Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Short-Term Exposure to Commercial Pesticide Paraquat or 2,4-D
2.3. Tissue Extraction
2.4. Reverse Transcription Followed by Semiquantitative PCR (RT-PCR)
2.5. Statical Analysis
3. Results
3.1. Effect of Paraquat or 2,4-D on Body, Testes, and Epididymis Weights
3.2. Effect of Paraquat or 2,4-D on the Expression of Thyroid Hormone-Related Genes
3.2.1. Thyroid Hormone Transporters
3.2.2. Deiodinases
3.2.3. Thyroid Hormone Receptors
3.3. Effect of Paraquat or 2,4-D on the Expression of Ion Channels Involved in Sperm Flagellar Hyperactivation
4. Discussion
4.1. Effect of Short-Term Exposure to PQT or 2,4-D on the Body, Testes, and Epididymis Weights
4.2. Effect of Short-Term Exposure to PQT or 2,4-D on Thyroid Signaling in the Testes of Rats
4.3. Effect of Acute Administration of PQT or 2,4-D on the Gene Expression of Ion Channels Involved in Flagellar Hyperactivation
4.4. Study Limitations
5. Conclusions
Implications for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassaan, M.A.; El Nemr, A. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Krzastek, S.C.; Farhi, J.; Gray, M.; Smith, R.P. Impact of Environmental Toxin Exposure on Male Fertility Potential. Transl. Androl. Urol. 2021, 9, 2797–2813. [Google Scholar] [CrossRef] [PubMed]
- Mehrpour, O.; Karrari, P.; Zamani, N.; Tsatsakis, A.M.; Abdollahi, M. Occupational Exposure to Pesticides and Consequences on Male Semen and Fertility: A Review. Toxicol. Lett. 2014, 230, 146–156. [Google Scholar] [CrossRef]
- Moshammer, H.; Poteser, M.; Hutter, H.P. More Pesticides—Less Children? Wien. Klin. Wochenschr. 2020, 132, 197–204. [Google Scholar] [CrossRef]
- Sukumar, C.A.; Shanbhag, V.; Shastry, A.B. Paraquat: The Poison Potion. Indian. J. Crit. Care Med. 2019, 23, S263–S266. [Google Scholar] [CrossRef]
- Shao, X.; Li, M.; Luo, C.; Wang, Y.Y.; Lu, Y.Y.; Feng, S.; Li, H.; Lang, X.B.; Wang, Y.C.; Lin, C.; et al. Effects of Rapamycin against Paraquat-Induced Pulmonary Fibrosis in Mice. J. Zhejiang Univ. Sci. B 2015, 16, 52–61. [Google Scholar] [CrossRef]
- Ardiwinata, A.N.; Harsanti, E.S.; Kurnia, A.; Sulaeman, E.; Fauriah, R.; Paputri, D.M.W. Contamination of Paraquat Residues in Soil and Water from Several Provinces in Indonesia. AIP Conf. Proc. 2019, 2120, 040024-1–040024-8. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Ray, A. Paraquat, Parkinson’s Disease, and Agnotology. Mov. Disord. 2023, 38, 949–952. [Google Scholar] [CrossRef]
- Stuart, A.M.; Merfield, C.N.; Horgan, F.G.; Willis, S.; Watts, M.A.; Ramírez-Muñoz, F.; U, J.S.; Utyasheva, L.; Eddleston, M.; Davis, M.L.; et al. Agriculture without Paraquat Is Feasible without Loss of Productivity—Lessons Learned from Phasing out a Highly Hazardous Herbicide. Environ. Sci. Pollut. Res. Int. 2023, 30, 16984–17008. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J.; Duarte, J.A.; Sánchez-Navarro, A.; Remião, F.; Bastos, M.L.; Carvalho, F. Paraquat Poisonings: Mechanisms of Lung Toxicity, Clinical Features, and Treatment. Crit. Rev. Toxicol. 2008, 38, 13–71. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, Q.; Wang, S.; Huang, T.; Li, X.; Ni, C.; Fang, Y.; Li, L.; Lian, Q.; Ge, R.S. Paraquat Exposure Delays Stem/Progenitor Leydig Cell Regeneration in the Adult Rat Testis. Chemosphere 2019, 231, 60–71. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Zhao, J.Y.; Lu, X.N.; Zheng, P.S.; Xue, X. Oxidative Damage of the Male Reproductive System Induced by Paraquat. J. Biochem. Mol. Toxicol. 2017, 31, e21870. [Google Scholar] [CrossRef]
- Li, H.; Hong, T.; Zhu, Q.; Wang, S.; Huang, T.; Li, X.; Lian, Q.; Ge, R.S. Paraquat Exposure Delays Late-Stage Leydig Cell Differentiation in Rats during Puberty. Environ. Pollut. 2019, 255, 113316. [Google Scholar] [CrossRef] [PubMed]
- Burns, C.J.; Swaen, G.M.H. Review of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Biomonitoring and Epidemiology. Crit. Rev. Toxicol. 2012, 42, 768–786. [Google Scholar] [CrossRef] [PubMed]
- Song, Y. Insight into the Mode of Action of 2,4-Dichlorophenoxyacetic Acid (2,4-D) as an Herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef]
- Peterson, M.A.; McMaster, S.A.; Riechers, D.E.; Skelton, J.; Stahlman, P.W. 2,4-D Past, Present, and Future: A Review. Weed Technol. 2016, 30, 303–345. [Google Scholar] [CrossRef]
- Panuwet, P.; Ladva, C.; Barr, D.B.; Prapamontol, T.; Meeker, J.D.; D’Souza, P.E.; Maldonado, H.; Ryan, P.B.; Robson, M.G. Investigation of Associations between Exposures to Pesticides and Testosterone Levels in Thai Farmers. Arch. Environ. Occup. Health 2018, 73, 205–218. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Jia, L.; Ma, Y.; Wang, X.; Zhu, L.; Wang, K.; Zhang, P.; Yang, H. Mechanism of 2,4-Dichlorophenoxyacetic Acid-Induced Damage to Rat Testis via Fas/FasL Pathway and the Protective Effect of Lycium Barbarum Polysaccharides. Environ. Toxicol. 2022, 37, 2764–2779. [Google Scholar] [CrossRef]
- Marouani, N.; Tebourbi, O.; Cherif, D.; Hallegue, D.; Yacoubi, M.T.; Sakly, M.; Benkhalifa, M.; Ben Rhouma, K. Effects of Oral Administration of 2,4-Dichlorophenoxyacetic Acid (2,4-D) on Reproductive Parameters in Male Wistar Rats. Environ. Sci. Pollut. Res. Int. 2017, 24, 519–526. [Google Scholar] [CrossRef]
- Tan, Z.; Zhou, J.; Chen, H.; Zou, Q.; Weng, S.; Luo, T.; Tang, Y. Toxic Effects of 2,4-Dichlorophenoxyacetic Acid on Human Sperm Function in Vitro. J. Toxicol. Sci. 2016, 41, 543–549. [Google Scholar] [CrossRef]
- Krassas, G.E.; Poppe, K.; Glinoer, D. Thyroid Function and Human Reproductive Health. Endocr. Rev. 2010, 31, 702–755. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A. Thyroid Hormone Role and Economy in the Developing Testis. Vitam. Horm. 2018, 106, 473–500. [Google Scholar] [CrossRef] [PubMed]
- La Vignera, S.; Vita, R.; Condorelli, R.A.; Mongioì, L.M.; Presti, S.; Benvenga, S.; Calogero, A.E. Impact of Thyroid Disease on Testicular Function. Endocrine 2017, 58, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, R.; Medenica, S.; Di Tommaso, A.M.; Fabozzi, G.; Zamponi, V.; Cimadomo, D.; Rienzi, L.; Ubaldi, F.M.; Watanabe, M.; Faggiano, A.; et al. The Role of Thyroid Function in Female and Male Infertility: A Narrative Review. J. Endocrinol. Investig. 2023, 46, 15–26. [Google Scholar] [CrossRef]
- Romano, R.M.; Gomes, S.N.; Cardoso, N.C.S.; Schiessl, L.; Romano, M.A.; Oliveira, C.A. New Insights for Male Infertility Revealed by Alterations in Spermatic Function and Differential Testicular Expression of Thyroid-Related Genes. Endocrine 2017, 55, 607–617. [Google Scholar] [CrossRef]
- Kobal, S.; Cebulj-Kadunc, N.; Cestnik, V. Serum T3 and T4 Concentrations in the Adult Rats Treated with Herbicide 2,4-Dichlorophenoxyacetic Acid. Pflugers Arch. 2000, 440, R171–R172. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Choochouy, N.; Yimsabai, J.; Woskie, S. Thyroid Hormones in Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health 2019, 16, 2704. [Google Scholar] [CrossRef]
- Santos, R.; Piccoli, C.; Cremonese, C.; Freire, C. Thyroid and Reproductive Hormones in Relation to Pesticide Use in an Agricultural Population in Southern Brazil. Environ. Res. 2019, 173, 221–231. [Google Scholar] [CrossRef]
- Lishko, P.V.; Kirichok, Y.; Ren, D.; Navarro, B.; Chung, J.J.; Clapham, D.E. The Control of Male Fertility by Spermatozoan Ion Channels. Annu. Rev. Physiol. 2012, 74, 453–475. [Google Scholar] [CrossRef]
- Cong, S.; Zhang, J.; Pan, F.; Pan, L.; Zhang, A.; Ma, J. Research Progress on Ion Channels and Their Molecular Regulatory Mechanisms in the Human Sperm Flagellum. FASEB J. 2023, 37, e23052. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Bauer, K.; Szymczak-Cendlak, M. Structure and Function of Ion Channels Regulating Sperm Motility—An Overview. Int. J. Mol. Sci. 2021, 22, 3259. [Google Scholar] [CrossRef]
- Wang, H.F.; Chang, M.; Peng, T.T.; Yang, Y.; Li, N.; Luo, T.; Cheng, Y.M.; Zhou, M.Z.; Zeng, X.H.; Zheng, L.P. Exposure to Cadmium Impairs Sperm Functions by Reducing CatSper in Mice. Cell. Physiol. Biochem. 2017, 42, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Gholamin, M.; Mohammadi, M.; Mansouri, A.; Mahmoodian, R.; Attari, S.; Kebriaei, S.M.; Zibaei, B.; Roshanaei, M.; Daneshvar, F.; et al. Down-Regulation of CatSper 1 and CatSper 2 Genes by Lead and Mercury. Environ. Toxicol. Pharmacol. 2018, 59, 82–86. [Google Scholar] [CrossRef]
- Wang, H.F.; Liu, M.; Li, N.; Luo, T.; Zheng, L.P.; Zeng, X.H. Bisphenol a Impairs Mature Sperm Functions by a CatSper-Relevant Mechanism. Toxicol. Sci. 2016, 152, 145–154. [Google Scholar] [CrossRef]
- Yuan, W.B.; Chen, H.Q.; Li, J.Z.; Zhou, S.M.; Zeng, Y.; Fan, J.; Zhang, Z.; Liu, J.Y.; Cao, J.; Liu, W.B. TET1 Mediated Male Reproductive Toxicity Induced by Bisphenol A through Catsper-Ca2+ Signaling Pathway. Environ. Pollut. 2022, 296, 118739. [Google Scholar] [CrossRef]
- Tavares, R.S.; Mansell, S.; Barratt, C.L.R.; Wilson, S.M.; Publicover, S.J.; Ramalho-Santos, J. P,p’-DDE Activates CatSper and Compromises Human Sperm Function at Environmentally Relevant Concentrations. Hum. Reprod. 2013, 28, 3167–3177. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, H.; Peng, L.; Song, D.; Jiang, X.; Li, Y.; Chen, H.; Zeng, X. Pentachlorophenol Inhibits CatSper Function to Compromise Progesterone’s Action on Human Sperm. Chemosphere 2020, 259, 127493. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Rahmani, F.; Hasanian, S.M.; Beheshti, F.; Akbari Oryani, M.; Ebrahimzadeh, A.; Farzadfar, S. Effects of Dioxin on Testicular Histopathology, Sperm Parameters, and CatSper2 Gene and Protein Expression in Naval Medical Research Institute Male Mice. Andrologia 2019, 51, e13411. [Google Scholar] [CrossRef]
- Luis, E.; Fernández, Y.; Alvarado, M.; Juárez-Santacruz, L.; García-Nieto, E.; Anaya-Hernández, A. Differential Expression and Immunoreactivity of Thyroid Hormone Transporters MCT8 and OATP1C1 in Rat Ovary. Acta Histochem. 2019, 121, 151440. [Google Scholar] [CrossRef]
- de Souza, J.S.; Kizys, M.M.L.; da Conceição, R.R.; Glebocki, G.; Romano, R.M.; Ortiga-Carvalho, T.M.; Giannocco, G.; da Silva, I.D.C.G.; Dias da Silva, M.R.; Romano, M.A.; et al. Perinatal Exposure to Glyphosate-Based Herbicide Alters the Thyrotrophic Axis and Causes Thyroid Hormone Homeostasis Imbalance in Male Rats. Toxicology 2017, 377, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.Z.; Mashayekhi, F.J.; Hasanzade, M.M.; Baazm, M. Alteration in CatSper1 and 2 Genes Expression, Sperm Parameters and Testis Histology in Varicocelized Rats. Int. J. Reprod. Biomed. 2018, 16, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hu, Y.; Zhao, L.; Gu, B.; Zhu, R.; Li, Y.; Yang, Y.; Han, T.; Yu, J.; Mu, L.; et al. TRPV4 Plays an Important Role in Rat Prefrontal Cortex Changes Induced by Acute Hypoxic Exercise. Saudi J. Biol. Sci. 2019, 26, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Pesticides Use. Available online: https://www.fao.org/faostat/en/#data/RP/visualize (accessed on 13 September 2024).
- Carneiro, G.D.; de Freitas Souza, M.; Lins, H.A.; das Chagas, P.S.; Silva, T.S.; da Silva Teófilo, T.M.; Pavão, Q.S.; Grangeiro, L.C.; Silva, D.V. Herbicide Mixtures Affect Adsorption Processes in Soils under Sugarcane Cultivation. Geoderma 2020, 379, 114626. [Google Scholar] [CrossRef]
- James, T.K.; Ghanizadeh, H.; Harrington, K.C.; Bolan, N.S. The Leaching Behaviour of Herbicides in Cropping Soils Amended with Forestry Biowastes. Environ. Pollut. 2022, 307, 119466. [Google Scholar] [CrossRef]
- Magnoli, K.; Carranza, C.S.; Aluffi, M.E.; Magnoli, C.E.; Barberis, C.L. Herbicides Based on 2,4-D: Its Behavior in Agricultural Environments and Microbial Biodegradation Aspects. A Review. Environ. Sci. Pollut. Res. Int. 2020, 27, 38501–38512. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Fritsch, C.; Appenzeller, B.; Burkart, L.; Coeurdassier, M.; Scheifler, R.; Raoul, F.; Driget, V.; Powolny, T.; Gagnaison, C.; Rieffel, D.; et al. Pervasive Exposure of Wild Small Mammals to Legacy and Currently Used Pesticide Mixtures in Arable Landscapes. Sci. Rep. 2022, 12, 15904. [Google Scholar] [CrossRef]
- Hamm, T.E.; King-Herbert, A.; Vasbinder, M.A. Chapter 27—Toxicology. In The Laboratory Rat, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 803–816. [Google Scholar] [CrossRef]
- Weber, K.; Razinger, T.; Hardisty, J.F.; Mann, P.; Martel, K.C.; Frische, E.A.; Blumbach, K.; Hillen, S.; Song, S.; Anzai, T.; et al. Differences in Rat Models Used in Routine Toxicity Studies. Int. J. Toxicol. 2011, 30, 162–173. [Google Scholar] [CrossRef]
- Charles, J.M.; Cunny, H.C.; Wilson, R.D.; Bus, J.S. Comparative Subchronic Studies on 2,4-Dichlorophenoxyacetic Acid, Amine, and Ester in Rats. Fundam. Appl. Toxicol. 1996, 33, 161–165. [Google Scholar] [CrossRef]
- Donaher, S.E.; Van den Hurk, P. Ecotoxicology of the Herbicide Paraquat: Effects on Wildlife and Knowledge Gaps. Ecotoxicology 2023, 32, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential Impact of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Human and Ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Dai, Y.; Zhang, J.; Wu, Z.; Li, S.; Zhou, Z. Associations between Exposure to Pesticides Mixture and Semen Quality among the Non-Occupationally Exposed Males: Four Statistical Models. Environ. Res. 2024, 257, 119400. [Google Scholar] [CrossRef] [PubMed]
- Cremonese, C.; Piccoli, C.; Pasqualotto, F.; Clapauch, R.; Koifman, R.J.; Koifman, S.; Freire, C. Occupational Exposure to Pesticides, Reproductive Hormone Levels and Sperm Quality in Young Brazilian Men. Reprod. Toxicol. 2017, 67, 174–185. [Google Scholar] [CrossRef]
- Mustafa, S.; Anwar, H.; Hussain, A.; Shabnoor, A.; Muhammad, I.; Ijaz, U. Therapeutic Effect of Gossypetin against Paraquat—Induced Testicular Damage in Male Rats: A Histological and Biochemical Study. Environ. Sci. Pollut. Res. Int. 2023, 30, 62237–62248. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Qamer, M.; Hamza, A.; Ahmed, H.; Afsar, T.; Abulmeaty, M.; Ayub, A.; Razak, S. Sciadopitysin Mitigates Spermatological and Testicular Damage Instigated by Paraquat Administration in Male Albino Rats. Sci. Rep. 2023, 13, 19753. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Alvi, K.; Hamza, A.; Anwar, H.; Al-Ghanim, K.A.; Riaz, M.N. Curative Effects of Tectochrysin on Paraquat-Instigated Testicular Toxicity in Rats: A Biochemical and Histopathological Based Study. Heliyon 2024, 10, e25337. [Google Scholar] [CrossRef]
- D’Souza, U.J.A.; Narayana, K.; Zain, A.; Raju, S.; Nizam, H.M.; Noriah, O. Dermal Exposure to the Herbicide-Paraquat Results in Genotoxic and Cytotoxic Damage to Germ Cells in the Male Rat. Folia Morphol. 2006, 65, 6–10. [Google Scholar]
- Oakes, D.J.; Webster, W.S.; Brown-Woodman, P.D.C.; Ritchie, H.E. Testicular Changes Induced by Chronic Exposure to the Herbicide Formulation, Tordon 75D® (2,4-Dichlorophenoxyacetic Acid and Picloram) in Rats. Reprod. Toxicol. 2002, 16, 281–289. [Google Scholar] [CrossRef]
- Marty, M.S.; Neal, B.H.; Zablotny, C.L.; Yano, B.L.; Andrus, A.K.; Woolhiser, M.R.; Boverhof, D.R.; Saghir, S.A.; Perala, A.W.; Passage, J.K.; et al. An F1-Extended One-Generation Reproductive Toxicity Study in Crl:CD(SD) Rats With 2,4-Dichlorophenoxyacetic Acid. Toxicol. Sci. 2013, 136, 527–547. [Google Scholar] [CrossRef]
- Troudi, A.; Soudani, N.; Mahjoubi Samet, A.; Ben Amara, I.; Zeghal, N. 2,4-Dichlorophenoxyacetic Acid Effects on Nephrotoxicity in Rats during Late Pregnancy and Early Postnatal Periods. Ecotoxicol. Environ. Saf. 2011, 74, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, S.; Van Geest, F.S.; Peeters, R.P.; Heuer, H.; Visser, W.E. Thyroid Hormone Transporters. Endocr. Rev. 2020, 41, bnz008. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lee, W.M.; Cheng, C.Y. Thyroid Hormone Function in the Rat Testis. Front. Endocrinol. 2014, 5, 188. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Pundee, R.; Kallayanatham, N.; Pengpumkiat, S.; Chungcharoen, J.; Phommalachai, C.; Konthonbut, P.; Choochouy, N.; Sowanthip, P.; et al. Acute Changes in Thyroid Hormone Levels among Thai Pesticide Sprayers. Toxics 2021, 9, 16. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Zenzeluk, J.; Bargi-Souza, P.; Szawka, R.E.; Romano, M.A.; Romano, R.M. The Effects of Glyphosate-Based Herbicide on the Hypothalamic-Pituitary Thyroid Axis Are Tissue-Specific and Dependent on Age Exposure. Environ. Pollut. 2023, 334, 122216. [Google Scholar] [CrossRef]
- Hernández, A. Thyroid Hormone Deiodination and Action in the Gonads. Curr. Opin. Endocr. Metab. Res. 2018, 2, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, R.; Beckmann, M.W.; Oppelt, P.G.; Hoffmann, I.; Lotz, L.; Kuwert, T.; Mueller, A. Thyroid Hormone Receptors and Reproduction. J. Reprod. Immunol. 2011, 90, 58–66. [Google Scholar] [CrossRef]
- Bae, H.S.; Jin, Y.K.; Ham, S.; Kim, H.K.; Shin, H.; Cho, G.B.; Lee, K.J.; Lee, H.; Kim, K.M.; Koo, O.J.; et al. CRISRP/Cas9-Mediated Knockout of Mct8 Reveals a Functional Involvement of Mct8 in Testis and Sperm Development in a Rat. Sci. Rep. 2020, 10, 11148. [Google Scholar] [CrossRef]
- Zhu, L.; Li, W.; Zha, J.; Wang, M.; Yuan, L.; Wang, Z. Butachlor Causes Disruption of HPG and HPT Axes in Adult Female Rare Minnow (Gobiocypris rarus). Chem. Biol. Interact. 2014, 221, 119–126. [Google Scholar] [CrossRef]
- Cheng, Y.; Ekker, M.; Chan, H.M. Relative Developmental Toxicities of Pentachloroanisole and Pentachlorophenol in a Zebrafish Model (Danio rerio). Ecotoxicol. Environ. Saf. 2015, 112, 7–14. [Google Scholar] [CrossRef]
- Wu, L.; Ru, H.; Ni, Z.; Zhang, X.; Xie, H.; Yao, F.; Zhang, H.; Li, Y.; Zhong, L. Comparative Thyroid Disruption by o,p’-DDT and p,p’-DDE in Zebrafish Embryos/Larvae. Aquat. Toxicol. 2019, 216, 105280. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, B.; Huang, J.; Zhang, D.; Yuan, Y. Environmental Pollutants and Male Infertility: Effects on CatSper. Ecotoxicol. Environ. Saf. 2024, 277, 116341. [Google Scholar] [CrossRef] [PubMed]
- Darszon, A.; Nishigaki, T.; Beltran, C.; Treviño, C.L. Calcium Channels in the Development, Maturation, and Function of Spermatozoa. Physiol. Rev. 2011, 91, 1305–1355. [Google Scholar] [CrossRef]
- Darszon, A.; Acevedo, J.J.; Galindo, B.E.; Hernández-González, E.O.; Nishigaki, T.; Treviño, C.L.; Wood, C.; Beltrán, C. Sperm Channel Diversity and Functional Multiplicity. Reproduction 2006, 131, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Birch, M.R.; Johansen, M.; Skakkebæk, N.E.; Andersson, A.M.; Rehfeld, A. In Vitro Investigation of Endocrine Disrupting Effects of Pesticides on Ca2+-Signaling in Human Sperm Cells through Actions on the Sperm-Specific and Steroid-Activated CatSper Ca2+-Channel. Environ. Int. 2022, 167, 107399. [Google Scholar] [CrossRef]
- Acosta-Tlapalamatl, M.; Romo-Gómez, C.; Anaya-Hernández, A.; Juárez-Santacruz, L.; Gaytán-Oyarzún, J.C.; Acevedo-Sandoval, O.A.; García-Nieto, E. Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs. Toxics 2022, 10, 380. [Google Scholar] [CrossRef]
Herbicide Name | Paraquat | 2,4-D |
---|---|---|
Chemical Name | 1,1′-dimethyl-4-4′-bipyridinium dichloride | 2,4-Dichlorophenoxyacetic acid |
Molecular Formula | C12H14Cl2N2 | C8H6Cl2O3 |
Chemical Structure | ||
Molecular Weight | 257.16 g/mol | 221.03 g/mol |
LD50 Oral (Rat) | 150 mg/kg | 639 mg/kg |
PubChem CID * | 15,938 | 1486 |
Gene Type | Gene | Primer Sequences (5′-3′) | Length (bp) | Reference |
---|---|---|---|---|
Thyroid hormone receptors | TRα | F: ACCTCCGCATGATCGGGGC R: CCTGATCCTCAAAGACCTC | 108 | [40,41] |
TRβ | F: TGGGCGAGCTCTATATTCCA R: ACAGGTGATGCAGCGATAGT | 185 | ||
Deiodinases | Dio2 | F: AGAAGCACCGGAACCAAGAG R: AGCCACAACTTGACACTGGG | 89 | |
Dio3 | F: GCCTCTACGTCATCCAGAGC R: GCCCACCAATTCAGTCACTT | 170 | ||
Thyroid hormone transporters | Mct8 | F: CCCAAGCAAGAGAGGCGCCC R: CGGTAGGTGCGCTGGCGAAA | 95 | |
Mct10 | F: GGATACTTTGTGCCTTATGTT R: GCAAATAGTCTGCAATGCGG | 145 | ||
Oatp1c1 | F: GGATCCCCAGTGGGTCGGGG R: ACCAGAAAGGCACGGCTGCA | 83 | ||
Ion channels | CatSper1 | F: TCTTGGAGCGATGAGGAC R: GACGATTGTGTTCAGGCA | 204 | [42] |
CatSper2 | F: TGGTTGTTGCTTGGTTCC R: TTCCTTGACTGGTTCCTCT | 193 | ||
Trpv4 | F: CAGCAAGATCGAGAACCGCCAT R: CGAACTTACGCCACTTGTCCCT | 80 | [43] | |
Ppia | F: CCGCTGTCTCTTTTCGCC | 129 | [40] | |
R: GCTGTCTTTGGAACTTTGTCTG |
Organ | CNT (n = 8) | PQT (n = 8) | 2,4-D (n = 8) |
---|---|---|---|
Weight | |||
Body | 264.5 ± 29.9 | 197.3 ± 21.5 *** | 239.1 ± 36.0 |
Testes | 3.14 ± 0.21 | 3.10 ± 0.89 | 3.07 ± 0.46 |
Epididymis | 0.35 ± 0.09 | 0.28 ± 0.08 | 0.30 ± 0.09 |
Somatic Index | |||
Testes | 1.19 ± 0.17 | 1.59 ± 0.49 | 1.29 ± 0.12 |
Epididymis | 0.13 ± 0.03 | 0.14 ± 0.04 | 0.12 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luis, E.; Conde-Maldonado, V.; García-Nieto, E.; Juárez-Santacruz, L.; Alvarado, M.; Anaya-Hernández, A. Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D. J. Xenobiot. 2024, 14, 1450-1464. https://doi.org/10.3390/jox14040081
Luis E, Conde-Maldonado V, García-Nieto E, Juárez-Santacruz L, Alvarado M, Anaya-Hernández A. Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D. Journal of Xenobiotics. 2024; 14(4):1450-1464. https://doi.org/10.3390/jox14040081
Chicago/Turabian StyleLuis, Enoch, Vanessa Conde-Maldonado, Edelmira García-Nieto, Libertad Juárez-Santacruz, Mayvi Alvarado, and Arely Anaya-Hernández. 2024. "Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D" Journal of Xenobiotics 14, no. 4: 1450-1464. https://doi.org/10.3390/jox14040081
APA StyleLuis, E., Conde-Maldonado, V., García-Nieto, E., Juárez-Santacruz, L., Alvarado, M., & Anaya-Hernández, A. (2024). Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D. Journal of Xenobiotics, 14(4), 1450-1464. https://doi.org/10.3390/jox14040081