Syntheses and Crystal Structures of Two Metal–Organic Frameworks Formed from Cd2+ Ions Bridged by Long, Flexible 1,7-bis(4-Pyridyl)heptane Ligands with Different Counter-Ions
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis and Characterisation
2.2. Crystal Structure Determinations
3. Results and Discussion
3.1. Structure of Compound 2
3.2. Structure of Compound 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.N.; Kim, Y. Two-dimensional structure of poly[[[l2-1,4-bis(pyridin-4-yl)butane]bis(l4-pentanedioato)dicopper(II)] acetonitrile disolvate]. IUCrData 2017, 2, x171448. [Google Scholar] [CrossRef]
- Plater, M.J.; Foreman, M.R.S.J.; Gelbrich, T.; Coles, S.J.; Hursthouse, M.B. Synthesis and characterisation of infinite co-ordination networks from flexible dipyridyl ligands and cadmium salts. J. Chem. Soc. Dalton Trans. 2000, 18, 3065–3073. [Google Scholar] [CrossRef]
- Li, D.-S.; Zhang, M.-L.; Zhao, J.; Wang, D.-J.; Zhang, P.; Wang, N.; Wang, Y.-Y. A novel 3D CdII-coordination framework with helical units in a mixed flexible ligand system: Encapsulating right-handed helical water chains. Inorg. Chem. Commun. 2009, 12, 1027–1030. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.-B.; Tan, Y.-X.; Wang, F.; Klang, Y.; Zhang, J. Structural Diversity and Photoluminescent Properties of Zinc Benzotriazole-5-carboxylate Coordination Polymers. Inorg. Chem. 2014, 53, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Plater, M.J.; Foreman, M.R.S.J.; Gelbrich, T.; Hursthouse, M.B. Synthesis and characterisation of infinite di- and tri-nuclear zinc co-ordination networks with flexible dipyridyl ligands. J. Chem. Soc. Dalton Trans. 2000, 1, 1995–2000. [Google Scholar] [CrossRef]
- Plater, M.J.; Gelbrich, T.; Hursthouse, M.B.; de Silva, B.M. Interpenetrating three-dimensional coordination networks with a rare 4-connected (65.8) topology and unusual geometrical features. Cryst. Eng. Comm. 2008, 10, 125–130. [Google Scholar] [CrossRef]
- Harrison, W.T.A.; Plater, M.J.; de Silva, B.M.; Foreman, M.R.S.J. Crystal structure of a layered coordination polymer based on a 44 net containing Cd2+ ions and 1,5-bis(pyridin-4-yl)pentane linkers. Acta Cryst. Sect. E Cryst. Commun. 2014, 70, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Plater, M.J.; Foreman, M.R.S.J.; Gelbrich, T.; Hursthouse, M.B. Synthesis and characterisation of infinite coordination networks with 1,6-bis(4-pyridyl)hexane and copper nitrate. Cryst. Eng. Commun. 2001, 4, 319–328. [Google Scholar] [CrossRef]
- Plater, M.J.; de Silva, B.M.; Foreman, M.R.S.J.; Harrison, W.T.A. Crystal structures of two one-dimensional coordination polymers constructed from Mn2+ ions, chelating hexafluoro-acetylacetonate anions, and flexible bipyridyl bridging ligands. J. Struct. Chem. 2016, 57, 1169–1175. [Google Scholar] [CrossRef]
- Plater, M.J.; Foreman, M.R.S.J.; Howie, R.A.; Skakle, J.M.S. Structures of Mn(II) thiocyanate co-ordination polymers from flexible bipyridyl ligands. Inorg. Chim. Acta 2001, 318, 175–180. [Google Scholar] [CrossRef]
- Plater, M.J.; Foreman, M.R.S.J.; Skakle, J.M.S. Synthesis of co-ordination networks from flexible bis(4-pyridyl) ligands and cadmium salts. Cryst. Eng. 2001, 4, 293–308. [Google Scholar] [CrossRef]
- Zhang, J.; Kumar Ghosh, M.; Yang, D.-C.; Muddassir, M.; Kumar Ghorai, T.; Jin, J.-C. A new 2,5-bis(pyrid-4-yl)pyridine based Mn(II) metal–organic framework on photochemically antibiotic degradation. Inorganica Org. Chim. Acta 2024, 569, 122132. [Google Scholar] [CrossRef]
- Mehlana, G.; Chitsa, V.; Mugazda, T. Recent advances in metal-organic frameworks based on pyridylbenzoate ligands: Properties and applications. RSC Adv. 2015, 5, 88218–88233. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.-N.; Dong, W.-W.; Wu, Y.-P.; Li, D.-S.; Zhang, Q.-C. A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules. Inorg. Chem. 2016, 55, 3265–3271. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, S.; Neary, M.C. An ionic Fe-based metal–organic-framework with 4′-pyridyl-2,2′:6′,2′′-terpyridine for catalytic hydroboration of alkynes. RSC Adv. 2023, 13, 2225–2232. [Google Scholar] [CrossRef]
- Guo, M.C.; Zhong, W.D.; Wu, T.; Han, W.-D.; Gao, X.-S.; Ren, X.-M. Two Bi-MOFs with pyridylmulticarboxylate ligands showing distinct crystal structures and phosphorescence properties. J. Sol. State Chem. 2022, 309, 123005. [Google Scholar] [CrossRef]
- Chao, M.Y.; Chen, J.; Wu, X.-Y.; Wang, R.-Y.; Wang, P.-P.; Ding, L.; Young, D.J.; Zhang, W.-H. Unconventional Pyridyl Ligand Inclusion within a Flexible Metal-Organic Framework Bearing an N,N′-Diethylformamide (DEF)-Solvated Cd5 Cluster Secondary Building Unit. ChemPlusChem 2020, 85, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F.R.; Xue, M.; Cui, Y.; Qian, G. A Luminescent Metal–Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angew. Chem. Int. Ed. Eng. 2009, 48, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Su, B.; Zhao, Q.; Lv, W.; Chen, L.; Huang, L.; Li, X.; Liao, S. Construction of pyridine-functionalized metal–organic frameworks for the detection of flazasulfuron. Acta Cryst. 2024, C80, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Ashiry, K.O.; Abbas, R.K. Synthesis and Characterization of a Metal-Organic Framework Bridged by Long Flexible Ligand. Open J. Poly. Chem. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Zhou, H.-L.; Zhou, D.D.; Liao, P.-Q.; Chen, X.-M. Controlling flexibility of metal–organic frameworks. Nat. Sci. Rev. 2018, 5, 907–919. [Google Scholar] [CrossRef]
- Zhu, D.; Li, H.; Su, Y.; Jiang, M. Pyridine-containing metal-organic frameworks as precursor for nitrogen-doped porous carbons with high-performance capacitive behavior. J. Solid State Electrochem. 2017, 21, 2037–2045. [Google Scholar] [CrossRef]
- Xiang, H.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Commun. 2012, 954, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, M. Are metal-organic frameworks at a commercial tipping point? CAS Insights, 5 December 2024. [Google Scholar]
- Arceo-Ruiz, H.; Xochitiotzi-Flores, E.; García-Ortega, H.; Farfán, N.; Santillan, R.; Rincón, S.; Zepeda, A. Synthesis of a New Co Metal–Organic Framework Assembled from 5,10,15,20-Tetrakis((pyridin-4-yl) phenyl)porphyrin “Co-MTPhPyP” and Its Application to the Removal of Heavy Metal Ions. Molecules 2023, 28, 1816. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Metal–Organic Framework Based on Pyridine-2,3-Dicarboxylate and a Flexible Bis-imidazole Ligand: Synthesis, Structure, and Photoluminescence. J. Inorg. Organomet. Polym. Mat. 2013, 23, 458–462. [Google Scholar] [CrossRef]
- Wong-Ng, W.; Culp, J.; Chen, Y.S.; Espinal, L.; Allen, A.J.; Siderius, D.; Brown, C.M.; Queen, W.L.; Zavalij, P.; Matranga, C. Flexible metal organic framework compound, Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]n, for CO2 sorption applications. Abstracts of Papers. In Proceedings of the 245th ACS National Meeting & Exposition, New Orleans, LA, USA, 7–11 April 2013. [Google Scholar]
- Yan, L.; Kuang, G.; Zhang, Q.; Shang, X.; Pei Nian Liu, P.N.; Lin, N. Self-assembly of a binodal metal–organic framework exhibiting a demi-regular lattice. Faraday Discuss. 2017, 204, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.T.A. Metal-organic frameworks of cobalt and nickel centers with carboxylate and pyridine functionality linkers: Thermal and physical properties; precursors for metal oxide nanoparticle preparation. J. Nanostruct. 2012, 2, 379–388. [Google Scholar]
- Siraj, I.T.; Spicer, M.D. Building Metal Organic Frameworks with Pyridine Fuctionalised Imidazolium Salts Spacers. Int. J. Chem. Eng. Appl. 2013, 4, 199–203. [Google Scholar] [CrossRef]
- Osilla Enabling Science. MOF Ligands for Sale. Available online: https://www.ossila.com/collections/mof-ligands (accessed on 10 December 2024).
- Feng, D.-D.; Zhao, Y.-D.; Wang, X.-Q.; Fang, D.-D.; Tang, J.; Fan, L.-M.; Yang, J. Two novel metal–organic frameworks based on pyridyl-imidazole-carboxyl multifunctional ligand: Selective CO2 capture and multi-responsive luminescence sensor. Dalton Trans. 2019, 48, 10892–10900. [Google Scholar] [CrossRef]
- Jampolsky, L.M.; Baum, M.; Kaiser, S.; Sternbach, L.H.; Goldberg, M.W. The Synthesis of 2,2′- and 4,4′-Polymethylenebipyridines. J. Am. Chem. Soc. 1952, 74 Pt 20, 5222–5224. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS97 and SHELXL97; Programs for Crystal Structure Solution and Refinement; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Nguyen, T.N. Bond Valence Sum: A Powerful Tool for Determination of Oxidation States of Metal Ions in Coordination Compounds. ChemRxiv Inorg. Chem. 2020, 5, 1–10. [Google Scholar]
- Gupta, M.; Vittal, J.J. Control of interpenetration and structural transformations in the interpenetrated MOFs. Coord. Chem. Rev. 2021, 435, 213789. [Google Scholar] [CrossRef]
2 | 3 | |
---|---|---|
Empirical formula | C53H76CdCl2N6O11 | C34H34CdN6O6 |
Mr | 1156.50 | 745.15 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21 (No. 4) | P21/n (No. 14) |
a (Å) | 11.1612 (3) | 23.0560 (3) |
b (Å) | 16.2897 (5) | 7.72740 (10) |
c (Å) | 15.3959 (5) | 30.3995 (6) |
β (°) | 95.1973 (11) | 102.8379 (7) |
V (Å3) | 2787.66 (15) | 5280.68 (14) |
Z | 2 | 6 |
ρcalc (g cm–3) | 1.378 | 1.406 |
μ (mm−1) | 0.550 | 0.672 |
Data collected (2θ < xx°) | 13,913 | 19,872 |
Unique data | 13,913 | 10,201 |
RInt | – * | 0.058 |
Flack parameter | 0.05 (3) | |
R (F) | 0.078 | 0.044 |
wR (F2) | 0.217 | 0.112 |
CCDC deposition number | 2,405,487 | 2,405,488 |
Cd1–O1 | 2.328 (6) | Cd1–N1 | 2.349 (5) | |
Cd1–N3 | 2.350 (6) | Cd1–O2 | 2.357 (7) | |
Cd1–N4 i | 2.357 (6) | Cd1–N2 ii | 2.359 (6) | |
C3–C6–C7–C8 | 61.9 (13) | C6–C7–C8–C9 | 173.8 (7) | |
C7–C8–C9–C10 | –171.3 (7) | C8–C9–C10–C11 | 178.9 (7) | |
C9–C10–C11–C12 | 74.5 (10) | C10–C11–C12–C15 | 173.1 (7) | |
C20–C23–C24–C25 | 61.7 (10) | C23–C24–C25–C26 | –177.8 (7) | |
C24–C25–C26–C27 | 178.2 (8) | C25–C26–C27–C28 | 179.3 (8) | |
C26–C27–C28–C29 | –178.1 (7) | C27–C28–C29–C32 | 174.8 (7) | |
C37–C40–C41–C42 | 174.9 (7) | C40–C41–C42–C43 | 175.0 (7) | |
C41–C42–C43–C44 | 53.8 (11) | C42–C43–C44–C45 | 163.2 (9) | |
C43–C44–C45–C46 | –69.9 (12) | C44–C45–C46–C49 | –171.2 (8) | |
O1–H1o⋯O8 iii | 0.85 | 2.03 | 2.877 (9) | 179 |
O1–H2o⋯N6 iii | 0.84 | 1.97 | 2.778 (10) | 163 |
O2–H3o⋯O6 iv | 0.86 | 2.09 | 2.787 (9) | 138 |
O2–H4o⋯N5 v | 0.84 | 2.04 | 2.760 (10) | 144 |
O11–H11o⋯O4 vi | 0.84 | 2.18 | 3.018 (10) | 174 |
C17–H17⋯O3 v | 0.95 | 2.55 | 3.253(12) | 131 |
C18–H18⋯O2 | 0.95 | 2.51 | 3.185 (11) | 128 |
C35–H35⋯O9 i | 0.95 | 2.57 | 3.429 (12) | 151 |
C47–H47⋯O5 vii | 0.95 | 2.53 | 3.422 (13) | 156 |
C51–H51⋯O9 | 0.95 | 2.58 | 3.376 (11) | 141 |
Cd1–O1 | 2.311 (2) | Cd1–N1 | 2.326 (3) | |
Cd1–O4 | 2.350 (2) | Cd1–N5 | 2.351 (3) | |
Cd1–N3 | 2.377 (3) | Cd1–N4 i | 2.385 (3) | |
Cd2–O7 | 2.310 (2) | Cd2–O7 ii | 2.310 (2) | |
Cd2–N6 iii | 2.331 (3) | Cd2–N6 iv | 2.331 (3) | |
Cd2–N2 | 2.370 (3) | Cd2–N2 ii | 2.370 (3) | |
C3–C6–C7–C8 | 65.2 (4) | C6–C7–C8–C9 | 170.7 (3) | |
C7–C8–C9–C10 | –55.9 (4) | C8–C9–C10–C11 | –53.9 (4) | |
C9–C10–C11–C12 | 176.2 (3) | C10–C11–C12–C15 | 70.0 (4) | |
C20–C23–C24–C25 | –65.4 (4) | C23–C24–C25–C26 | –169.1 (3) | |
C24–C25–C26–C27 | 66.8 (4) | C25–C26–C27–C28 | 175.5 (3) | |
C26–C27–C28–C29 | 174.1 (3) | C27–C28–C29–C32 | 176.5 (3) | |
C37–C40–C41–C42 | –173.5 (3) | C40–C41–C42–C43 | –172.6 (3) | |
C41–C42–C43–C44 | –64.7 (5) | C42–C43–C44–C45 | –170.6 (3) | |
C43–C44–C45–C46 | 63.5 (5) | C44–C45–C46–C49 | 162.3 (3) | |
C17–H17⋯N6 iv | 0.95 | 2.60 | 3.281 (4) | 129 |
C51–H51⋯O9 v | 0.95 | 2.51 | 3.297 (4) | 140 |
C2–H2⋯O4 vi | 0.95 | 2.50 | 3.208 (4) | 131 |
C5–H5⋯O4 | 0.95 | 2.57 | 3.225 (4) | 126 |
C11–H11B⋯O5 vii | 0.99 | 2.55 | 3.434 (4) | 148 |
C12–H12A⋯O6 vii | 0.99 | 2.54 | 3.411 (4) | 147 |
C14–H14⋯O8 viii | 0.95 | 2.56 | 3.203 (4) | 125 |
C47–H47⋯O7 iii | 0.95 | 2.51 | 3.191 (4) | 129 |
C47–H47⋯O8 iii | 0.95 | 2.52 | 3.438 (4) | 163 |
C18–H18⋯N4 i | 0.95 | 2.57 | 3.232 (4) | 127 |
C24–H24B⋯O9 ix | 0.99 | 2.47 | 3.261 (4) | 136 |
C31–H31⋯O9 x | 0.95 | 2.46 | 3.351 (5) | 157 |
C30–H30⋯O1 xi | 0.95 | 2.39 | 3.057 (4) | 127 |
C34–H34⋯O4 xi | 0.95 | 2.39 | 3.069 (4) | 128 |
C46–H46A⋯O3 xii | 0.99 | 2.41 | 3.287 (4) | 148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plater, M.J.; De Silva, B.M.; Foreman, M.R.S.J.; Harrison, W.T.A. Syntheses and Crystal Structures of Two Metal–Organic Frameworks Formed from Cd2+ Ions Bridged by Long, Flexible 1,7-bis(4-Pyridyl)heptane Ligands with Different Counter-Ions. Crystals 2024, 14, 1105. https://doi.org/10.3390/cryst14121105
Plater MJ, De Silva BM, Foreman MRSJ, Harrison WTA. Syntheses and Crystal Structures of Two Metal–Organic Frameworks Formed from Cd2+ Ions Bridged by Long, Flexible 1,7-bis(4-Pyridyl)heptane Ligands with Different Counter-Ions. Crystals. 2024; 14(12):1105. https://doi.org/10.3390/cryst14121105
Chicago/Turabian StylePlater, M. John, Ben M. De Silva, Mark R. St J. Foreman, and William T. A. Harrison. 2024. "Syntheses and Crystal Structures of Two Metal–Organic Frameworks Formed from Cd2+ Ions Bridged by Long, Flexible 1,7-bis(4-Pyridyl)heptane Ligands with Different Counter-Ions" Crystals 14, no. 12: 1105. https://doi.org/10.3390/cryst14121105
APA StylePlater, M. J., De Silva, B. M., Foreman, M. R. S. J., & Harrison, W. T. A. (2024). Syntheses and Crystal Structures of Two Metal–Organic Frameworks Formed from Cd2+ Ions Bridged by Long, Flexible 1,7-bis(4-Pyridyl)heptane Ligands with Different Counter-Ions. Crystals, 14(12), 1105. https://doi.org/10.3390/cryst14121105