured repetitive data analytics concept. To address this gap, the study proposes a holistic framework for predictive quality in carbon fibre manufacturing that outlines specific data analytics requirements based on the process properties of carbon fibre production. Additionally, it introduces a systematic method for processing trend data. Finally, a case study of polyacrylonitrile (PAN)-based carbon fibre manufacturing exemplifies the concept, giving indications on feature importance and sensitivity related to the expected fibre properties. Future research can build on the comprehensive overview of predictive quality potentials and its implementation concept by extending the underlying data set and investigating the transfer to alternative precursors. Full article
Show Figures

Figure 1

22 pages, 5377 KiB  
Article
Effect of Volume Fraction of Carbon Nanotubes on Structure Formation in Polyacrylonitrile Nascent Fibers: Mesoscale Simulations
by Pavel Komarov, Maxim Malyshev, Pavel Baburkin and Daria Guseva
ChemEngineering 2024, 8(5), 97; https://doi.org/10.3390/chemengineering8050097 - 26 Sep 2024
Cited by 1 | Viewed by 1727
Abstract
We present a mesoscale model and the simulation results of a system composed of polyacrylonitrile (PAN), carbon nanotubes (CNTs), and a mixed solvent of dimethylsulfoxide (DMSO) and water. The model describes a fragment of a nascent PAN/CNT composite fiber during coagulation. This process [...] Read more.
We present a mesoscale model and the simulation results of a system composed of polyacrylonitrile (PAN), carbon nanotubes (CNTs), and a mixed solvent of dimethylsulfoxide (DMSO) and water. The model describes a fragment of a nascent PAN/CNT composite fiber during coagulation. This process represents one of the stages in the production of PAN composite fibers, which are considered as precursors for carbon fibers with improved properties. All calculations are based on dynamic density functional theory. The results obtained show that the greatest structural heterogeneity of the system is observed when water dominates in the composition of the mixed solvent, which is identified with the conditions of a non-solvent coagulation bath. The model also predicts that the introduction of CNTs can lead to an increase in structural heterogeneity in the polymer matrix with increasing water content in the system. In addition, it is shown that the presence of a surface modifier on the CNT surface, which increases the affinity of the filler to the polymer, can sufficiently reduce the inhomogeneity of the nascent fiber structure. Full article
(This article belongs to the Special Issue Engineering of Carbon-Based Nano/Micromaterials)
Show Figures

Figure 1

13 pages, 5751 KiB  
Brief Report
Schistosoma japonicum sja-let-7 Inhibits the Growth of Hepatocellular Carcinoma Cells via Cross-Species Regulation of Col1α2
by Haoran Zhong, Bowen Dong, Danlin Zhu, Zhiqiang Fu, Jinming Liu, Guiquan Guan and Yamei Jin
Genes 2024, 15(9), 1165; https://doi.org/10.3390/genes15091165 - 4 Sep 2024
Cited by 1 | Viewed by 1725
Abstract
Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from [...] Read more.
Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from our laboratory have demonstrated that Schistosoma japonicum extracellular vesicles (EVs) deliver sja-let-7 to hepatic stellate cells, leading to the inhibition of Col1α2 expression and alleviation of liver fibrosis. Given the well-documented antifibrotic and antiproliferative properties of the let-7 miRNA family, this study aims to preliminarily investigate the effects of the sja-let-7/Col1α2 axis on BALB/c mice and HCC cell line SNU387, providing a basis for the potential application of parasite-derived molecules in HCC therapy. In the present study, schistosome-induced fibrosis datasets were analyzed to identify the role of Col1α2 in extracellular matrix organization. Pan-cancer analysis revealed that Col1α2 is upregulated in various cancers, including HCC, with significant associations with immune cell infiltration and clinical parameters, highlighting its diagnostic importance. Functional assays demonstrated that transfection with sja-let-7 mimics significantly reduced Col1α2 expression, inhibited HCC cell proliferation, migration, and colony formation. These findings suggest that sja-let-7, by targeting Col1α2, has the potential to serve as a therapeutic agent in HCC treatment. This study indicates the pivotal role of Col1α2 in liver fibrosis and HCC, and the promising therapeutic application of helminth-derived miRNAs. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 22624 KiB  
Article
Cellular N-Myristoyl Transferases Are Required for Mammarenavirus Multiplication
by Haydar Witwit, Carlos Alberto Betancourt, Beatrice Cubitt, Roaa Khafaji, Heinrich Kowalski, Nathaniel Jackson, Chengjin Ye, Luis Martinez-Sobrido and Juan C. de la Torre
Viruses 2024, 16(9), 1362; https://doi.org/10.3390/v16091362 - 26 Aug 2024
Cited by 3 | Viewed by 2227
Abstract
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the [...] Read more.
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan-NMT inhibitor DDD85646 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlates with reduced Z budding activity and GP2-mediated fusion activity as well as with proteasome-mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic-fever-causing Junin (JUNV) and Lassa (LASV) mammarenaviruses. Our results support the exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

19 pages, 6426 KiB  
Article
Genomic Deletion of PFKFB3 Decreases In Vivo Tumorigenesis
by Yoannis Imbert-Fernandez, Simone M. Chang, Lilibeth Lanceta, Nicole M. Sanders, Jason Chesney, Brian F. Clem and Sucheta Telang
Cancers 2024, 16(13), 2330; https://doi.org/10.3390/cancers16132330 - 26 Jun 2024
Cited by 2 | Viewed by 5599
Abstract
Rapidly proliferative processes in mammalian tissues including tumorigenesis and embryogenesis rely on the glycolytic pathway for energy and biosynthetic precursors. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) plays an important regulatory role in glycolysis by activating the key rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase (PFK-1). We have previously [...] Read more.
Rapidly proliferative processes in mammalian tissues including tumorigenesis and embryogenesis rely on the glycolytic pathway for energy and biosynthetic precursors. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) plays an important regulatory role in glycolysis by activating the key rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase (PFK-1). We have previously determined that decreased PFKFB3 expression reduced glycolysis and growth in transformed cells in vitro and suppressed xenograft growth in vivo. In earlier studies, we created a constitutive knockout mouse to interrogate the function of PFKFB3 in vivo but failed to generate homozygous offspring due to the requirement for PFKFB3 for embryogenesis. We have now developed a novel transgenic mouse model that exhibits inducible homozygous pan-tissue Pfkfb3 gene deletion (Pfkfb3fl/fl). We have induced Pfkfb3 genomic deletion in these mice and found that it effectively decreased PFKFB3 expression and activity. To evaluate the functional consequences of Pfkfb3 deletion in vivo, we crossed Cre-bearing Pfkfb3fl/fl mice with oncogene-driven tumor models and found that Pfkfb3 deletion markedly decreased their glucose uptake and growth. In summary, our studies reveal a critical regulatory function for PFKFB3 in glycolysis and tumorigenesis in vivo and characterize an effective and powerful model for further investigation of its role in multiple biological processes. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

13 pages, 4539 KiB  
Article
Preparation and Electrochemical Performance of Activated Composite Carbon Nanofibers Using Extraction Residue from Direct Coal Liquefaction Residue
by Jingyi Liu, Jing Wu, Tongxin Qiao, Peng Li and Daoguang Teng
Sustainability 2024, 16(6), 2331; https://doi.org/10.3390/su16062331 - 12 Mar 2024
Cited by 1 | Viewed by 1257
Abstract
Organic carbon extracted from direct coal liquefaction residue (DLCR) is an ideal precursor for the preparation of carbon materials. However, investigations into the utilization of the extraction residue (ER) are rarely reported. In this work, ER from DCLR was pretreated with H2 [...] Read more.
Organic carbon extracted from direct coal liquefaction residue (DLCR) is an ideal precursor for the preparation of carbon materials. However, investigations into the utilization of the extraction residue (ER) are rarely reported. In this work, ER from DCLR was pretreated with H2O2 to afford oxidized extraction residue (OER). Then, the OER was mixed with polyacrylonitrile (PAN) in N,N-dimethylformamide for the preparation of composite carbon nanofibers by electrospinning. With adding 80 wt.% OER, the composite carbon nanofibers still demonstrate a clear fiber profile and smooth surface under a scanning electron microscope, indicating that the OER has good solubility with PAN in N,N-dimethylformamide. The electrochemical performance characterization of the activated composite carbon nanofiber shows that the P-OER60-AC (activated composite carbon nanofibers prepared with 60 wt.% of OER and 40 wt.% of PAN) has a better electrochemical performance with a specific capacitance of 97 F/g at 0.5 A/g, as compared to the others. Additionally, the P-OER80-AC (activated composite carbon nanofibers prepared with 80 wt.% of OER and 20 wt.% of PAN) is also considerable for the perspective of coal-based solid waste treatment and utilization. Full article
(This article belongs to the Special Issue Separation and Utilization of Coal-Based Solid Waste)
Show Figures

Figure 1

17 pages, 3055 KiB  
Article
A Comparison of Spatial and Phenotypic Immune Profiles of Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions
by Thomas Enzler, Jiaqi Shi, Jake McGue, Brian D. Griffith, Lei Sun, Vaibhav Sahai, Hari Nathan and Timothy L. Frankel
Int. J. Mol. Sci. 2024, 25(5), 2953; https://doi.org/10.3390/ijms25052953 - 3 Mar 2024
Cited by 2 | Viewed by 2329
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of 12.5%. PDAC predominantly arises from non-cystic pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mucinous neoplasm (IPMN). We used multiplex immunofluorescence and computational imaging technology to characterize, map, and [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of 12.5%. PDAC predominantly arises from non-cystic pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mucinous neoplasm (IPMN). We used multiplex immunofluorescence and computational imaging technology to characterize, map, and compare the immune microenvironments (IMEs) of PDAC and its precursor lesions. We demonstrate that the IME of IPMN was abundantly infiltrated with CD8+ T cells and PD-L1-positive antigen-presenting cells (APCs), whereas the IME of PanIN contained fewer CD8+ T cells and fewer PD-L1-positive APCs but elevated numbers of immunosuppressive regulatory T cells (Tregs). Thus, immunosuppression in IPMN and PanIN seems to be mediated by different mechanisms. While immunosuppression in IPMN is facilitated by PD-L1 expression on APCs, Tregs seem to play a key role in PanIN. Our findings suggest potential immunotherapeutic interventions for high-risk precursor lesions, namely, targeting PD-1/PD-L1 in IPMN and CTLA-4-positive Tregs in PanIN to restore immunosurveillance and prevent progression to cancer. Tregs accumulate with malignant transformation, as observed in PDAC, and to a lesser extent in IPMN-associated PDAC (IAPA). High numbers of Tregs in the microenvironment of PDAC went along with a markedly decreased interaction between CD8+ T cells and cancerous epithelial cells (ECs), highlighting the importance of Tregs as key players in immunosuppression in PDAC. We found evidence that a defect in antigen presentation, further aggravated by PD-L1 expression on APC, may contribute to immunosuppression in IAPA, suggesting a role for PD-L1/PD-1 immune checkpoint inhibitors in the treatment of IAPA. Full article
Show Figures

Figure 1

21 pages, 3982 KiB  
Article
S/N/O-Enriched Carbons from Polyacrylonitrile-Based Block Copolymers for Selective Separation of Gas Streams
by Diego Gómez-Díaz, Lidia Domínguez-Ramos, Giulio Malucelli, María Sonia Freire, Julia González-Álvarez and Massimo Lazzari
Polymers 2024, 16(2), 269; https://doi.org/10.3390/polym16020269 - 18 Jan 2024
Viewed by 2277
Abstract
A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation [...] Read more.
A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation and sulfuration, respectively, were characterized by Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectrometry, and their surface textural properties were measured by a volumetric analyzer. We observed that the presence of sulfur tends to modify the structure of the carbons, from microporous to mesoporous, while the use of copolymers with a range of molar composition PAN/PMMA between 10/90 and 47/53 allows the obtainment of carbons with different degrees of porosity. The amount of sacrificial block only affects the morphology of carbons stabilized in oxygen, inducing their nanostructuration, but has no effect on their chemical composition. We also demonstrated their suitability for separating a typical N2/CO2 post-combustion stream. Full article
Show Figures

Figure 1

Back to TopTop