Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = Nucleosome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2227 KiB  
Article
Divergent Mechanisms of H2AZ.1 and H2AZ.2 in PRC1-Mediated H2A Ubiquitination
by Xiangyu Shen, Chunxu Chen, Amanda E. Jones, Xiaokun Jian, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(15), 1133; https://doi.org/10.3390/cells14151133 - 23 Jul 2025
Viewed by 265
Abstract
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. [...] Read more.
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. In this study, we employed isoform-specific epitope-tagged knock-in mouse embryonic stem cell (ESC) lines to dissect the roles of each isoform in Polycomb Repressive Complex 1 (PRC1)-mediated H2AK119ub. Our results show that H2AZ.1 and H2AZ.2 share highly overlapping genomic binding profiles, both co-localizing extensively with H2AK119ub-enriched loci. The knockdown of either isoform led to reduced H2AK119ub levels; however, the two isoforms appear to function through distinct mechanisms. H2AZ.1 facilitates the recruitment of Ring1B, the catalytic subunit of PRC1, thereby promoting the deposition of H2AK119ub. In contrast, H2AZ.2 does not significantly affect Ring1B recruitment but instead functions as a structural component that stabilizes H2AK119ub-modified nucleosomes. In vitro ubiquitination assays indicate that H2AZ.1-containing nucleosomes serve as more efficient substrates for PRC1-mediated ubiquitination compared to those containing H2AZ.2. Thus, these findings define the distinct mechanisms of the two H2AZ variants in regulated PRC1-mediated H2AK119 ubiquitination and highlight a functional division of labor in epigenetic regulation. Full article
Show Figures

Figure 1

30 pages, 2320 KiB  
Review
HDACs and Their Inhibitors on Post-Translational Modifications: The Regulation of Cardiovascular Disease
by Siyi Yang, Yidong Sun and Wei Yu
Cells 2025, 14(14), 1116; https://doi.org/10.3390/cells14141116 - 20 Jul 2025
Viewed by 604
Abstract
Cardiovascular diseases (CVD), such as myocardial hypertrophy, heart failure, atherosclerosis, and myocardial ischemia/reperfusion (I/R) injury, are among the major threats to human health worldwide. Post-translational modifications alter the function of proteins through dynamic chemical modification after synthesis. This mechanism not only plays an [...] Read more.
Cardiovascular diseases (CVD), such as myocardial hypertrophy, heart failure, atherosclerosis, and myocardial ischemia/reperfusion (I/R) injury, are among the major threats to human health worldwide. Post-translational modifications alter the function of proteins through dynamic chemical modification after synthesis. This mechanism not only plays an important role in maintaining homeostasis and plays a crucial role in maintaining normal cardiovascular function, but is also closely related to the pathological state of various diseases. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of gene expression, and play important roles in post-translational modification by catalyzing the deacetylation of key lysine residues in nucleosomal histones, which are closely associated with the occurrence and development of cardiovascular diseases. Recent studies indicate that HDAC inhibitors (HDACis) may represent a new class of drugs for the treatment of cardiovascular diseases by influencing post-translational modifications. In this review, we systematically summarize the mechanism of action of HDACs and HDACis in post-translational modifications related to common cardiovascular diseases, providing new ideas for the treatment of CVD, and explore possible future research directions on the relationship between HDAC and HDACi in post-translational modifications and cardiovascular diseases. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

47 pages, 2075 KiB  
Review
Epigenetic Dysregulation in Cancer: Implications for Gene Expression and DNA Repair-Associated Pathways
by Nina Rembiałkowska, Katarzyna Rekiel, Piotr Urbanowicz, Mateusz Mamala, Karolina Marczuk, Maria Wojtaszek, Marta Żywica, Eivina Radzevičiūtė-Valčiukė, Vitalij Novickij and Julita Kulbacka
Int. J. Mol. Sci. 2025, 26(13), 6531; https://doi.org/10.3390/ijms26136531 - 7 Jul 2025
Viewed by 993
Abstract
Epigenetic modifications are heritable, reversible alterations that causally reshape chromatin architecture and thereby influence DNA repair without changing nucleotide sequence. DNA methylation, histone modifications and non-coding RNAs profoundly influence DNA repair mechanisms and genomic stability. Aberrant epigenetic patterns in cancer compromise DNA damage [...] Read more.
Epigenetic modifications are heritable, reversible alterations that causally reshape chromatin architecture and thereby influence DNA repair without changing nucleotide sequence. DNA methylation, histone modifications and non-coding RNAs profoundly influence DNA repair mechanisms and genomic stability. Aberrant epigenetic patterns in cancer compromise DNA damage recognition and repair, therefore impairing homologous recombination (HR), non-homologous end joining (NHEJ), and base excision repair (BER) by suppressing key repair genes and lowering access to repair sites. Then it is dissected how loss-of-function mutations in Switch/Sucrose non-fermentable, imitation switch and CHD (Chromodomain helicase DNA-binding) chromatin-remodeling complexes impair nucleosome repositioning, preventing effective damage sensing and assembly of repair machinery. Non-coding RNAs contribute to epigenetic silencing at DNA break sites, exacerbating repair deficiencies. This review evaluates recent advances concerning epigenetic dysfunction and DNA repair impairment. It is also highlighted that nanoparticle-mediated delivery strategies are designed to overcome pharmacologic resistance. It is presented how epigenetic dysregulation of DNA repair can guide more effective and drug-resistant cancer therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Markers of Cancer)
Show Figures

Figure 1

15 pages, 831 KiB  
Article
Overcoming Multidrug Resistance Using DNA-Localized Auger Emitters: A Comparative Analysis of Radiotoxicity in Breast Cancer Cells
by Klaus Schomäcker, Beate Zimmermanns, Thomas Fischer, Markus Dietlein, Ferdinand Sudbrock, Feodor Braun, Felix Dietlein, Melanie von Brandenstein and Alexander Drzezga
Int. J. Mol. Sci. 2025, 26(13), 5958; https://doi.org/10.3390/ijms26135958 - 20 Jun 2025
Viewed by 389
Abstract
Multidrug resistance (MDR) represents a major obstacle to successful chemotherapy and, due to overlapping defense mechanisms, such as enhanced DNA repair and the evasion of apoptosis, can also be associated with radioresistance. In this study, we investigated whether MDR breast cancer cells (MCF-7/CMF) [...] Read more.
Multidrug resistance (MDR) represents a major obstacle to successful chemotherapy and, due to overlapping defense mechanisms, such as enhanced DNA repair and the evasion of apoptosis, can also be associated with radioresistance. In this study, we investigated whether MDR breast cancer cells (MCF-7/CMF) exhibit reduced susceptibility to radiation-induced DNA fragmentation compared to their non-resistant parental counterpart (MCF-7). Using a nucleosome-based ELISA, we quantified the chromatin fragmentation in MCF-7 and MCF-7/CMF cells following their exposure to four radiopharmaceuticals: [99mTc]pertechnetate, [131I]NaI (sodium iodide), [125I]NaI, and the DNA-incorporating compound [125I]iododeoxyuridine ([125I]IdU). Each radioactive preparation was assessed across a range of activity concentrations, using a two-way ANOVA. For [99mTc]pertechnetate and [131I]NaI, significantly higher DNA fragmentation was observed in the sensitive cell line, whereas [125I]NaI showed no significant difference between the two phenotypes. In contrast to the other radiopharmaceuticals, [125I]IdU induced greater fragmentation in resistant cells. This finding was supported by the statistical analysis (a 63.7% increase) and visualized in the corresponding dose–response plots. These results highlight the critical role of the intranuclear enrichment of Auger emitters and support further development of radiopharmaceuticals in accordance with this principle. Our data suggest that radiotoxicity is governed not by linear energy transfer (LET) alone, but, fundamentally, by the spatial proximity of the radionuclide to the DNA. Targeting tumor cell DNA with precision radiotherapeutics may, therefore, offer a rational strategy to overcome MDR in breast cancer. Full article
Show Figures

Figure 1

12 pages, 252 KiB  
Article
Antibody Profile of Systemic Sclerosis and Mixed Connective Tissue Disease and Its Relationship with Lung Fibrosis and Pulmonary Hypertension
by Karolina Niklas, Dorota Sikorska, Tatiana Mularek-Kubzdela, Joanna Witoszyńska-Sobkowiak, Iwona Żychowska and Włodzimierz Samborski
Int. J. Mol. Sci. 2025, 26(12), 5684; https://doi.org/10.3390/ijms26125684 - 13 Jun 2025
Viewed by 809
Abstract
The most serious complications of systemic sclerosis (SSc) and mixed connective tissue disease (MCTD) include lung fibrosis (LF) and pulmonary hypertension (PH). The aim of this study was to find any association between the serological profile and the incidence of these complications. The [...] Read more.
The most serious complications of systemic sclerosis (SSc) and mixed connective tissue disease (MCTD) include lung fibrosis (LF) and pulmonary hypertension (PH). The aim of this study was to find any association between the serological profile and the incidence of these complications. The tested group included 121 persons (87 SSc, 34 MCTD); mean age 55.6 ± 13.4 years. Patients were qualified for the LF presence group based on HRCT. Likelihood of PH was determined using echocardiography. The presence of antinuclear antibodies (ANA) was assessed using indirect immunofluorescence, ANA-profile, sclerosis-profile (using EUROIMMUN kits), and antiphospholipid antibodies (aPL) (using the ELISA method). Distribution of individual antibody types was at a level similar to the previously described groups in the Polish population and differed from the American and African population. A positive correlation was found between LF and the presence of anti-Scl-70 (p = 0.024) antibodies, negative correlation was found between LF and the presence of anti-histone (p = 0.03), anti-centromere A (p = 0.009), anti-centromere B (p = 0.014), and anti-nucleosomes (p = 0.03) antibodies. No correlation between the presence of aPL and the above complications was found. The prevalence of individual antibody types in SSc and MCTD may have ethnic and geographical grounds. Scl-70 antibodies correlate positively with LF. Anti-centromere, anti-histone, and anti-nucleosome antibodies reduce its risk. No correlation between aPL and the occurrence of LF and elevated PH risk was found. Full article
21 pages, 1376 KiB  
Review
Captain Tardigrade and Its Shield to Protect DNA
by Silvia Cantara, Tommaso Regoli and Claudia Ricci
DNA 2025, 5(2), 27; https://doi.org/10.3390/dna5020027 - 3 Jun 2025
Viewed by 1267
Abstract
Tardigrades, also known as “water bears”, are microscopic invertebrates capable of surviving extreme conditions, including extreme temperatures, intense radiation, and the vacuum of space. Recent studies have unveiled a novel nucleosome-binding protein in the tardigrade Ramazzottius varieornatus, known as the damage suppressor [...] Read more.
Tardigrades, also known as “water bears”, are microscopic invertebrates capable of surviving extreme conditions, including extreme temperatures, intense radiation, and the vacuum of space. Recent studies have unveiled a novel nucleosome-binding protein in the tardigrade Ramazzottius varieornatus, known as the damage suppressor protein (Dsup). This protein has proven essential for enabling tardigrades to thrive in the most challenging environmental conditions, highlighting its pivotal role in their remarkable survival capabilities. Dsup is a highly disordered protein with DNA-binding abilities that reduces DNA damage and enhances cell survival and viability caused by several stresses such as oxidative stress, UV exposure, and X-ray and ionizing radiation. In this review, we summarized articles describing the protective role of Dsup upon different stressors across diverse organisms, including bacteria, yeast, plants, and animals (cell lines and organisms). The multifaceted properties of Dsup open avenues for biotechnological applications, such as developing stress-resistant crops and innovative biomaterials for DNA manipulation. Furthermore, investigations into its potential in space exploration, particularly in protecting organisms from space radiation, underscore its relevance in extreme environments. Full article
Show Figures

Figure 1

13 pages, 625 KiB  
Review
Beyond Chaperoning: The Multifaceted Role of FACT in Chromatin Transactions
by Olesya Volokh, Vasily M. Studitsky and Olga S. Sokolova
Int. J. Mol. Sci. 2025, 26(11), 5176; https://doi.org/10.3390/ijms26115176 - 28 May 2025
Viewed by 427
Abstract
Eukaryotic transcription involves a complex interplay of protein factors that dynamically engage with chromatin at distinct stages. Among these, the histone chaperone FACT (Facilitates Chromatin Transcription) plays a unique role in nucleosome disassembly and reassembly during transcription, replication, and repair. While its functional [...] Read more.
Eukaryotic transcription involves a complex interplay of protein factors that dynamically engage with chromatin at distinct stages. Among these, the histone chaperone FACT (Facilitates Chromatin Transcription) plays a unique role in nucleosome disassembly and reassembly during transcription, replication, and repair. While its functional importance is well established, the underlying structural mechanisms involved in these activities remain incompletely understood. The remarkable functional versatility of FACT in regulating genetic information processing likely stems from its distinctive structural and mechanical properties. This review focuses on the structural organization of FACT and analysis of the mechanisms involved in chromatin reorganization by this unusual histone chaperone. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin Structure and Dynamics)
Show Figures

Figure 1

14 pages, 3945 KiB  
Article
Optimized Tandem Affinity Purification Strategy Enables High-Yield Isolation and Functional Characterization of Native COMPASS in Saccharomyces cerevisiae
by Ya Li, Shu Quan and Yongxin Zheng
Catalysts 2025, 15(6), 521; https://doi.org/10.3390/catal15060521 - 26 May 2025
Viewed by 570
Abstract
Histone 3 lysine 4 methylation (H3K4me) is an evolutionarily conserved epigenetic marker associated with transcriptional activation, playing a crucial role in growth and development. In yeast, all forms of H3K4 methylation are catalyzed by the COMPASS complex. However, purifying endogenous COMPASS remains challenging [...] Read more.
Histone 3 lysine 4 methylation (H3K4me) is an evolutionarily conserved epigenetic marker associated with transcriptional activation, playing a crucial role in growth and development. In yeast, all forms of H3K4 methylation are catalyzed by the COMPASS complex. However, purifying endogenous COMPASS remains challenging due to its low abundance, compositional complexity, and structural instability, resulting in low yield, poor purity, and heterogeneity in isolated complexes. These technical limitations have impeded the structural elucidation of the intact COMPASS complex and contributed to inconsistencies in reported in vitro enzymatic activity, thereby limiting a comprehensive understanding of its functions. Here, we present an optimized tandem affinity purification strategy that enables the high-yield isolation of native COMPASS from Saccharomyces cerevisiae with >99% purity and intact subunit composition, as validated by biochemical analyses. Using recombinant nucleosomes as substrates, we systematically characterized its catalytic properties and found that endogenously purified COMPASS exhibited strict dependence on H2B ubiquitination for catalyzing H3K4 methylation. This work establishes an efficient purification strategy for future structural and functional studies of COMPASS and provides critical insights into its catalytic properties. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

21 pages, 9235 KiB  
Article
NDF/GLYR1 Promotes RNA Polymerase II Processivity via Pol II Binding and Nucleosome Destabilization
by Ziwei Li and Jia Fei
Int. J. Mol. Sci. 2025, 26(10), 4874; https://doi.org/10.3390/ijms26104874 - 19 May 2025
Viewed by 525
Abstract
The Nucleosome Destabilizing Factor (NDF) facilitates transcription through chromatin, but its precise mechanism remains incompletely understood. Here, we identify a critical region (amino acids 140–160) within NDF that specifically interacts with phosphorylated RPB1, the largest subunit of elongating RNA Polymerase II (Pol II). [...] Read more.
The Nucleosome Destabilizing Factor (NDF) facilitates transcription through chromatin, but its precise mechanism remains incompletely understood. Here, we identify a critical region (amino acids 140–160) within NDF that specifically interacts with phosphorylated RPB1, the largest subunit of elongating RNA Polymerase II (Pol II). Mutations in this region disrupt Pol II interaction and impair Pol II elongation both in vitro and in cells, yet do not affect NDF’s ability to destabilize nucleosomes, establishing a functional separation between these two activities. Cellular studies reveal that NDF knockout cells display faster Pol II elongation rates but produce fewer nascent transcripts, demonstrating NDF’s primary role in maintaining transcriptional processivity throughout gene bodies. Our findings demonstrate that NDF uses distinct mechanisms to ensure productive transcription elongation rather than simply enhancing elongation speed, offering new insights into how transcription efficiency is maintained in chromatin. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin Structure and Dynamics)
Show Figures

Figure 1

13 pages, 3883 KiB  
Article
Establishment of Reference Measurement Procedure for TP53 R175H/R248W Detection and a Novel Preparation Method for ctDNA Reference Material
by Yanru Tang, Chunyan Niu, Jiejie Zhang, Lianhua Dong and Jingya Yang
Genes 2025, 16(5), 576; https://doi.org/10.3390/genes16050576 - 14 May 2025
Viewed by 574
Abstract
Background/Aims: Circulating tumor DNA (ctDNA) is becoming a valuable cancer biomarker for clinical decision-making. Nevertheless, the lack of quality control materials to assess the reliability of test results remains a challenge. This study aimed to establish digital PCR (dPCR) assays for detecting TP53 [...] Read more.
Background/Aims: Circulating tumor DNA (ctDNA) is becoming a valuable cancer biomarker for clinical decision-making. Nevertheless, the lack of quality control materials to assess the reliability of test results remains a challenge. This study aimed to establish digital PCR (dPCR) assays for detecting TP53 variants (R175H and R248W) and develop a preparation method for ctDNA reference materials to improve detection reliability. Methods: Two dPCR assays targeting TP53-R175H and TP53-R248W variants were developed and validated for repeatability, sensitivity, and linearity. Additionally, a ctDNA reference material preparation protocol was developed by digesting nucleosomes from cultured cancer cell lines with micrococcal nuclease, followed by magnetic beads purification. The size distribution and quality of the generated ctDNA fragments was analyzed, and the developed dPCR assays were applied to detect the variants in the ctDNA samples. Results: The dPCR assays demonstrated high repeatability (RSD of 0.16% to 7.65%) and excellent linearity (R2 values of 1.0000 and 0.9981) across variant allele frequencies of 50%–0.1%. The limits of detection (LOD) and quantification (LOQ) were 0.143% (R175H) and 0.092% (R248W). The ctDNA reference materials exhibited single dominant peaks at 128 bp (R175H) and 143 bp (R248W). The dPCR assays successfully detected variants in these reference materials, confirming their applicability for ctDNA samples. onclusion: Firstly, accurate measurement procedures for TP53-R175H and TP53-R248W variants based on dPCR were established in this study. Furthermore, a protocol for preparing ctDNA reference material was established here. By digesting nucleosomal DNA derived from cancer cell lines with micrococcal nuclease, this method can closely mimic the properties of clinical ctDNA. The dPCR method and ctDNA reference material preparation approach established here could be used in ctDNA detection and for improving its reliability. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

25 pages, 4637 KiB  
Article
Deepening the Modulatory Activity of Bioactive Compounds Against AFB1- and OTA-Induced Neuronal Toxicity Through a Proteomic Approach
by Alessandra Cimbalo, Massimo Frangiamone and Lara Manyes
Antioxidants 2025, 14(5), 571; https://doi.org/10.3390/antiox14050571 - 9 May 2025
Viewed by 928
Abstract
The aim of this work is to highlight the beneficial effects of bioactive peptides present in fermented whey (FW) and carotenoids from pumpkin (P) against the pro-oxidant effects of aflatoxin B1 and ochratoxin A at the neuronal level. For this purpose, SH-SY5Y human [...] Read more.
The aim of this work is to highlight the beneficial effects of bioactive peptides present in fermented whey (FW) and carotenoids from pumpkin (P) against the pro-oxidant effects of aflatoxin B1 and ochratoxin A at the neuronal level. For this purpose, SH-SY5Y human neuroblastoma differentiated cells were exposed to (A) mycotoxins, (B) the digesta of mycotoxin-contaminated bread formulated with P, or (C) bread enriched with FW + P. A proteomic approach using HPLC-MS/MS-QTOF was then employed to characterize the metabolic pathways affected by the presence of these components, as well as their ability to modulate the toxic effects exacerbated by mycotoxins. Gene ontology functional analysis revealed proteins primarily associated with nucleosome structure, such as the H3-H4 tetramer, H2A-H2B dimer, and HIRA, which were overexpressed in the presence of mycotoxins and, interestingly, downregulated with the addition of the functional ingredients. Additionally, important metabolic pathways associated with the RHO GTPase family, estrogen-dependent gene expression, and androgen receptor transcription stimulated by PKN1 activation were discovered. Network interaction analysis highlighted the modulation of cytoskeletal dynamics, cell migration, and stress responses. These findings provide novel insights into the neuroprotective potential of functional food components, supporting their use in mitigating mycotoxin-induced neuronal damage and opening new avenues for dietary-based neuroprotection strategies. Full article
Show Figures

Figure 1

25 pages, 70058 KiB  
Article
Mechanisms of DNA Damage Recognition by UDG and PARP1 in the Nucleosome
by Safwen Ghediri, Parvathy A. P. Sarma, Vinnarasi Saravanan, Corinne Abbadie, Ralf Blossey and Fabrizio Cleri
Biomolecules 2025, 15(5), 649; https://doi.org/10.3390/biom15050649 - 30 Apr 2025
Viewed by 642
Abstract
The DNA base-excision repair (BER) pathway shares the second part of its enzymatic chain with the single-strand break (SSB) repair pathway. BER is initiated by a glycosylase, such as UDG, while SSBR is initiated by the multifunctional enzyme PARP1. The very early steps [...] Read more.
The DNA base-excision repair (BER) pathway shares the second part of its enzymatic chain with the single-strand break (SSB) repair pathway. BER is initiated by a glycosylase, such as UDG, while SSBR is initiated by the multifunctional enzyme PARP1. The very early steps in the identification of the DNA damage are crucial to the correct initiation of the repair chains, and become even more complex when considering the realistic environment of damage to the DNA in the nucleosome. We performed molecular dynamics computer simulations of the interaction between the glycosylase UDG and a mutated uracil (as could result from oxidative deamination of cytosine), and between the Zn1-Zn2 fragment of PARP1 and a simulated SSB. The model system is a whole nucleosome in which DNA damage is inserted at various typical positions along the 145-bp sequence. It is shown that damage recognition by the enzymes requires very strict conditions, unlikely to be matched by pure random search along the DNA. We propose that mechanical deformation of the DNA around the defective sites may help signaling the presence of the defect, accelerating the search process. Full article
(This article belongs to the Special Issue DNA Damage Repair and Cancer Therapeutics)
Show Figures

Figure 1

29 pages, 30337 KiB  
Review
Triplexes Color the Chromaverse by Modulating Nucleosome Phasing and Anchoring Chromatin Condensates
by Alan Herbert
Int. J. Mol. Sci. 2025, 26(9), 4032; https://doi.org/10.3390/ijms26094032 - 24 Apr 2025
Viewed by 954
Abstract
Genomic sequences that form three-stranded triplexes (TPXs) under physiological conditions (called T-flipons) play an important role in defining DNA nucleosome-free regions (NFRs). Within these NFRs, other flipon types can cycle conformations to actuate gene expression. The transcripts read from the NFR form condensates [...] Read more.
Genomic sequences that form three-stranded triplexes (TPXs) under physiological conditions (called T-flipons) play an important role in defining DNA nucleosome-free regions (NFRs). Within these NFRs, other flipon types can cycle conformations to actuate gene expression. The transcripts read from the NFR form condensates that engage proteins and small RNAs. The helicases bound then trigger RNA polymerase release by dissociating the 7SK ribonucleoprotein. The TPXs formed usually incorporate RNA as the third strand. TPXs made only from DNA arise mostly during DNA replication. Many small RNA types (sRNAs) and long noncoding (lncRNA) can direct TPX formation. TPXs made with circular RNAs have greater stability and specificity than those formed with linear RNAs. LncRNAs can affect local gene expression through TPX formation and transcriptional interference. The condensates seeded by lncRNAs are updated by feedback loops involving proteins and noncoding RNAs from the genes they regulate. Some lncRNAs also target distant loci in a sequence-specific manner. Overall, lncRNAs can rapidly evolve by adding or subtracting sequence motifs that modify the condensates they nucleate. LncRNAs show less sequence conservation than protein-coding sequences. TPXs formed by lncRNAs and sRNAs help place nucleosomes to restrict endogenous retroelement (ERE) expression. The silencing of EREs starts early in embryogenesis and is essential for bootstrapping development. Once the system is set, EREs play a different role, with a notable enrichment of Short Interspersed Nuclear Repeats (SINEs) in Enhancer–Promoter condensates. The highly programmable TPX-dependent processes create a chromaverse capable of many complexities. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 5284 KiB  
Article
DNA Sequence Changes Resulting from Codon Optimization Affect Gene Expression in Pichia pastoris by Altering Chromatin Accessibility
by Chaoyu Lu, Linna Guo, Bohao Fang, Jiacheng Shi and Mian Zhou
J. Fungi 2025, 11(4), 282; https://doi.org/10.3390/jof11040282 - 3 Apr 2025
Viewed by 798
Abstract
Codon optimization is a widely employed strategy to enhance protein expression. However, it occasionally leads to unexpected transcriptional repression despite preserving amino acid sequences. This study investigates the mechanistic basis of such transcriptional attenuation by analyzing two gene candidates (0432 and Fluc [...] Read more.
Codon optimization is a widely employed strategy to enhance protein expression. However, it occasionally leads to unexpected transcriptional repression despite preserving amino acid sequences. This study investigates the mechanistic basis of such transcriptional attenuation by analyzing two gene candidates (0432 and Fluc) in the common expression chassis P. pastoris. Both genes experienced severe mRNA reduction following codon optimization. Evidenced by histone H3 chromatin immunoprecipitation (ChIP) and a DNase I hypersensitivity assay, gene sequences with transcriptional repression displayed elevated nucleosome occupancy and reduced chromatin accessibility. The above change was caused by an ORF sequence change independent of the promoter, since transcriptional attenuation and compromised chromatin accessibility were still observed after replacing the strong promoter PGAP with Ppor1 or Prps8b. Our findings challenge the conventional view of codon optimization as solely translation-centric, revealing its capacity to preemptively modulate transcription through chromatin accessibility. This work underscores the necessity of integrating chromatin-level considerations into synthetic gene design to avoid unintended transcriptional silencing and optimize expression outcomes. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

21 pages, 992 KiB  
Review
The Current Role of Circulating Cell-Free DNA in the Management of Hepatocellular Carcinoma
by Alkistis Papatheodoridi, Vasileios Lekakis, Antonios Chatzigeorgiou and George Papatheodoridis
Cancers 2025, 17(6), 1042; https://doi.org/10.3390/cancers17061042 - 20 Mar 2025
Cited by 1 | Viewed by 1196
Abstract
Circulating cell-free DNA (cfDNA) has emerged as a compelling candidate of liquid biopsy markers for the diagnosis and prognosis of several cancers. We systematically reviewed data on the role of cfDNA markers in the diagnosis, prognosis and treatment of hepatocellular carcinoma (HCC). Early [...] Read more.
Circulating cell-free DNA (cfDNA) has emerged as a compelling candidate of liquid biopsy markers for the diagnosis and prognosis of several cancers. We systematically reviewed data on the role of cfDNA markers in the diagnosis, prognosis and treatment of hepatocellular carcinoma (HCC). Early studies suggested that levels of circulating cfDNA, mitochondrial DNA and cfDNA integrity are higher in patients with HCC than chronic liver diseases. In subsequent studies, methylation changes in circulating tumor DNA (ctDNA) as well as cfDNA fragmentation patterns and circulating nucleosomes were found to offer high sensitivity (>60%) and excellent specificity (>90%) for HCC diagnosis. The predictive role of cfDNA markers and ctDNA has been assessed in a few studies including untreated patients with HCC providing promising results for prediction of survival. However, port-hepatectomy detection of cfDNA/ctDNA markers or copy number variation indicators of cfDNA seem to reflect minimum residual disease and thus a high risk for HCC recurrence. The same markers can be useful for prediction after transarterial chemoembolization, radiofrequency ablation, radiotherapy and even systemic therapies. In conclusion, cfDNA markers can be useful in HCC surveillance, improving early diagnosis rates, as well as for monitoring treatment effectiveness and minimal residual disease post-treatment. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

Back to TopTop