Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Nurse-like cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 747 KiB  
Article
Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses
by Stefano Rizza, Luca Coppeta, Gianluigi Ferrazza, Alessandro Nucera, Maria Postorino, Andrea Quatrana, Cristiana Ferrari, Rossella Menghini, Susanna Longo, Andrea Magrini and Massimo Federici
Vaccines 2025, 13(7), 739; https://doi.org/10.3390/vaccines13070739 - 9 Jul 2025
Viewed by 360
Abstract
Background/Objectives: The COVID-19 pandemic has caused sickness and death among many health care workers. However, the apparent resistance of health care workers to SARS-CoV-2 infection despite their high-risk work environment remains unclear. To investigate if inflammation and circadian disruption contribute to resistance [...] Read more.
Background/Objectives: The COVID-19 pandemic has caused sickness and death among many health care workers. However, the apparent resistance of health care workers to SARS-CoV-2 infection despite their high-risk work environment remains unclear. To investigate if inflammation and circadian disruption contribute to resistance or diminished susceptibility to the SARS-CoV-2 virus, we retrospectively evaluated a cohort of volunteer hospital nurses (VHNs). Methods: A total of 246 apparently healthy VHNs (mean age 37.4 ± 5.9 years) who had received the BNT162b2 mRNA vaccine were asked to report their sleep quality, according to the Pittsburgh Sleep Quality Index, and number of SARS-CoV-2 infections during the observational study period (from the end of December 2020 to April 2025). The expression of inflammation-associated mediators and circadian transcription factors in peripheral blood mononuclear cells, as well as sleep quality, were examined. Results: Our findings revealed no anthropometric, biochemical, or inflammation-associated parameters but demonstrated significantly greater levels of NFE2L2, also known as nuclear factor erythroid-derived 2-like 2 (NFR2), gene expression in peripheral blood mononuclear cells among VHNs who had never been infected with SARS-CoV-2 (n = 97) than in VHNs with only one (n = 119) or with two or more (n = 35) prior SARS-CoV-2 infections (p < 0.01). This result was confirmed through one-to-one propensity score matching (p < 0.01). Moreover, NRF2 gene expression was not associated with the number of COVID-19 vaccinations (p = 0.598). Finally, NRF2 gene expression was higher among participants who reported better sleep quality (p < 0.01). Conclusions: Our findings suggest possible interactions among NRF2 gene expression, protection against SARS-CoV-2 infection, and the modulation of COVID-19 vaccination efficacy. Full article
(This article belongs to the Special Issue SARS-CoV-2 Pathogenesis, Vaccines and Therapeutics)
Show Figures

Figure 1

14 pages, 6571 KiB  
Article
Bacillus subtilis-Derived Surfactin Alleviates Offspring Intestinal Inflammatory Injuries Through Breast Milk
by Qi Zhang, Shuang Xie, Qiu Zhong, Xinyue Zhang, Liufang Luo and Qian Yang
Nutrients 2025, 17(6), 1009; https://doi.org/10.3390/nu17061009 - 13 Mar 2025
Viewed by 1021
Abstract
Background: Enteric and diarrheal diseases pose a significant threat to infant health, highlighting the importance of immune defenses in early life, especially maternal protection, in establishing a robust gastrointestinal environment. Surfactin, a bioactive peptide from Bacillus subtilis, has immunomodulatory properties, yet its [...] Read more.
Background: Enteric and diarrheal diseases pose a significant threat to infant health, highlighting the importance of immune defenses in early life, especially maternal protection, in establishing a robust gastrointestinal environment. Surfactin, a bioactive peptide from Bacillus subtilis, has immunomodulatory properties, yet its influence on offspring via maternal gut interference is not fully understood. This study examines the effects of maternal surfactin consumption on breast milk’s immunological properties and its consequent effects on neonatal intestinal health. Methods: Twenty-eight gravid mice were randomly categorized into two cohorts and were given surfactin or not in drinking water from one week after conception to 21 days postpartum. Cross-fostering experiments were conducted within 12 h after birth. Pups from the surfactin-supplemented dams were fostered and nursed by the control dams, while the pups from the control dams were nursed by the surfactin-supplemented dams. Results: The findings show that the pups from the surfactin-supplemented dams had increased body weight, improved intestinal morphology with longer villus and deeper crypts, the upregulation of genes related to mucins and antimicrobial peptides, and an increase in IgA+ and CD3+ T cells within the intestinal mucosa. Further, the cross-fostering experiments suggested that the pups nursed by the surfactin-supplemented dams gained more weight, had less intestinal damage, less inflammation, and lower oxidative stress levels induced by Salmonella typhimurium, indicating the immunological benefits of surfactin conveyed through breast milk. Additionally, the expression of pro-inflammatory factors, including nitric oxide, TNF-α, IL-1β, IL-6, MCP-1, and ROS, induced by LPS in the macrophages was significantly inhibited with milk from the surfactin-supplemented dam (MSD) treatment. Interestingly, the MSD treatment induced a shift in macrophage polarization from pro-inflammatory (M1-like) to anti-inflammatory (M2-like), evidenced by the decreased expression of IL-12p40 and iNOS and the increased expression of CD206, TGF-β, and Arg-1. In terms of mechanism, surfactin improved the contents of the anti-inflammatory factors IL-4, IL-10, and TGF-β in the breast milk. Conclusions: This research contributes to understanding how maternal interference can modulate breast milk composition, influence infant gastrointestinal development and immunity, and provide nutritional strategy insights. Full article
Show Figures

Figure 1

14 pages, 5301 KiB  
Article
A Small Molecule Antagonist of CX3CR1 (KAND567) Inhibited the Tumor Growth-Promoting Effect of Monocytes in Chronic Lymphocytic Leukemia (CLL)
by Wen Zhong, Parviz Kokhaei, Tom A. Mulder, Amineh Ghaderi, Ali Moshfegh, Jeanette Lundin, Marzia Palma, Johan Schultz, Thomas Olin, Anders Österborg, Håkan Mellstedt and Mohammad Hojjat-Farsangi
Cancers 2024, 16(22), 3821; https://doi.org/10.3390/cancers16223821 - 13 Nov 2024
Cited by 3 | Viewed by 1650
Abstract
Background/Objectives: Nurse-like cells (NLCs) derived from monocytes in the tumor microenvironment support the growth of chronic lymphocytic leukemia (CLL) cells. Here, we investigated the effects of a CX3CR1 (fractalkine receptor) antagonist (KAND567) on autologous monocytes and their pro-survival effects on CLL cells in [...] Read more.
Background/Objectives: Nurse-like cells (NLCs) derived from monocytes in the tumor microenvironment support the growth of chronic lymphocytic leukemia (CLL) cells. Here, we investigated the effects of a CX3CR1 (fractalkine receptor) antagonist (KAND567) on autologous monocytes and their pro-survival effects on CLL cells in vitro. Methods: Plasma concentration of CX3CL1 was determined by ELISA and CX3CR1 expression by flow cytometry. CD19+ cells and autologous monocytes from patients with CLL and healthy donors were treated with KAND567 either in co-culture or alone. The apoptosis of CD19+ cells and monocytes was determined by Annexin V/PI staining and live-cell imaging. Results: Plasma concentration of CX3CL1 (fractalkine) was significantly higher in patients with CLL (n = 88) than in healthy donors (n = 32) (p < 0.0001), with higher levels in patients with active compared to non-active disease (p < 0.01). CX3CR1 was found on monocytes but not B cells in patients and controls. Levels of intermediate and non-classical CX3CR1+ monocytes were higher in patients with CLL than in controls (p < 0.001), particularly in those with active disease (p < 0.0001). Co-culture experiments revealed that autologous monocytes promoted the survival of both malignant and normal B cells and that KAND567 selectively inhibited the growth of CLL cells in a dose-dependent manner but only in the presence of autologous monocytes (p < 0.05). Additionally, KAND567 inhibited the transition of monocytes to NLCs in CLL (p < 0.05). Conclusions: Our data suggest that the CX3CR1/CX3CL1 axis is activated in CLL and may contribute to the NLC-driven growth-promoting effects of CLL cells. KAND567, which is in clinical trials in other disorders, should also be explored in CLL. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 2006 KiB  
Article
Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence
by Geoffrey Deneubourg, Lionel Schiavolin, Dalila Lakhloufi, Gwenaelle Botquin, Valérie Delforge, Mark R. Davies, Pierre R. Smeesters and Anne Botteaux
Microorganisms 2024, 12(11), 2209; https://doi.org/10.3390/microorganisms12112209 - 31 Oct 2024
Viewed by 1301
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is responsible for over 500,000 deaths per year. Approximately 15% of these deaths are caused by necrotizing soft-tissue infections. In 2008, we isolated an M5 GAS, named the LO1 strain, responsible for the nosocomial transmission [...] Read more.
Streptococcus pyogenes, or Group A Streptococcus (GAS), is responsible for over 500,000 deaths per year. Approximately 15% of these deaths are caused by necrotizing soft-tissue infections. In 2008, we isolated an M5 GAS, named the LO1 strain, responsible for the nosocomial transmission of necrotizing fasciitis between a baby and a nurse in Belgium. To understand this unusual transmission route, the LO1 strain was sequenced. A comparison of the LO1 genome and transcriptome with the reference M5 Manfredo strain was conducted. We found that the major differences were the presence of an additional DNase and a Tn916-like transposon in the LO1 and other invasive M5 genomes. RNA-seq analysis showed that genes present on the transposon were barely expressed. In contrast, the DNases presented different expression profiles depending on the tested conditions. We generated knock-out mutants in the LO1 background and characterized their virulence phenotype. We also determined their nuclease activity on different substrates. We found that DNases are dispensable for biofilm formation and adhesion to both keratinocytes and pharyngeal cells. Three of these were found to be essential for blood survival; Spd4 and Sdn are implicated in phagocytosis resistance, and Spd1 is responsible for neutrophil extracellular trap (NET) degradation. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

13 pages, 2060 KiB  
Article
Active Hexose-Correlated Compound Shows Direct and Indirect Effects against Chronic Lymphocytic Leukemia
by Giovanna Merchand-Reyes, Ramasamy Santhanam, Maria L. Valencia-Pena, Krishan Kumar, Xiaokui Mo, Tesfaye Belay, Jennifer A. Woyach, Bethany Mundy-Bosse, Susheela Tridandapani and Jonathan P. Butchar
Nutrients 2023, 15(24), 5138; https://doi.org/10.3390/nu15245138 - 18 Dec 2023
Viewed by 3290
Abstract
Chronic lymphocytic leukemia (CLL) is a disease characterized by the accumulation of mature CD19+CD5+CD23+ B cells in the bloodstream and in lymphoid organs. It usually affects people over 70 years of age, which limits the options for treatments. [...] Read more.
Chronic lymphocytic leukemia (CLL) is a disease characterized by the accumulation of mature CD19+CD5+CD23+ B cells in the bloodstream and in lymphoid organs. It usually affects people over 70 years of age, which limits the options for treatments. The disease is typically well-managed, but to date is still incurable. Hence, the need for novel therapeutic strategies remains. Nurse-like cells (NLCs) are major components of the microenvironment for CLL, supporting tumor cell survival, proliferation, and even drug resistance. They are of myeloid lineage, guided toward differentiating into their tumor-supportive role by the CLL cells themselves. As such, they are analogous to tumor-associated macrophages and represent a major therapeutic target. Previously, it was found that a mushroom extract, Active Hexose-Correlated Compound (AHCC), promoted the death of acute myeloid leukemia cells while preserving normal monocytes. Given these findings, it was asked whether AHCC might have a similar effect on the abnormally differentiated myeloid-lineage NLCs in CLL. CLL-patient PBMCs were treated with AHCC, and it was found that AHCC treatment showed a direct toxic effect against isolated CLL cells. In addition, it significantly reduced the number of tumor-supportive NLCs and altered their phenotype. The effects of AHCC were then tested in the Eµ-TCL1 mouse model of CLL and the MllPTD/WT Flt3ITD/WT model of AML. Results showed that AHCC not only reduced tumor load and increased survival in the CLL and AML models, but it also enhanced antitumor antibody treatment in the CLL model. These results suggest that AHCC has direct and indirect effects against CLL and that it may be of benefit when combined with existing treatments. Full article
(This article belongs to the Special Issue Natural Products and Cancer: 2nd Edition)
Show Figures

Figure 1

24 pages, 1709 KiB  
Article
How We Manage Patients with Indolent B-Cell Malignancies on Bruton’s Tyrosine Kinase Inhibitors: Practical Considerations for Nurses and Pharmacists
by Shannon Nixon, Dominic Duquette, Sarah Doucette and Jean-Francois Larouche
Curr. Oncol. 2023, 30(4), 4222-4245; https://doi.org/10.3390/curroncol30040322 - 18 Apr 2023
Cited by 1 | Viewed by 5071
Abstract
The most common forms of B-cell malignancy, non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL), have seen a drastic shift in the treatment landscape over the last two decades with the introduction of targeted agents. Among them are Bruton’s tyrosine kinase (BTK) inhibitors, [...] Read more.
The most common forms of B-cell malignancy, non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL), have seen a drastic shift in the treatment landscape over the last two decades with the introduction of targeted agents. Among them are Bruton’s tyrosine kinase (BTK) inhibitors, which have demonstrated excellent efficacy in indolent B-cell NHLs and CLL. Although BTK inhibitors are generally thought to be more tolerable than chemoimmunotherapy, they are associated with a unique safety profile including varying rates of rash, diarrhea, musculoskeletal events, cardiovascular events, and bleeding. Ibrutinib was the first BTK inhibitor to gain a Health Canada indication, followed by second-generation BTK inhibitors acalabrutinib and zanubrutinib, which have better safety profiles compared to ibrutinib, likely due to their improved selectivity for BTK. As BTK inhibitors are oral agents given continuously until disease progression, long-term adverse event (AE) monitoring and management as well as polypharmacy considerations are important for maintaining patient quality of life. This paper intends to serve as a reference for Canadian nurses and pharmacists on dosing, co-administration, and AE management strategies when caring for patients with indolent B-cell NHL or CLL being treated with BTK inhibitors. Full article
Show Figures

Figure 1

19 pages, 5986 KiB  
Article
Aspirin Inhibition of Prostaglandin Synthesis Impairs Mosquito Egg Development
by Duyeol Choi, Md. Abdullah Al Baki, Shabbir Ahmed and Yonggyun Kim
Cells 2022, 11(24), 4092; https://doi.org/10.3390/cells11244092 - 16 Dec 2022
Cited by 7 | Viewed by 3321
Abstract
Several endocrine signals mediate mosquito egg development, including 20-hydroxyecdysone (20E). This study reports on prostaglandin E2 (PGE2) as an additional, but core, mediator of oogenesis in a human disease-vectoring mosquito, Aedes albopictus. Injection of aspirin (an inhibitor of cyclooxygenase [...] Read more.
Several endocrine signals mediate mosquito egg development, including 20-hydroxyecdysone (20E). This study reports on prostaglandin E2 (PGE2) as an additional, but core, mediator of oogenesis in a human disease-vectoring mosquito, Aedes albopictus. Injection of aspirin (an inhibitor of cyclooxygenase (COX)) after blood-feeding (BF) inhibited oogenesis by preventing nurse cell dumping into a growing oocyte. The inhibitory effect was rescued by PGE2 addition. PGE2 was found to be rich in nurse cells and follicular epithelium after BF. RNA interference (RNAi) treatments of PG biosynthetic genes, including PLA2 and two COX-like peroxidases, prevented egg development. Interestingly, 20E treatment significantly increased the expressions of PG biosynthetic genes, while the RNAi of Shade (which is a 20E biosynthetic gene) expression prevented inducible expressions after BF. Furthermore, RNAi treatments of PGE2 receptor genes suppressed egg production, even under PGE2. These results suggest that a signaling pathway of BF-20E-PGE2 is required for early vitellogenesis in the mosquito. Full article
(This article belongs to the Special Issue Cellular Events in Insect Development, Immunity, and Reproduction)
Show Figures

Figure 1

13 pages, 361 KiB  
Article
The Influence of Parental Environmental Exposure and Nutrient Restriction on the Early Life of Offspring Growth in Gambia—A Pilot Study
by Ousman Bajinka, Amadou Barrow, Sang Mendy, Binta J. J. Jallow, Jarry Jallow, Sulayman Barrow, Ousman Bah, Saikou Camara, Modou Lamin Colley, Sankung Nyabally, Amie N. Joof, Mingming Qi and Yurong Tan
Int. J. Environ. Res. Public Health 2022, 19(20), 13045; https://doi.org/10.3390/ijerph192013045 - 11 Oct 2022
Cited by 2 | Viewed by 2294
Abstract
Background: The role of the germline in epigenetic transgenerational inheritance starts with environmental factors, acting on the first generation of a gestating mother. These factors influence the developing second-generation fetus by altering gonadal development, thereby reprogramming the primordial germ cell DNA methylation and [...] Read more.
Background: The role of the germline in epigenetic transgenerational inheritance starts with environmental factors, acting on the first generation of a gestating mother. These factors influence the developing second-generation fetus by altering gonadal development, thereby reprogramming the primordial germ cell DNA methylation and leading to consequences that might be seen along generations. Objective: Despite these epigenetic factors now surfacing, the few available studies are on animal-based experiments, and conducting a follow-up on human intergenerational trials might take decades. To this response, this study aimed to determine the influence of parental energy, toxicant exposure, age, and nutrient restriction on the early life of offspring growth in Gambia. Method: This pilot study was based on population observation and combined both maternal and paternal factors across the country between August and October 2021. It captures the lifestyle and health detailed account of 339 reproductive parents and their last born (child under 5 years) using a structured interview questionnaire performed by nurses and public health officers. Results: This study showed that parents who worked in industrial areas were more likely to have offspring with poor psychosocial skills. In addition, mothers who are exposed to oxidative stress and high temperatures are more likely to have offspring with poor psychosocial skills. Mothers who consume a high-protein diet were almost three times more likely to have infants with good psychosocial skills in their offspring. Furthermore, there was a negative correlation between maternal stress during pregnancy and the psychosocial skills of offspring. Conclusion: This study was able to ascertain if the maternal diet during gestation, toxicant exposure, maternal stress, and parental smoking habits have an influence on the early life of offspring. While the study recommends a large sample size study to eliminate selection bias, there should be an increased level of awareness of mothers of their offspring’s health and their husbands’ lifestyles that might influence the adulthood health of their offspring. Full article
13 pages, 2812 KiB  
Article
BTK Inhibitors Impair Platelet-Mediated Antifungal Activity
by Vincenzo Nasillo, Ivana Lagreca, Daniela Vallerini, Patrizia Barozzi, Giovanni Riva, Monica Maccaferri, Ambra Paolini, Fabio Forghieri, Stefania Fiorcari, Rossana Maffei, Silvia Martinelli, Claudio Giacinto Atene, Ilaria Castelli, Roberto Marasca, Leonardo Potenza, Patrizia Comoli, Rossella Manfredini, Enrico Tagliafico, Tommaso Trenti and Mario Luppi
Cells 2022, 11(6), 1003; https://doi.org/10.3390/cells11061003 - 16 Mar 2022
Cited by 13 | Viewed by 3678
Abstract
In recent years, the introduction of new drugs targeting Bruton’s tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an [...] Read more.
In recent years, the introduction of new drugs targeting Bruton’s tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an increasing number of reports have described the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA). BTK represents a crucial molecule in several signaling pathways depending on different immune receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils, monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the control of fungal growth, through granule-dependent mechanisms, was described in vitro almost two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the present study, we confirm the antifungal role of platelets, and we show, for the first time, that the exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients. Full article
(This article belongs to the Special Issue State-of-Art in Aspergillus)
Show Figures

Graphical abstract

15 pages, 15858 KiB  
Article
IL-10 Rescues CLL Survival through Repolarization of Inflammatory Nurse-like Cells
by Marcin Domagala, Loïc Ysebaert, Laetitia Ligat, Frederic Lopez, Jean-Jacques Fournié, Camille Laurent and Mary Poupot
Cancers 2022, 14(1), 16; https://doi.org/10.3390/cancers14010016 - 21 Dec 2021
Cited by 12 | Viewed by 3390
Abstract
Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high viability of leukemic [...] Read more.
Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high viability of leukemic cells in vitro, in some cases this protective effect is absent. These macrophages are characterized by an “M1-like phenotype”. We show here that their reprogramming towards an M2-like phenotype (tumor-supportive) with IL-10 leads to an increase in leukemic cell survival. Inflammatory cytokines, such as TNF, are also able to depolarize M2-type protective NLC (decreasing CLL cell viability), an effect which is countered by IL-10 or blocking antibodies. Interestingly, both IL-10 and TNF are implied in the pathophysiology of CLL and their elevated level is associated with bad prognosis. We propose that the molecular balance between these two cytokines in CLL niches plays an important role in the maintenance of the protective phenotype of NLCs, and therefore in the survival of CLL cells. Full article
(This article belongs to the Special Issue Targeting the Innate Immune Cells in Cancers)
Show Figures

Figure 1

17 pages, 3305 KiB  
Article
Bone Marrow-Mesenchymal Stromal Cell Secretome as Conditioned Medium Relieves Experimental Skeletal Muscle Damage Induced by Ex Vivo Eccentric Contraction
by Roberta Squecco, Alessia Tani, Flaminia Chellini, Rachele Garella, Eglantina Idrizaj, Irene Rosa, Sandra Zecchi-Orlandini, Mirko Manetti and Chiara Sassoli
Int. J. Mol. Sci. 2021, 22(7), 3645; https://doi.org/10.3390/ijms22073645 - 31 Mar 2021
Cited by 13 | Viewed by 3304
Abstract
Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined [...] Read more.
Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties’ modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a “nursing” role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine. Full article
(This article belongs to the Special Issue Molecular Morphology and Function of Stromal Cells)
Show Figures

Graphical abstract

12 pages, 2362 KiB  
Review
Nurse-Like Cells and Chronic Lymphocytic Leukemia B Cells: A Mutualistic Crosstalk inside Tissue Microenvironments
by Stefania Fiorcari, Rossana Maffei, Claudio Giacinto Atene, Leonardo Potenza, Mario Luppi and Roberto Marasca
Cells 2021, 10(2), 217; https://doi.org/10.3390/cells10020217 - 22 Jan 2021
Cited by 25 | Viewed by 5545
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is an example of hematological disease where cooperation between genetic defects and tumor microenvironmental interaction is involved in pathogenesis. CLL is a disease that is considered as “addicted to [...] Read more.
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is an example of hematological disease where cooperation between genetic defects and tumor microenvironmental interaction is involved in pathogenesis. CLL is a disease that is considered as “addicted to the host”; indeed, the crosstalk between leukemic cells and the tumor microenvironment is essential for leukemic clone maintenance supporting CLL cells’ survival, proliferation, and protection from drug-induced apoptosis. CLL cells are not innocent bystanders but actively model and manipulate the surrounding microenvironment to their own advantage. Besides the different players involved in this crosstalk, nurse-like cells (NLC) resemble features related to leukemia-associated macrophages with an important function in preserving CLL cell survival and supporting an immunosuppressive microenvironment. This review provides a comprehensive overview of the role played by NLC in creating a nurturing and permissive milieu for CLL cells, illustrating the therapeutic possibilities in order to specifically target and re-educate them. Full article
(This article belongs to the Special Issue Programmed Cell Death in Health and Disease)
Show Figures

Figure 1

23 pages, 1163 KiB  
Article
Insights on TAM Formation from a Boolean Model of Macrophage Polarization Based on In Vitro Studies
by Malvina Marku, Nina Verstraete, Flavien Raynal, Miguel Madrid-Mencía, Marcin Domagala, Jean-Jacques Fournié, Loïc Ysebaert, Mary Poupot and Vera Pancaldi
Cancers 2020, 12(12), 3664; https://doi.org/10.3390/cancers12123664 - 7 Dec 2020
Cited by 11 | Viewed by 5090
Abstract
The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The [...] Read more.
The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on tumour progression is highly important. In this paper, we perform a comprehensive analysis of a macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage polarization network based on literature, extending it to include important stimuli in a tumour setting, and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented macrophage phenotypes and their dependencies on specific receptors and transcription factors, while also unravelling the formation of a special type of tumour associated macrophages in an in vitro model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new therapeutic targets that could control the formation of tumour associated macrophages in patients. Full article
(This article belongs to the Special Issue Cancer Modeling and Network Biology)
Show Figures

Graphical abstract

17 pages, 773 KiB  
Review
Macrophage Polarization in Chronic Lymphocytic Leukemia: Nurse-Like Cells Are the Caretakers of Leukemic Cells
by Oana Mesaros, Laura Jimbu, Alexandra Neaga, Cristian Popescu, Iulia Berceanu, Ciprian Tomuleasa, Bogdan Fetica and Mihnea Zdrenghea
Biomedicines 2020, 8(11), 516; https://doi.org/10.3390/biomedicines8110516 - 19 Nov 2020
Cited by 15 | Viewed by 4431
Abstract
Macrophages are terminally differentiated innate immune cells. Through their activation, they can be polarized towards the pro-inflammatory M1 type or the wound healing-associated, anti-inflammatory M2 type macrophages. In the tumor microenvironment (TME), M2 is the dominant phenotype and these cells are referred to [...] Read more.
Macrophages are terminally differentiated innate immune cells. Through their activation, they can be polarized towards the pro-inflammatory M1 type or the wound healing-associated, anti-inflammatory M2 type macrophages. In the tumor microenvironment (TME), M2 is the dominant phenotype and these cells are referred to as tumor-associated macrophages (TAMs). TAMs secrete cytokines and chemokines, exerting an antiapoptotic, proliferative and pro-metastatic effect on the tumor cells. TAMs can be found in many cancers, including chronic lymphocytic leukemia (CLL), where they are called nurse-like cells (NLCs). Despite the generally indolent behavior of CLL, the proportion of treatment-refractory patients is significant. As with the majority of cancers, despite significant recent progress, CLL pathogenesis is poorly understood. The emerging role of the TME in nurturing the neoplastic process warrants the investigation of macrophages as a significant pathogenetic element of tumors. In this paper, we review the current knowledge on the role of stromal macrophages in CLL. Full article
(This article belongs to the Special Issue Macrophages in Health and Non-infectious Disease)
Show Figures

Figure 1

14 pages, 4093 KiB  
Article
GAGA Regulates Border Cell Migration in Drosophila
by Anna A. Ogienko, Lyubov A. Yarinich, Elena V. Fedorova, Natalya V. Dorogova, Sergey I. Bayborodin, Elina M. Baricheva and Alexey V. Pindyurin
Int. J. Mol. Sci. 2020, 21(20), 7468; https://doi.org/10.3390/ijms21207468 - 10 Oct 2020
Cited by 4 | Viewed by 3722
Abstract
Collective cell migration is a complex process that happens during normal development of many multicellular organisms, as well as during oncological transformations. In Drosophila oogenesis, a small set of follicle cells originally located at the anterior tip of each egg chamber become motile [...] Read more.
Collective cell migration is a complex process that happens during normal development of many multicellular organisms, as well as during oncological transformations. In Drosophila oogenesis, a small set of follicle cells originally located at the anterior tip of each egg chamber become motile and migrate as a cluster through nurse cells toward the oocyte. These specialized cells are referred to as border cells (BCs) and provide a simple and convenient model system to study collective cell migration. The process is known to be complexly regulated at different levels and the product of the slow border cells (slbo) gene, the C/EBP transcription factor, is one of the key elements in this process. However, little is known about the regulation of slbo expression. On the other hand, the ubiquitously expressed transcription factor GAGA, which is encoded by the Trithorax-like (Trl) gene was previously demonstrated to be important for Drosophila oogenesis. Here, we found that Trl mutations cause substantial defects in BC migration. Partially, these defects are explained by the reduced level of slbo expression in BCs. Additionally, a strong genetic interaction between Trl and slbo mutants, along with the presence of putative GAGA binding sites within the slbo promoter and enhancer, suggests the direct regulation of this gene by GAGA. This idea is supported by the reduction in the slbo-Gal4-driven GFP expression within BC clusters in Trl mutant background. However, the inability of slbo overexpression to compensate defects in BC migration caused by Trl mutations suggests that there are other GAGA target genes contributing to this process. Taken together, the results define GAGA as another important regulator of BC migration in Drosophila oogenesis. Full article
(This article belongs to the Special Issue Cell Adhesion and Migration in Health and Diseases)
Show Figures

Figure 1

Back to TopTop