Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = O, N-containing CDs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 285 KiB  
Article
The Effect of Waste Organic Matter on the Soil Chemical Composition After Three Years of Miscanthus × giganteus Cultivation in East-Central Poland
by Elżbieta Malinowska and Paweł Kania
Sustainability 2025, 17(6), 2532; https://doi.org/10.3390/su17062532 - 13 Mar 2025
Cited by 1 | Viewed by 531
Abstract
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped [...] Read more.
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped into a landfill decomposes and emits greenhouse gases. This can be reduced through its application to energy crops, which not only has a positive impact on the environment but also improves the soil quality and increases yields. However, organic waste with increased content of heavy metals, when applied to the soil, can also pose a threat. Using Miscanthus × giganteus M 19 as a test plant, an experiment with a randomized block design was established in four replications in Central–Eastern Poland in 2018. Various combinations of organic waste (municipal sewage sludge and spent mushroom substrate) were applied, with each dose containing 170 kg N ha−1. After three years (in 2020), the soil content of total nitrogen (Nt) and carbon (Ct) was determined by elemental analysis, with the total content of P, K, Ca, Mg, S, Na, Fe, Mn, Mo, Zn, Ni, Pb, Cr, Cd, and Cu determined by optical emission spectrometry, after wet mineralization with aqua regia. For the available forms of P and K, the Egner–Riehm method was used, and the Schachtschabel method was used for the available forms of Mg. The total content of bacteria, actinomycetes, and fungi was also measured. The application of municipal sewage sludge (SS) alone and together with spent mushroom substrate (SMS) improved the microbiological composition of the soil and increased the content of Nt and Ct and the available forms of P2O5 and Mg more than the application of SMS alone. SMS did not contaminate the soil with heavy metals. In the third year, their content was higher after SS than after SMS application, namely for Cd by 12.2%, Pb by 18.7%, Cr by 25.3%, Zn by 16.9%, and Ni by 14.7%. Full article
22 pages, 2182 KiB  
Article
Chiral Recognition Mechanism of Benzyltetrahydroisoquinoline Alkaloids: Cyclodextrin-Mediated Capillary Electrophoresis, Chiral HPLC, and NMR Spectroscopy Study
by Erzsébet Várnagy, Gergő Tóth, Sándor Hosztafi, Máté Dobó, Ida Fejős and Szabolcs Béni
Molecules 2025, 30(5), 1125; https://doi.org/10.3390/molecules30051125 - 28 Feb 2025
Cited by 1 | Viewed by 926
Abstract
The tetrahydroisoquinoline skeleton is a pharmacologically significant core structure containing chiral centers, making enantiomeric separation crucial due to the potentially distinct biological effects of each enantiomer. In this study, laudanosine (N-methyl-tetrahydropapaverine) and its three derivatives (6′-bromo-laudanosine, norlaudanosine, and N-propyl-norlaudanosine) were [...] Read more.
The tetrahydroisoquinoline skeleton is a pharmacologically significant core structure containing chiral centers, making enantiomeric separation crucial due to the potentially distinct biological effects of each enantiomer. In this study, laudanosine (N-methyl-tetrahydropapaverine) and its three derivatives (6′-bromo-laudanosine, norlaudanosine, and N-propyl-norlaudanosine) were synthesized and used as model compounds to investigate chiral recognition mechanisms. Screening over twenty cyclodextrins (CyDs) as chiral selectors in capillary electrophoresis (CE), we found anionic CyDs to be the most effective, with sulfated-γ-CyD (S-γ-CyD) achieving a maximum Rs of 10.5 for laudanosine. Notably, octakis-(6-deoxy-6-(2-carboxyethyl)-thio)-γ-CyD (sugammadex, SGX), heptakis-(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS), heptakis-(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS), and octakis-(2,3-O-dimethyl-6-O-sulfo)-γ-CD (ODMS) provided excellent enantioseparation for all four analytes. Following HPLC screening on CyD-based and polysaccharide-based chiral stationary phases, semi-preparative HPLC methods using amylose and cellulose-based columns were optimized to isolate enantiomers. The purity of the isolated enantiomers was evaluated by HPLC, and their configurations were confirmed via circular dichroism spectroscopy. The isolated enantiomers allowed us to explore enantiomer migration order reversals in CE and enantiomer elution order reversal in HPLC. Further 1H and 2D ROESY NMR experiments provided atomic-level insights into enantioselective complex formation, confirming enantiomer differentiation by SGX and elucidating the inclusion complex structure, where the ring C immersion into the CyD cavity is prevalent. Full article
Show Figures

Graphical abstract

22 pages, 7119 KiB  
Article
Geochemistry Characteristics and Coal-Forming Environments of Carboniferous–Permian Coal: An Example from the Zhaokai Mine, Ningwu Coalfield, Northern China
by Meili Hou, Jinxi Wang, Yurong Liu, Zewen Bao and Balaji Panchal
Sustainability 2025, 17(3), 1285; https://doi.org/10.3390/su17031285 - 5 Feb 2025
Viewed by 838
Abstract
In order to study the geochemical characteristics of coal in the Ningwu Coalfield of Shanxi Province and the coal-forming environments reflected by it, a detailed geochemical study was carried out on the No. 5 coal of the Zhaokai Mine. The results show that [...] Read more.
In order to study the geochemical characteristics of coal in the Ningwu Coalfield of Shanxi Province and the coal-forming environments reflected by it, a detailed geochemical study was carried out on the No. 5 coal of the Zhaokai Mine. The results show that the content of major-element oxides SiO2 and Al2O3 is high. The trace elements Ni, Nb, Mo, Cd, Sn, Hf, Ta, W, Th, and U are slightly enriched, while the elements Li and Zr are enriched, indicating an overall LREY enrichment type in the samples. Elemental parameters suggest that the sedimentary environment in the study area is continental sedimentary, and the whole environment is reductive. The macerals in the coal samples are mainly vitrinite, with an average vitrinite reflectance (Ro) of 0.744%. The distribution range of n-alkanes in the coal samples is from n-C14~n-C32, with the main peak carbons being n-C24 and n-C25, showing the post-single-peak type distribution pattern. The average odd–even predominance index (OEP) is 0.40, the average of the light and heavy hydrocarbons ratio (C21/C22+) is 0.42, and the average of Pr/n-C17 and Ph/n-C18 are 1.08 and 0.23, respectively. The coal samples also contain various aromatic hydrocarbons, mainly from the naphthalene- and phenanthrene-series compounds. Biomarker parameters indicate that the parent material of the coal samples in the study area is mainly continental higher plants. The maturity is low, and the coal-forming environment is a reduction environment. This study of the No. 5 coal’s geochemical characteristics has laid a foundation for the efficient, green, and comprehensive exploitation of coal resources in this region, and has also provided an important basis for the sustainable development of coal resources. Full article
Show Figures

Figure 1

16 pages, 4966 KiB  
Article
Magnetic Carbon Porous Polymer Prepared from a New Suspended Emulsion for the Absorption of Heavy Metal Ions
by Shoulian Wei, Shenwei Huang, Jun Zhou, Chun Xiao, Jiangfei Cao, Jibo Xiao and Chunsheng Xie
Polymers 2025, 17(3), 257; https://doi.org/10.3390/polym17030257 - 21 Jan 2025
Cited by 1 | Viewed by 1185
Abstract
In this study, magnetic carbon nanopolymers (Fe3O4/C@PM) were synthesized by suspension polymerization using magnetic carbon nanoparticles as the matrix, 2-thiophene formaldehyde and acrylamide as the monomers, and ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent. The obtained material was [...] Read more.
In this study, magnetic carbon nanopolymers (Fe3O4/C@PM) were synthesized by suspension polymerization using magnetic carbon nanoparticles as the matrix, 2-thiophene formaldehyde and acrylamide as the monomers, and ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent. The obtained material was characterized using multiple techniques, including scanning electron microscopy (SEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption–desorption, and thermogravimetric analysis (TGA). The adsorption effects of Zn2+, Cd2+, and Pb2+ in the mixed solution were evaluated using magnetic carbon nanoparticles (Fe3O4/C) and Fe3O4/C@PM as adsorbents. The adsorption isotherms, kinetic models, and cyclic regeneration of various metal ions, including Zn2+, Cd2+ and Pb2+, were studied. The results showed that the Fe3O4/C@PM maintained a slightly aggregated spherical morphology similar to Fe3O4/C and exhibited excellent adsorption capacity for all of Zn2+, Cd2+, and Pb2+, with maximum adsorption capacities of 343.3, 250.7, and 177.6 mg·g−1, respectively. The adsorption mechanisms were mainly based on the chemical interactions between metal ions and functional groups on the surface of polymers. The kinetic study revealed that the adsorption process followed a pseudo-second-order kinetic model. When Fe3O4/C@PM was reused five times, its adsorption rates for Zn2+, Cd2+, and Pb2+ remained above 81%, indicating its great potential for the treatment of wastewater containing Zn2+, Cd2+, and Pb2+. Full article
(This article belongs to the Special Issue Research and Application of Molecularly Imprinted Polymers)
Show Figures

Figure 1

14 pages, 4392 KiB  
Article
Syntheses and Crystal Structures of Two Metal–Organic Frameworks Formed from Cd2+ Ions Bridged by Long, Flexible 1,7-bis(4-Pyridyl)heptane Ligands with Different Counter-Ions
by M. John Plater, Ben M. De Silva, Mark R. St J. Foreman and William T. A. Harrison
Crystals 2024, 14(12), 1105; https://doi.org/10.3390/cryst14121105 - 23 Dec 2024
Viewed by 982
Abstract
The ethanol–water layered syntheses and crystal structures of the coordination polymers [Cd(C17H22N2)2(H2O)2]·2(ClO4)·C17H22N2·C2H5OH 2 and [Cd(C17H22N [...] Read more.
The ethanol–water layered syntheses and crystal structures of the coordination polymers [Cd(C17H22N2)2(H2O)2]·2(ClO4)·C17H22N2·C2H5OH 2 and [Cd(C17H22N2)2(NO3)2] 3 are reported, where C17H22N2 is a flexible spacer, 1,7-bis(4-pyridyl)heptane. In compound 2, trans-CdO2N4 octahedral nodes are linked by pairs of bridging ligands to result in [001] looped polymeric chains. The chains stack in the [100] direction to form (010) pseudo layers. Sandwiched between them are secondary sheets of free ligands, perchlorate ions and ethanol solvent molecules. Hydrogen bonds between these species help to consolidate the structure. Compound 3 contains trans-CdO2N4 octahedral nodes as parts of regular 44 nets, which propagate in the (103) plane. Three independent nets are interpenetrated. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

20 pages, 10311 KiB  
Article
Effectiveness and Mechanisms of CdS/Porous g-C3N4 Heterostructures for Adsorption and Photocatalytic Degradation of Tetracycline Hydrochloride Wastewater in Visible Light
by Ran Yan, Yuqing Mao, Meirong Zhu, Chuandong Wu, Wei Zuo, Weichen Zhu, Chenxin Zhao, Yu Tian, Jun Zhang and Jie Qiu
Appl. Sci. 2024, 14(23), 11372; https://doi.org/10.3390/app142311372 - 6 Dec 2024
Viewed by 1442
Abstract
In this study, CdS/porous g-C3N4 heterostructures were successfully synthesized via in situ co-precipitation to efficiently degrade tetracycline hydrochloride (TCH) under visible light. The heterostructures, particularly at a 2:1 mass ratio of CdS to porous g-C3N4, demonstrated [...] Read more.
In this study, CdS/porous g-C3N4 heterostructures were successfully synthesized via in situ co-precipitation to efficiently degrade tetracycline hydrochloride (TCH) under visible light. The heterostructures, particularly at a 2:1 mass ratio of CdS to porous g-C3N4, demonstrated significant improvements in both adsorption and photocatalytic performance. The adsorption and degradation rates increased 4-fold and 9.64-fold, respectively, compared to pure porous g-C3N4, with optimal removal rates achieved at a catalyst dosage of 0.2 g/L. Detailed mechanistic studies revealed that photogenerated holes (h+) and superoxide radicals (·O2) were the primary active species driving the degradation process, while hydroxyl radicals (·OH) played a minimal role. The composite material also maintained over 70% degradation efficiency after five cycles, indicating excellent stability. This research presents a promising route for the photocatalytic treatment of wastewater containing persistent organic pollutants, offering practical insights into dosage optimization, reaction kinetics, and mechanistic pathways that enhance performance. Full article
(This article belongs to the Special Issue Wastewater Treatment and Purification Technologies)
Show Figures

Figure 1

12 pages, 4214 KiB  
Article
A d10-Cd Cluster Containing Sandwich-Type Arsenotungstate Exhibiting Fluorescent Recognition of Carcinogenic Dye in Methanol
by Feng Wang, Xiang Ma, Haodong Li, Ziqi Zhao, Lele Zhang, Yutong Zhao, Haipeng Su, Zeqi Wang, Changchun Li and Jiai Hua
Molecules 2024, 29(21), 5193; https://doi.org/10.3390/molecules29215193 - 2 Nov 2024
Cited by 1 | Viewed by 788
Abstract
A d10-Cd cluster containing sandwich-type arsenotungstate [C3H12N2]6[Cd4Cl2(B-α-AsW9O34)2] was synthesized and its structure characterized through elemental analyses, X-ray powder diffraction (XRPD), IR [...] Read more.
A d10-Cd cluster containing sandwich-type arsenotungstate [C3H12N2]6[Cd4Cl2(B-α-AsW9O34)2] was synthesized and its structure characterized through elemental analyses, X-ray powder diffraction (XRPD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and single-crystal X-ray diffraction. The X-ray analysis revealed that the molecular unit of the compound consists of a captivating tetra-Cd-substituted sandwich-type polyoxoanion, accompanied by six elegantly protonated 1,2-diaminopropane as counter ions. The further novelty of the tetranuclear cadmium cluster lies in its occupied chlorine atom sites. This makes it highly susceptible to coordinate reactions with nitrogen on polycyclic aromatic hydrocarbons, thereby exhibiting different fluorescent signals that facilitate the identification and detection of these carcinogenic substances in methanol. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

24 pages, 6897 KiB  
Article
Tetradentate NOO′O″ Schiff-Base Ligands as a Platform for the Synthesis of Heterometallic CdII-FeIII and CdII-CrIII Coordination Clusters
by Konstantinos N. Pantelis, Sotiris G. Skiadas, Zoi G. Lada, Catherine P. Raptopoulou, Vassilis Psycharis, Yiannis Sanakis, Mark M. Turnbull and Spyros P. Perlepes
Magnetochemistry 2024, 10(10), 69; https://doi.org/10.3390/magnetochemistry10100069 - 27 Sep 2024
Viewed by 1539
Abstract
The chemistry of heterometallic metal complexes continues to attract the interest of molecular inorganic chemists mainly because of the properties that different metal ions can bring to compounds. Contrary to the plethora of 3d–4f- and 3d–3d′-metal complexes, complexes containing both 3d- and 4d-metal [...] Read more.
The chemistry of heterometallic metal complexes continues to attract the interest of molecular inorganic chemists mainly because of the properties that different metal ions can bring to compounds. Contrary to the plethora of 3d–4f- and 3d–3d′-metal complexes, complexes containing both 3d- and 4d-metal ions are much less studied. The choice of the bridging organic ligand is of paramount importance for the synthesis of such species. In the present work, we describe the use of the potentially tetradentate NOO′O″ Schiff bases N-(2-carboxyphenyl)salicylideneimine (saphHCOOH) and N-(4-chloro-carboxyphenyl)salicylideneimine (4ClsaphHCOOH) in CdII-MIII (M = Fe, Cr) chemistry. The complexes [Cd2Fe2(saphCOO)4(NO3)2(H2O)2] (1), [Cd2Cr2(saphCOO)4(NO3)2(H2O)2] (2), [Cd2Fe2(4ClsaphCOO)4(NO3)2(H2O)2] (3) and [CdCr2(4ClsaphCOO)4(H2O)3(EtOH)] (4) have been structurally characterized, the quality of the structure of the latter being poor but, permitting the knowledge of the connectivity and the main structural features. Complexes 13 are isostructural, but not isomorphous, possessing a variety of lattice solvent molecules (EtOH, MeCN, CH2Cl2, H2O). The metal topology can be described as two isosceles triangles sharing a common CdII…CdII edge. The two CdII atoms are doubly bridged by two μ-aqua groups. The MIII…CdII sides of the triangles are each asymmetrically bridged by one carboxylate oxygen atom of a 2.2111 saphCOO2−/4ClsaphCOO2− ligand. The core of the molecules is {Cd2M2(μ-Oaqua)2(μ-OR)4}6+, where the OR oxygen atoms are the bridging carboxylate oxygens. The coordination spheres of the metal ions in the centrosymmetric molecules are [Cd(Oaqua)2(Ocarboxylato)4(Onitrato)2] and [M(Nimino)2(Ocarboxylato)2(Ophenolato)2]. The biaugmented trigonal prism is the most appropriate for the description of the coordination geometry of the CdII atoms in 1 and 3, while the geometry of these metal ions in 2 is best described as distorted triangular dodecahedral. A combination of H-bonding and π–π stacking interactions give interesting supramolecular patterns in the three tetranuclear compounds. The three metal ions in 4 define an isosceles triangle with two almost equal CdII…CrIII sides. The CdII center is linked to each CrIII atom through one carboxylato oxygen of a 2.2111 4ClsaphCOO2− ligand. The core of the molecule is {CdCr2(μ-OR)2}6+, where the OR oxygen atoms are the bridging carboxylato oxygens. A tridentate chelating 1.1101 4ClsaphCOO2− ligand is bonded to each CrIII. The coordination spheres are [Cd(Oaqua)3(Oethanol)(Obridging carboxylato)2(Oterminal carboxylate)2] and [Cr(Obridging carboxylato)(Oterminal carboxylato)(Ophenolato)2(Nimino)2]. Complexes 14 are the first heterometallic 3d–4d complexes based on saphHCOOH and 4ClsaphCOOH. The structures are critically compared with those of previous reported ZnII-MIII (M = Fe, Cr) complexes. The IR and Raman spectra of the complexes are discussed in terms of the coordination modes of the ligands involved. UV/VIS spectra in CH2Cl2 are also reported, and the bands are assigned to the corresponding transitions. The δ and ΔEQ57Fe-Mössbauer parameters of 1 and 3 at room temperature and 80 K suggest the presence of isolated high-spin FeIII centers. Variable-temperature (1.8–310 K) and variable-field (0–50 kOe) magnetic studies for 1 and 2 indicate the absence of MIII…MIII exchange interactions, in agreement with the long distances (~8 Å) between the paramagnetic metal ions. The combined work demonstrates the ability of saphCOO2− and 4ClsaphCOO2− to give 3d–4d metal complexes. Full article
(This article belongs to the Special Issue Latest Research on the Magnetic Properties of Coordination Compounds)
Show Figures

Figure 1

28 pages, 5589 KiB  
Article
Properties and Possibilities of Using Biochar Composites Made on the Basis of Biomass and Waste Residues Ferryferrohydrosol Sorbent
by Katarzyna Wystalska, Mariusz Kowalczyk, Tomasz Kamizela, Małgorzata Worwąg and Magdalena Zabochnicka
Materials 2024, 17(11), 2646; https://doi.org/10.3390/ma17112646 - 30 May 2024
Viewed by 1254
Abstract
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron [...] Read more.
Biochar enriched with metals has an increased potential for sorption of organic and inorganic pollutants. The aim of the research was to identify the possibility of using biochar composites produced on the basis of waste plant biomass and waste FFH (ferryferrohydrosol) containing iron atoms, after CO2 capture. The composites were produced in a one-stage or two-stage pyrolysis process. Their selected properties were determined as follows: pH, ash content, C, H, N, O, specific surface area, microstructure and the presence of surface functional groups. The produced biochar and composites had different properties resulting from the production method and the additive used. The results of experiments on the removal of methylene blue (MB) from solutions allowed us to rank the adsorbents used according to the maximum dye removal value achieved as follows: BC1 (94.99%), B (84.61%), BC2 (84.09%), BC3 (83.23%) and BC4 (83.23%). In terms of maximum amoxicillin removal efficiency, the ranking is as follows: BC1 (55.49%), BC3 (23.51%), BC2 (18.13%), B (13.50%) and BC4 (5.98%). The maximum efficiency of diclofenac removal was demonstrated by adsorbents BC1 (98.71), BC3 (87.08%), BC4 (74.20%), B (36.70%) and BC2 (30.40%). The most effective removal of metals Zn, Pb and Cd from the solution was demonstrated by BC1 and BC3 composites. The final concentration of the tested metals after sorption using these composites was less than 1% of the initial concentration. The highest increase in biomass on prepared substrates was recorded for the BC5 composite. It was higher by 90% and 54% (for doses of 30 g and 15 g, respectively) in relation to the biomass growth in the soil without additives. The BC1 composite can be used in pollutant sorption processes. However, BC5 has great potential as a soil additive in crop yield and plant growth. Full article
Show Figures

Graphical abstract

16 pages, 8033 KiB  
Article
Thermo-Mechano-Chemical Processing of Printed Circuit Boards for Organic Fraction Removal
by Sergey M. Frolov, Viktor A. Smetanyuk, Anton S. Silantiev, Ilias A. Sadykov, Fedor S. Frolov, Jaroslav K. Hasiak, Alexey A. Shiryaev and Vladimir E. Sitnikov
Waste 2024, 2(2), 153-168; https://doi.org/10.3390/waste2020009 - 15 Apr 2024
Cited by 1 | Viewed by 2005
Abstract
Printed circuit boards (PCBs) are the main components of e-waste. In order to reduce the negative impact of waste PCBs on human health and the environment, they must be properly disposed of. A new method is demonstrated for recycling waste PCBs. It is [...] Read more.
Printed circuit boards (PCBs) are the main components of e-waste. In order to reduce the negative impact of waste PCBs on human health and the environment, they must be properly disposed of. A new method is demonstrated for recycling waste PCBs. It is referred to as the high-temperature thermo-mechano-chemical gasification (TMCG) of PCBs by the detonation-born gasification agent (GA), which is a blend of H2O and CO2 heated to a temperature above 2000 °C. The GA is produced in a pulsed detonation gun (PDG) operating on a near-stoichiometric methane–oxygen mixture. The PDG operates in a pulsed mode producing pulsed supersonic jets of GA and pulsed shock waves possessing a huge destructive power. When the PDG is attached to a compact flow reactor filled with waste PCBs, the PCBs are subject to the intense thermo-mechano-chemical action of both strong shock waves and high-temperature supersonic jets of GA in powerful vortical structures established in the flow reactor. The shock waves grind waste PCBs into fine particles, which undergo repeated involvement and gasification in the high-temperature vortical structures of the GA. Demonstration experiments show full (above 98%) gasification of the 1 kg batch of organic matter in a setup operation time of less than 350 s. The gaseous products of PCB gasification are mainly composed of CO2, CO, H2, N2, and CH4, with the share of flammable gas components reaching about 45 vol%. The solid residues appear in the form of fine powder with visible metal inclusions of different sizes. All particles in the powder freed from the visible metal inclusions possess a size less than 300–400 μm, including a large fraction of sizes less than 100 μm. The powder contains Sn, Pb, Cu, Ni, Fe, In, Cd, Zn, Ca, Si, Al, Ti, Ni, and Cl. Among these substances, Sn (10–20 wt%), Pb (5–10 wt%), and Cu (up to 1.5 wt%) are detected in the maximum amounts. In the powder submitted for analysis, precious elements Ag, Au, and Pt are not detected. Some solid mass (about 20 wt% of the processed PCBs) is removed from the flow reactor with the escaping gas and is partly (about 10 wt%) trapped by the cyclones in the exhaust cleaning system. Metal inclusions of all visible sizes accumulate only in the flow reactor and are not detected in powder samples extracted from the cyclones. The gasification degree of the solid residues extracted from the cyclones ranges from 76 to 91 wt%, i.e., they are gasified only partly. This problem will be eliminated in future work. Full article
Show Figures

Figure 1

19 pages, 13348 KiB  
Article
The Impact of Atmospheric Cadmium Exposure on Colon Cancer and the Invasiveness of Intestinal Stents in the Cancerous Colon
by Shuai Zhang, Ruikang Li, Jing Xu, Yan Liu and Yanjie Zhang
Toxics 2024, 12(3), 215; https://doi.org/10.3390/toxics12030215 - 14 Mar 2024
Cited by 1 | Viewed by 2095
Abstract
Background: Inhalation exposure to carcinogenic metals such as cadmium (Cd) is a significant global health concern linked to various cancers. However, the precise carcinogenic mechanism underlying inhalation exposure remains elusive. Methods: In this study, CT26 mouse colon cancer (CC) cells were implanted into [...] Read more.
Background: Inhalation exposure to carcinogenic metals such as cadmium (Cd) is a significant global health concern linked to various cancers. However, the precise carcinogenic mechanism underlying inhalation exposure remains elusive. Methods: In this study, CT26 mouse colon cancer (CC) cells were implanted into BALB/c mice to establish CC mouse models. Some of the CC mice were implanted with intestinal stents. The mice were exposed to atomized oxygen and nitrogen (O2/N2) gas containing Cd. Results: Atmospheric Cd intensified inflammation in CC cells and heightened Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase 1 (NOX1) activity, which is an indirect measurement of increased reactive oxygen species (ROS) production. This escalated ROS production triggered abnormal Wnt protein secretion, activated the Wnt/β-catenin signaling pathway, and stimulated CC cell proliferation. No discernible body weight effect was seen in the CC mice, possibly due to the later-stage tumor weight gain, which masked the changes in body weight. Cd facilitated colon tumor restructuring and cell migration at the later stage. The implantation of intestinal stents inhibited the expression of Superoxide Dismutase 1 (SOD1) in the colon tumors of the CC mice, with no evident effects on the expression levels of NOX1, SOD2, and Catalase (CAT) enzymes. Elevated ROS levels, indirectly reflected by enzyme activity, did not substantially impact the Wnt/β-catenin signaling pathway and even contributed to slowing its imbalance. Stent implantation eased the inflammation occurring in colon tumors by reducing CC cell proliferation but it induced discomfort in the mice, leading to a reduction in food intake and weight. Conclusions: Cd partially fosters CC tumorigenesis via the ROS-mediated Wnt/β-catenin signaling pathway. The effect of Cd on the invasive effect of intestinal stents in the cancerous colon is not significant. Full article
(This article belongs to the Special Issue Toxicity and Human Health Assessment of Air Pollutants)
Show Figures

Figure 1

18 pages, 3376 KiB  
Article
Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?
by Anka Jevremović, Marjetka Savić, Aleksandra Janošević Ležaić, Jugoslav Krstić, Nemanja Gavrilov, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Polymers 2023, 15(22), 4349; https://doi.org/10.3390/polym15224349 - 7 Nov 2023
Cited by 4 | Viewed by 1974
Abstract
The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and [...] Read more.
The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Emerging Contaminants Control)
Show Figures

Graphical abstract

15 pages, 2863 KiB  
Article
Multi-Oxidant Environment as a Suicidal Inhibitor of Myeloperoxidase
by Ramona Clemen, Lara Minkus, Debora Singer, Paul Schulan, Thomas von Woedtke, Kristian Wende and Sander Bekeschus
Antioxidants 2023, 12(11), 1936; https://doi.org/10.3390/antiox12111936 - 30 Oct 2023
Cited by 5 | Viewed by 1859
Abstract
Tissue inflammation drives the infiltration of innate immune cells that generate reactive species to kill bacteria and recruit adaptive immune cells. Neutrophil activation fosters the release of myeloperoxidase (MPO) enzyme, a heme-containing protein generating hypochlorous acid (HOCl) from hydrogen peroxide (H2O [...] Read more.
Tissue inflammation drives the infiltration of innate immune cells that generate reactive species to kill bacteria and recruit adaptive immune cells. Neutrophil activation fosters the release of myeloperoxidase (MPO) enzyme, a heme-containing protein generating hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride ions. MPO-dependent oxidant formation initiates bioactive oxidation and chlorination products and induces oxidative post-translational modifications (oxPTMs) on proteins and lipid oxidation. Besides HOCl and H2O2, further reactive species such as singlet oxygen and nitric oxide are generated in inflammation, leading to modified proteins, potentially resulting in their altered bioactivity. So far, knowledge about multiple free radical-induced modifications of MPO and its effects on HOCl generation is lacking. To mimic this multi-oxidant microenvironment, human MPO was exposed to several reactive species produced simultaneously via argon plasma operated at body temperature. Several molecular gas admixes were used to modify the reactive species type profiles generated. MPO was investigated by studying its oxPTMs, changes in protein structure, and enzymatic activity. MPO activity was significantly reduced after treatment with all five tested plasma gas conditions. Dynamic light scattering and CD-spectroscopy revealed altered MPO protein morphology indicative of oligomerization. Using mass spectrometry, various oxPTMs, such as +1O, +2O, and +3O, were determined on methionine and cysteine (Cys), and -1H-1N+1O was detected in asparagine (Asp). The modification types identified differed between argon-oxygen and argon-nitrogen plasmas. However, all plasma gas conditions led to the deamidation of Asp and oxidation of Cys residues, suggesting an inactivation of MPO due to oxPTM-mediated conformational changes. Full article
Show Figures

Figure 1

13 pages, 2990 KiB  
Article
Schiff Base Derivatives in Zinc(II) and Cadmium(II) Complexation with the closo-Dodecaborate Anion
by Svetlana E. Nikiforova, Nadezhda A. Khan, Alexey S. Kubasov, Yurii V. Koshchienko, Anatolii S. Burlov, Lyudmila N. Divaeva, Lyudmila V. Goeva, Varvara V. Avdeeva, Elena A. Malinina and Nikolay T. Kuznetsov
Crystals 2023, 13(10), 1449; https://doi.org/10.3390/cryst13101449 - 29 Sep 2023
Cited by 2 | Viewed by 1193
Abstract
A series of Schiff base derivatives, namely N-(4-methoxyphenyl)-1-(1-methylbenzimidazol-2-yl)methanimine (L1), 4-methoxy-N-[(1-methylbenzimidazol-2-yl)methyl]aniline (L2), and 2-[(E)-(1-propylbenzimidazol-2-yl)iminomethyl]phenol (L3), were synthesized. These compounds feature different linker groups, including –CH=N–, –CH2–NH–, and –N=CH–, respectively. During the [...] Read more.
A series of Schiff base derivatives, namely N-(4-methoxyphenyl)-1-(1-methylbenzimidazol-2-yl)methanimine (L1), 4-methoxy-N-[(1-methylbenzimidazol-2-yl)methyl]aniline (L2), and 2-[(E)-(1-propylbenzimidazol-2-yl)iminomethyl]phenol (L3), were synthesized. These compounds feature different linker groups, including –CH=N–, –CH2–NH–, and –N=CH–, respectively. During the process of zinc(II) and cadmium(II) complexation in the presence of the closo-dodecaborate [B12H12]2– anion, it was observed that ligand L3 underwent degradation. Consequently, two compounds were isolated, [Zn(Bz-NH2)2(CH3COO)2] and (HBz-NH2)2[B12H12]∙2CH3CN, both containing 1-propyl-2-aminobenzimidazole (Bz-NH2), which is a degraded fragment of the ligand. Several new zinc(II) and cadmium(II) coordination compounds were synthesized and characterized using various physicochemical analysis methods, including elemental analysis, IR, and UV spectroscopy. Additionally, X-ray diffraction and Hirshfeld surface analysis were performed for compounds [Cd(L2)2(CH3CN)(H2O)][B12H12], [Zn(Bz-NH2)2(CH3COO)2], and (HBz-NH2)2[B12H12]∙2CH3CN, as well as for ligand L2. Full article
Show Figures

Figure 1

22 pages, 6332 KiB  
Article
Protonated Organic Diamines as Templates for Layered and Microporous Structures: Synthesis, Crystal Chemistry, and Structural Trends among the Compounds Formed in Aqueous Systems Transition Metal Halide or Nitrate–Diamine–Selenious Acid
by Dmitri O. Charkin, Evgeny V. Nazarchuk, Dmitri N. Dmitriev, Vasili Yu. Grishaev, Timofey A. Omelchenko, Darya V. Spiridonova and Oleg I. Siidra
Int. J. Mol. Sci. 2023, 24(18), 14202; https://doi.org/10.3390/ijms241814202 - 17 Sep 2023
Cited by 5 | Viewed by 1770
Abstract
Systematic studies of crystalline compounds formed in aqueous systems containing aliphatic diamines, divalent transition metal halides, and selenious acid resulted in the discovery of a large family of new complex species corresponding to several new structure types. With ethylenediamine (en), layered (enH2 [...] Read more.
Systematic studies of crystalline compounds formed in aqueous systems containing aliphatic diamines, divalent transition metal halides, and selenious acid resulted in the discovery of a large family of new complex species corresponding to several new structure types. With ethylenediamine (en), layered (enH2)[M(HSeO3)2X2] compounds are the most commonly formed species which constitute a significant contribution to the family of layered hydrogen selenites containing neutral [M(HSeO3)2] (M = Mg, Mn, Co, Ni, Cu, Zn, Cd) 2D building blocks. In contrast to some previous suggestions, piperazine (pip), as well as its homologue N-methylpiperazine, mostly give rise to quite different, sometimes more complex, structures of varied dimensionality while the (pipH2)[M(HSeO3)2X2] compounds are formed only with M = Cu and Cd. In addition, metal-, halide-, or selenium-free by-product species are observed. The SeIV can be present in a multitude of forms, including H2SeO3, HSeO3, SeO32−, and Se2O52−, reflecting amazing adaptability to the shape of the templating cations. Full article
Show Figures

Figure 1

Back to TopTop