Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = Organic Anion Transporting Polypeptides (OATPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3669 KiB  
Article
Effect of Hepatic Impairment on the Pharmacokinetics of Baicalin in Rats: Critical Roles of Gut Microbiota and Hepatic Transporters
by Ping Li, Yihua Tian, Hong Wang, Yuting Ji, Huiying Zeng, Shengman Zhang, Xiuli Gao and Xiaoyan Chen
Pharmaceutics 2025, 17(7), 851; https://doi.org/10.3390/pharmaceutics17070851 - 29 Jun 2025
Viewed by 421
Abstract
Background: Baicalin (BG) has been used in the treatment of many diseases. However, the effect of hepatic insufficiency on its pharmacokinetics has not been reported, and there is a lack of clinical guidance for the use of BG in patients with hepatic [...] Read more.
Background: Baicalin (BG) has been used in the treatment of many diseases. However, the effect of hepatic insufficiency on its pharmacokinetics has not been reported, and there is a lack of clinical guidance for the use of BG in patients with hepatic impairment. Methods: Carbon tetrachloride (CCl4)-induced rat models were used to simulate hepatic failure patients to assess the effect of hepatic impairment on the pharmacokinetics and distribution of BG. In vitro metabolism and transporter studies were employed to elucidate the potential mechanisms. Results: After intragastric administration of 10 mg/kg of BG, the peak plasma concentration and exposure (AUC0–t) of BG decreased by 64.6% and 52.6%, respectively, in CCl4-induced rats. After intravenous administration, the AUC0–t decreased by 73.6%, and unlike in the control group, the second absorption peak of BG was not obvious in the concentration–time curve of CCl4-induced rats. The cumulative excretion of BG in the feces increased, but that in the bile decreased. In vivo data indicated that the absorption and enterohepatic circulation of BG were affected. In vitro studies found that the hydrolysis of BG to the aglycone baicalein decreased significantly in the intestinal tissues and contents of the CCl4-induced rats. And BG was identified as a substrate for multiple efflux and uptake transporters, such as breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), organic anion transporting polypeptides (OATP1B1, 1B3, 2B1), and organic anion transporters (OATs). The bile acids accumulated by liver injury inhibited the uptake of BG by OATPs, especially that by OATP2B1. Conclusions: Hepatic impairment reduced BG hydrolysis by intestinal microflora and inhibited its transporter-mediated biliary excretion, which synergistically led to the attenuation of the enterohepatic circulation of BG, which altered its pharmacokinetics. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

12 pages, 3613 KiB  
Article
The Effect of Radixin on the Function and Expression of Organic Anion Transporting Polypeptide 1B1
by Chunxu Ni, Longxia Tang, Xuyang Wang, Zichong Li and Mei Hong
Biology 2025, 14(7), 744; https://doi.org/10.3390/biology14070744 - 23 Jun 2025
Viewed by 295
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1) is selectively expressed at the basolateral membrane of human hepatocytes and plays a crucial role in the absorption of various xenobiotic compounds, including many important clinical drugs. Oligomerization with regulatory proteins is a common mechanism for regulating [...] Read more.
Organic anion transporting polypeptide 1B1 (OATP1B1) is selectively expressed at the basolateral membrane of human hepatocytes and plays a crucial role in the absorption of various xenobiotic compounds, including many important clinical drugs. Oligomerization with regulatory proteins is a common mechanism for regulating membrane protein functions. In the present study, we found that knocking down the scaffold protein radixin, which is the major member of the ERM family expressed in the liver, significantly enhanced the uptake function of OATP1B1. On the other hand, the overexpression of the phospho-mimic form of radixin (radixin-D) reduced the uptake function and cell surface level of OATP1B1, while the wild-type and phospho-dormant form of radixin (radixin-A) did not exhibit the same effect. Further investigation revealed that radixin interacts with OATP1B1. Activation of protein kinase C (PKC), which our previous study showed accelerates the internalization of OATP1B1, was found to increase the phosphorylation level of radixin associated with OATP1B1. The knockdown of radixin significantly diminished the suppressive effect of PKC on the function and cell surface levels of OATP1B1. These results suggested that OATP1B1 forms complexes with radixin, which may be phosphorylated by PKC, leading to reduced cell surface expression and activity of the transporter. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

21 pages, 4810 KiB  
Review
Flavonoids and Furanocoumarins Involved in Drug Interactions
by Sabine Berteina-Raboin
Molecules 2025, 30(8), 1676; https://doi.org/10.3390/molecules30081676 - 9 Apr 2025
Cited by 1 | Viewed by 2089
Abstract
Drug interactions can have significant consequences for public health, especially given the growing importance of readily available dietary supplements. The same applies to the consumption of fruit and fruit juices, which are often praised for their health benefits, but which can generate drug [...] Read more.
Drug interactions can have significant consequences for public health, especially given the growing importance of readily available dietary supplements. The same applies to the consumption of fruit and fruit juices, which are often praised for their health benefits, but which can generate drug interactions. These are well known and documented in the case of grapefruit, which should not be taken with certain medications. Grapefruit contains flavonoids and furanocoumarins, which are responsible for various interactions with the cytochrome P450 enzyme system. However, for young children and the elderly, fruit juices are often used to facilitate treatment. This review examines commonly used fruit juices, particularly from citrus, apple, and red fruits, and discusses potential interactions, disadvantages, and advantages, as well as the chemical structures involved in interactions with cytochromes P-450, P-glycoprotein, and organic anion transporter polypeptide (OATP), responsible for sometimes dangerous changes in bioavailability or potential accumulation of drugs in the body. Full article
Show Figures

Figure 1

16 pages, 7285 KiB  
Article
S-Nitrosoglutathione Is Not a Substrate of OATP1B1, but Stimulates Its Expression and Activity
by Yulia V. Abalenikhina, Aleksey V. Shchulkin, Olga N. Suchkova, Pelageya D. Ananyeva, Pavel Yu. Mylnikov, Elena N. Yakusheva, Igor A. Suchkov and Roman E. Kalinin
Biomolecules 2025, 15(3), 428; https://doi.org/10.3390/biom15030428 - 17 Mar 2025
Cited by 1 | Viewed by 593
Abstract
S-nitrosoglutathione (GSNO) is the S-nitrosated derivative of glutathione (GSH). GSNO is an endogenous class of NO donors and a natural NO depot in biological systems. Organic anion transporting polypeptide 1B1 (OATP1B1) is an influx transporter that is expressed in the liver. OATP1B1 plays [...] Read more.
S-nitrosoglutathione (GSNO) is the S-nitrosated derivative of glutathione (GSH). GSNO is an endogenous class of NO donors and a natural NO depot in biological systems. Organic anion transporting polypeptide 1B1 (OATP1B1) is an influx transporter that is expressed in the liver. OATP1B1 plays an important role in the transport of endogenous and exogenous substances. Various pathways for the regulation of OATP1B1 have been described. In the present study, the involvement of OATP1B1 in GSNO transport and the regulation of OATP1B1 by GSNO was examined. For HEK293-OATP1B1, it has been shown that GSNO is not a substrate of OATP1B1, but OATP1B1 can participate in the transport of GSH across the cell membrane. GSNO at concentrations of 1–100 μM and exposure for 3 h do not affect the expression and activity of OATP1B1, but exposure for 24 and 72 h stimulates the expression of the SLCO1B1 gene, OATP1B1, and transporter activity. Up-regulation of OATP1B1 by GSNO is carried out through the NO-cGMP signaling pathway, Nrf2, and LXRa. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

13 pages, 1832 KiB  
Article
Evaluation of Complex Drug Interactions Between Elexacaftor-Tezacaftor-Ivacaftor and Statins Using Physiologically Based Pharmacokinetic Modeling
by Eunjin Hong, Peter S. Chung, Adupa P. Rao and Paul M. Beringer
Pharmaceutics 2025, 17(3), 318; https://doi.org/10.3390/pharmaceutics17030318 - 1 Mar 2025
Viewed by 1114
Abstract
Background/Objectives: The increasing use of statins in people with cystic fibrosis (CF) necessitates the investigation of potential drug–drug interactions (DDI) of statins with cystic fibrosis transmembrane conductance regulator (CFTR) modulators, including elexacaftor, tezacaftor, and ivacaftor (ETI). The interactions may involve the potential inhibition [...] Read more.
Background/Objectives: The increasing use of statins in people with cystic fibrosis (CF) necessitates the investigation of potential drug–drug interactions (DDI) of statins with cystic fibrosis transmembrane conductance regulator (CFTR) modulators, including elexacaftor, tezacaftor, and ivacaftor (ETI). The interactions may involve the potential inhibition of cytochrome P450 isoenzymes (CYPs), organic anion-transporting polypeptides (OATPs), and Breast Cancer Resistance Protein (BCRP) by ETI. This presents a therapeutic challenge in CF due to the potential for elevated statin levels, consequently heightening the risk of myopathy. This study aimed to predict potential DDIs between statins and ETI using a physiologically based pharmacokinetic (PBPK) modeling approach. Methods: We performed in vitro assays to measure the inhibitory potency of ETI against OATPs and CYP2C9 and incorporated these data into our PBPK models alongside published inhibitory parameters for BCRP and CYP3A4. Results: The PBPK simulation showed that atorvastatin had the highest predicted AUC ratio (3.27), followed by pravastatin (2.27), pitavastatin (2.24), and rosuvastatin (1.83). Conclusions: Based on these findings, rosuvastatin appears to exhibit a weak interaction with ETI, whereas other statins exhibited a moderate interaction, potentially requiring appropriate dose reductions. These data indicate potential clinically significant DDIs between ETI and certain statins, which warrants a clinical study to validate these findings. Full article
Show Figures

Figure 1

17 pages, 1741 KiB  
Article
Effect of Organic Anion Transporting Polypeptide 1B1 on Plasma Concentration Dynamics of Clozapine in Patients with Treatment-Resistant Schizophrenia
by Toshihiro Sato, Takeshi Kawabata, Masaki Kumondai, Nagomi Hayashi, Hiroshi Komatsu, Yuki Kikuchi, Go Onoguchi, Yu Sato, Kei Nanatani, Masahiro Hiratsuka, Masamitsu Maekawa, Hiroaki Yamaguchi, Takaaki Abe, Hiroaki Tomita and Nariyasu Mano
Int. J. Mol. Sci. 2024, 25(23), 13228; https://doi.org/10.3390/ijms252313228 - 9 Dec 2024
Cited by 1 | Viewed by 1707
Abstract
The involvement of drug-metabolizing enzymes and transporters in plasma clozapine (CLZ) dynamics has not been well examined in Japanese patients with treatment-resistant schizophrenia (TRS). Therefore, this clinical study investigated the relationship between single nucleotide polymorphisms (SNPs) of various pharmacokinetic factors (drug-metabolizing enzymes and [...] Read more.
The involvement of drug-metabolizing enzymes and transporters in plasma clozapine (CLZ) dynamics has not been well examined in Japanese patients with treatment-resistant schizophrenia (TRS). Therefore, this clinical study investigated the relationship between single nucleotide polymorphisms (SNPs) of various pharmacokinetic factors (drug-metabolizing enzymes and transporters) and dynamic changes in CLZ. Additionally, we aimed to determine whether CLZ acts as a substrate for pharmacokinetic factors using in vitro assays and molecular docking calculations. We found that 6 out of 10 patients with TRS and with multiple organic anion transporting polypeptide (OATP) variants (OATP1B1: *1b, *15; OATP1B3: 334T>G, 699G>A; and OATP2B1: *3, 935G>A, 601G>A, 76_84del) seemed to be highly exposed to CLZ and/or N-desmethyl CLZ. A CLZ uptake study using OATP-expressing HEK293 cells showed that CLZ was a substrate of OATP1B1 with Km and Vmax values of 38.9 µM and 2752 pmol/mg protein/10 min, respectively. The results of molecular docking calculations supported the differences in CLZ uptake among OATP molecules and the weak inhibitory effect of cyclosporine A, which is a strong inhibitor of OATPs, on CLZ uptake via OATP1B1. This is the first study to show that CLZ is an OATP1B1 substrate and that the presence of SNPs in OATPs potentially alters CLZ pharmacokinetic parameters. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Graphical abstract

18 pages, 918 KiB  
Review
Bempedoic Acid, the First-in-Class Oral ATP Citrate Lyase Inhibitor with Hypocholesterolemic Activity: Clinical Pharmacology and Drug–Drug Interactions
by Nicola Ferri, Elisa Colombo and Alberto Corsini
Pharmaceutics 2024, 16(11), 1371; https://doi.org/10.3390/pharmaceutics16111371 - 26 Oct 2024
Cited by 3 | Viewed by 3326
Abstract
Bempedoic acid is a new drug that improves the control of cholesterol levels, either as monotherapy or in combination with existing lipid-lowering therapies, and shows clinical efficacy in cardiovascular disease patients. Thus, patients with comorbidities and under multiple therapies may be eligible for [...] Read more.
Bempedoic acid is a new drug that improves the control of cholesterol levels, either as monotherapy or in combination with existing lipid-lowering therapies, and shows clinical efficacy in cardiovascular disease patients. Thus, patients with comorbidities and under multiple therapies may be eligible for bempedoic acid, thus facing the potential problem of drug–drug interactions (DDIs). Bempedoic acid is a prodrug administered orally at a fixed daily dose of 180 mg. The dicarboxylic acid is enzymatically activated by conjugation with coenzyme A (CoA) to form the pharmacologically active thioester (bempedoic acid–CoA). This process is catalyzed by very-long-chain acyl-CoA synthetase 1 (ACSVL1), expressed almost exclusively at the hepatic level. Bempedoic acid–CoA is a potent and selective inhibitor of ATP citrate lyase (ACL), a key enzyme in the biosynthetic pathway of cholesterol and fatty acids. The drug reduces low-density lipoprotein–cholesterol (LDL-C) (20–25%), non-high-density lipoprotein–cholesterol (HDL-C) (19%), apolipoprotein B (apoB) (15%), and total cholesterol (16%) in patients with hypercholesterolemia or mixed dyslipidemia. The drug has a favorable pharmacokinetics profile. Bempedoic acid and its metabolites are not substrates or inhibitors/inducers of cytochrome P450 (CYP450) involved in drug metabolism. On the other hand, bempedoic acid–glucuronide is a substrate for organic anion transporter 3 (OAT3). Bempedoic acid and its glucuronide are weak inhibitors of the OAT2, OAT3, and organic anion-transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3). Thus, bempedoic acid could inhibit (perpetrator) the hepatic uptake of OATP1B1/3 substrate drugs and the renal elimination of OAT2 and OAT3 substrates and could suffer (victim) the effect of OAT3 transporter inhibitors, reducing its renal elimination. Based on these pharmacological characteristics, here, we describe the potential DDIs of bempedoic acid with concomitant medications and the possible clinical implications. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

15 pages, 2550 KiB  
Communication
Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D
by Enoch Luis, Vanessa Conde-Maldonado, Edelmira García-Nieto, Libertad Juárez-Santacruz, Mayvi Alvarado and Arely Anaya-Hernández
J. Xenobiot. 2024, 14(4), 1450-1464; https://doi.org/10.3390/jox14040081 - 9 Oct 2024
Viewed by 1563
Abstract
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and [...] Read more.
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and steroidogenesis. The thyroid axis and Ca2+-permeable ion channels play a key role in these processes, and their disruption can lead to reproductive issues and even infertility. This study evaluated the short-term effects of exposure to commercial herbicides based on paraquat and 2,4-D on gene expression in rat testes. At the molecular level, exposure to paraquat increased the expression of the thyroid hormone transporters monocarboxylate transporter 8 (Mct8) and organic anion-transporting polypeptide 1C1 (Oatp1c1) and the thyroid receptor alpha (TRα), suggesting a possible endocrine disruption. However, it did not alter the expression of the sperm-associated cation channels (CatSper1-2) or vanilloid receptor-related osmotically activated channel (Trpv4) related to sperm motility. In contrast, exposure to 2,4-D reduced the expression of the Mct10 transporter, Dio2 deiodinase, and CatSper1, which could affect both the availability of T3 in testicular cells and sperm quality, consistent with previous studies. However, 2,4-D did not affect the expression of CatSper2 or Trpv4. Deregulation of gene expression could explain the alterations in male reproductive processes reported by exposure to paraquat and 2,4-D. These thyroid hormone-related genes can serve as molecular biomarkers to assess endocrine disruption due to exposure to these herbicides, aiding in evaluating the health risks of pesticides. Full article
Show Figures

Figure 1

14 pages, 1327 KiB  
Article
Direct Molecular Action of Taurine on Hepatic Gene Expression Associated with the Amelioration of Hypercholesterolemia in Rats
by Qi Song, Satoru Kobayashi, Yutaro Kataoka and Hiroaki Oda
Antioxidants 2024, 13(8), 990; https://doi.org/10.3390/antiox13080990 - 14 Aug 2024
Viewed by 1944
Abstract
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% [...] Read more.
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% taurine for 14 days. Three-dimensional primary hepatocytes from rats were exposed to 10 mM taurine for 24 h. Transcriptome analyses of both the liver and hepatocytes were performed using DNA microarray. Taurine significantly decreased serum cholesterol levels and increased hepatic CYP7A1 mRNA levels and transcription rates in rats. Taurine altered the expression of seventy-seven genes in the liver, involving lipid, drug, amino acid metabolism, and gluconeogenesis pathways. The small heterodimer partner (SHP), a transcription factor regulated by taurine, was suppressed. “Network analysis” revealed a negative correlation between the SHP and induction of CYP7A1 and cytochrome P450 8B1 (CYP8B1). However, CYP7A1 and CYP8B1 levels were not altered by taurine in 3D-primary hepatocytes. Venn diagram analyses of the transcriptomes in both hepatocytes and the liver indicated a consistent upregulation of organic anion transporting polypeptide 2 (OATP2) and betaine homocysteine methyltransferase (BHMT). Taurine ameliorated hypercholesterolemia in rats fed a high cholesterol diet by directly enhancing the hepatic expression of BHMT and OATP2, which modulated the SHP and induced CYP7A1 and CYP8B1, thereby promoting cholesterol catabolism and lowering blood cholesterol levels. Full article
(This article belongs to the Special Issue Cellular Sulfur Metabolism and Signaling in Physiology and Pathology)
Show Figures

Figure 1

12 pages, 243 KiB  
Review
Innovative Approaches to Optimize Clinical Transporter Drug–Drug Interaction Studies
by Sabina Paglialunga, Natacha Benrimoh and Aernout van Haarst
Pharmaceutics 2024, 16(8), 992; https://doi.org/10.3390/pharmaceutics16080992 - 26 Jul 2024
Cited by 3 | Viewed by 1909
Abstract
Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug–drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter [...] Read more.
Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug–drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
30 pages, 5739 KiB  
Article
In Vitro Metabolism and Transport Characteristics of Zastaprazan
by Min Seo Lee, Jihoon Lee, Minyoung Pang, John Kim, Hyunju Cha, Banyoon Cheon, Min-Koo Choi, Im-Sook Song and Hye Suk Lee
Pharmaceutics 2024, 16(6), 799; https://doi.org/10.3390/pharmaceutics16060799 - 13 Jun 2024
Cited by 6 | Viewed by 2706
Abstract
Zastaprazan (JP-1366), a novel potassium-competitive acid blocker, is a new drug for the treatment of erosive esophagitis. JP-1366 is highly metabolized in human, mouse, and dog hepatocytes but moderately metabolized in rat and monkey hepatocytes when estimated from the metabolic stability of this [...] Read more.
Zastaprazan (JP-1366), a novel potassium-competitive acid blocker, is a new drug for the treatment of erosive esophagitis. JP-1366 is highly metabolized in human, mouse, and dog hepatocytes but moderately metabolized in rat and monkey hepatocytes when estimated from the metabolic stability of this compound in hepatocyte suspension and when 18 phase I metabolites and 5 phase II metabolites [i.e., N-dearylation (M6), hydroxylation (M1, M19, M21), dihydroxylation (M7, M8, M14, M22), trihydroxylation (M13, M18), hydroxylation and reduction (M20), dihydroxylation and reduction (M9, M16), hydrolysis (M23), hydroxylation and glucuronidation (M11, M15), hydroxylation and sulfation (M17), dihydroxylation and sulfation (M10, M12), N-dearylation and hydroxylation (M3, M4), N-dearylation and dihydroxylation (M5), and N-dearylation and trihydroxylation (M2)] were identified from JP-1366 incubation with the hepatocytes from humans, mice, rats, dogs, and monkeys. Based on the cytochrome P450 (CYP) screening test and immune-inhibition analysis with CYP antibodies, CYP3A4 and CYP3A5 played major roles in the metabolism of JP-1366 to M1, M3, M4, M6, M8, M9, M13, M14, M16, M18, M19, M21, and M22. CYP1A2, 2C8, 2C9, 2C19, and 2D6 played minor roles in the metabolism of JP-1366. UDP-glucuronosyltransferase (UGT) 2B7 and UGT2B17 were responsible for the glucuronidation of M1 to M15. However, JP-1366 and active metabolite M1 were not substrates for drug transporters such as organic cation transporter (OCT) 1/2, organic anion transporter (OAT) 1/3, organic anion transporting polypeptide (OATP)1B1/1B3, multidrug and toxic compound extrusion (MATE)1/2K, P-glycoprotein (P-gp), and breast cancer-resistant protein (BCRP). Only M1 showed substrate specificity for P-gp. The findings indicated that drug-metabolizing enzymes, particularly CYP3A4/3A5, may have a significant role in determining the pharmacokinetics of zastaprazan while drug transporters may only have a small impact on the absorption, distribution, and excretion of this compound. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

12 pages, 2232 KiB  
Article
Distinguishing Molecular Properties of OAT, OATP, and MRP Drug Substrates by Machine Learning
by Anisha K. Nigam, Jeremiah D. Momper, Anupam Anand Ojha and Sanjay K. Nigam
Pharmaceutics 2024, 16(5), 592; https://doi.org/10.3390/pharmaceutics16050592 - 26 Apr 2024
Cited by 7 | Viewed by 2650
Abstract
The movement of organic anionic drugs across cell membranes is partly governed by interactions with SLC and ABC transporters in the intestine, liver, kidney, blood–brain barrier, placenta, breast, and other tissues. Major transporters involved include organic anion transporters (OATs, SLC22 family), organic anion [...] Read more.
The movement of organic anionic drugs across cell membranes is partly governed by interactions with SLC and ABC transporters in the intestine, liver, kidney, blood–brain barrier, placenta, breast, and other tissues. Major transporters involved include organic anion transporters (OATs, SLC22 family), organic anion transporting polypeptides (OATPs, SLCO family), and multidrug resistance proteins (MRPs, ABCC family). However, the sets of molecular properties of drugs that are necessary for interactions with OATs (OAT1, OAT3) vs. OATPs (OATP1B1, OATP1B3) vs. MRPs (MRP2, MRP4) are not well-understood. Defining these molecular properties is necessary for a better understanding of drug and metabolite handling across the gut–liver–kidney axis, gut–brain axis, and other multi-organ axes. It is also useful for tissue targeting of small molecule drugs and predicting drug–drug interactions and drug–metabolite interactions. Here, we curated a database of drugs shown to interact with these transporters in vitro and used chemoinformatic approaches to describe their molecular properties. We then sought to define sets of molecular properties that distinguish drugs interacting with OATs, OATPs, and MRPs in binary classifications using machine learning and artificial intelligence approaches. We identified sets of key molecular properties (e.g., rotatable bond count, lipophilicity, number of ringed structures) for classifying OATs vs. MRPs and OATs vs. OATPs. However, sets of molecular properties differentiating OATP vs. MRP substrates were less evident, as drugs interacting with MRP2 and MRP4 do not form a tight group owing to differing hydrophobicity and molecular complexity for interactions with the two transporters. If the results also hold for endogenous metabolites, they may deepen our knowledge of organ crosstalk, as described in the Remote Sensing and Signaling Theory. The results also provide a molecular basis for understanding how small organic molecules differentially interact with OATs, OATPs, and MRPs. Full article
Show Figures

Figure 1

14 pages, 2367 KiB  
Article
SLCO1B1 Exome Sequencing and Statin Treatment Response in 64,000 UK Biobank Patients
by Deniz Türkmen, Jack Bowden, Jane A. H. Masoli, David Melzer and Luke C. Pilling
Int. J. Mol. Sci. 2024, 25(8), 4426; https://doi.org/10.3390/ijms25084426 - 17 Apr 2024
Cited by 2 | Viewed by 3118
Abstract
The solute carrier organic anion transporter family member 1B1 (SLCO1B1) encodes the organic anion-transporting polypeptide 1B1 (OATP1B1 protein) that transports statins to liver cells. Common genetic variants in SLCO1B1, such as *5, cause altered systemic exposure to statins and therefore [...] Read more.
The solute carrier organic anion transporter family member 1B1 (SLCO1B1) encodes the organic anion-transporting polypeptide 1B1 (OATP1B1 protein) that transports statins to liver cells. Common genetic variants in SLCO1B1, such as *5, cause altered systemic exposure to statins and therefore affect statin outcomes, with potential pharmacogenetic applications; yet, evidence is inconclusive. We studied common and rare SLCO1B1 variants in up to 64,000 patients from UK Biobank prescribed simvastatin or atorvastatin, combining whole-exome sequencing data with up to 25-year routine clinical records. We studied 51 predicted gain/loss-of-function variants affecting OATP1B1. Both SLCO1B1*5 alone and the SLCO1B1*15 haplotype increased LDL during treatment (beta*5 = 0.08 mmol/L, p = 6 × 10−8; beta*15 = 0.03 mmol/L, p = 3 × 10−4), as did the likelihood of discontinuing statin prescriptions (hazard ratio*5 = 1.12, p = 0.04; HR*15 = 1.05, p = 0.04). SLCO1B1*15 and SLCO1B1*20 increased the risk of General Practice (GP)-diagnosed muscle symptoms (HR*15 = 1.22, p = 0.003; HR*20 = 1.25, p = 0.01). We estimated that genotype-guided prescribing could potentially prevent 18% and 10% of GP-diagnosed muscle symptoms experienced by statin patients, with *15 and *20, respectively. The remaining common variants were not individually significant. Rare variants in SLCO1B1 increased LDL in statin users by up to 1.05 mmol/L, but replication is needed. We conclude that genotype-guided treatment could reduce GP-diagnosed muscle symptoms in statin patients; incorporating further SLCO1B1 variants into clinical prediction scores could improve LDL control and decrease adverse events, including discontinuation. Full article
(This article belongs to the Special Issue Pharmacogenomics, 3rd Edition)
Show Figures

Figure 1

13 pages, 1177 KiB  
Article
Dysregulation of the mRNA Expression of Human Renal Drug Transporters by Proinflammatory Cytokines in Primary Human Proximal Tubular Epithelial Cells
by Yik Pui Tsang, Tianran Hao, Qingcheng Mao, Edward J. Kelly and Jashvant D. Unadkat
Pharmaceutics 2024, 16(2), 285; https://doi.org/10.3390/pharmaceutics16020285 - 16 Feb 2024
Cited by 8 | Viewed by 2598
Abstract
Proinflammatory cytokines, which are elevated during inflammation or infections, can affect drug pharmacokinetics (PK) due to the altered expression or activity of drug transporters and/or metabolizing enzymes. To date, such studies have focused on the effect of cytokines on the activity and/or mRNA [...] Read more.
Proinflammatory cytokines, which are elevated during inflammation or infections, can affect drug pharmacokinetics (PK) due to the altered expression or activity of drug transporters and/or metabolizing enzymes. To date, such studies have focused on the effect of cytokines on the activity and/or mRNA expression of hepatic transporters and drug-metabolizing enzymes. However, many antibiotics and antivirals used to treat infections are cleared by renal transporters, including the basal organic cation transporter 2 (OCT2), organic anion transporters 1 and 3 (OAT1 and 3), the apical multidrug and toxin extrusion proteins 1 and 2-K (MATE1/2-K), and multidrug resistance-associated protein 2 and 4 (MRP2/4). Here, we determined the concentration-dependent effect of interleukin-6 (IL-6), IL-1β, tumor necrosis factor (TNF)-α, and interferon-γ (IFN-γ) on the mRNA expression of human renal transporters in freshly isolated primary human renal proximal tubular epithelial cells (PTECs, n = 3–5). PTECs were exposed to either a cocktail of cytokines, each at 0.01, 0.1, 1, or 10 ng/mL or individually at the same concentrations. Exposure to the cytokine cocktail for 48 h was found to significantly downregulate the mRNA expression, in a concentration-dependent manner, of OCT2, the organic anion transporting polypeptides 4C1 (OATP4C1), OAT4, MATE2-K, P-glycoprotein (P-gp), and MRP2 and upregulate the mRNA expression of the organic cation/carnitine transporter 1 (OCTN1) and MRP3. OAT1 and OAT3 also appeared to be significantly downregulated but only at 0.1 and 10 ng/mL, respectively, without a clear concentration-dependent trend. Among the cytokines, IL-1β appeared to be the most potent at down- and upregulating the mRNA expression of the transporters. Taken together, our results demonstrate for the first time that proinflammatory cytokines transcriptionally dysregulate renal drug transporters in PTECs. Such dysregulation could potentially translate into changes in transporter protein abundance or activity and alter renal transporter-mediated drug PK during inflammation or infections. Full article
(This article belongs to the Special Issue Drug Transporters: Regulation and Roles in Therapeutic Strategies)
Show Figures

Figure 1

13 pages, 1938 KiB  
Article
Unraveling Hematotoxicity of α-Amanitin in Cultured Hematopoietic Cells
by Willemien F. J. Hof, Miranda Visser, Joyce J. de Jong, Marian N. Rajasekar, Jan Jacob Schuringa, Inge A. M. de Graaf, Daan J. Touw and Bart G. J. Dekkers
Toxins 2024, 16(1), 61; https://doi.org/10.3390/toxins16010061 - 22 Jan 2024
Cited by 3 | Viewed by 2969
Abstract
Amanita phalloides poisonings account for the majority of fatal mushroom poisonings. Recently, we identified hematotoxicity as a relevant aspect of Amanita poisonings. In this study, we investigated the effects of the main toxins of Amanita phalloides, α- and β-amanitin, on hematopoietic cell [...] Read more.
Amanita phalloides poisonings account for the majority of fatal mushroom poisonings. Recently, we identified hematotoxicity as a relevant aspect of Amanita poisonings. In this study, we investigated the effects of the main toxins of Amanita phalloides, α- and β-amanitin, on hematopoietic cell viability in vitro. Hematopoietic cell lines were exposed to α-amanitin or β-amanitin for up to 72 h with or without the pan-caspase inhibitor Z-VAD(OH)-FMK, antidotes N-acetylcysteine, silibinin, and benzylpenicillin, and organic anion-transporting polypeptide 1B3 (OATP1B3) inhibitors rifampicin and cyclosporin. Cell viability was established by trypan blue exclusion, annexin V staining, and a MTS assay. Caspase-3/7 activity was determined with Caspase-Glo assay, and cleaved caspase-3 was quantified by Western analysis. Cell number and colony-forming units were quantified after exposure to α-amanitin in primary CD34+ hematopoietic stem cells. In all cell lines, α-amanitin concentration-dependently decreased viability and mitochondrial activity. β-Amanitin was less toxic, but still significantly reduced viability. α-Amanitin increased caspase-3/7 activity by 2.8-fold and cleaved caspase-3 by 2.3-fold. Z-VAD(OH)-FMK significantly reduced α-amanitin-induced toxicity. In CD34+ stem cells, α-amanitin decreased the number of colonies and cells. The antidotes and OATP1B3 inhibitors did not reverse α-amanitin-induced toxicity. In conclusion, α-amanitin induces apoptosis in hematopoietic cells via a caspase-dependent mechanism. Full article
(This article belongs to the Topic Toxins in Medical Toxicology)
Show Figures

Figure 1

Back to TopTop