Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Novikov engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5305 KiB  
Article
An Analytical Study of the Mikhailov–Novikov–Wang Equation with Stability and Modulation Instability Analysis in Industrial Engineering via Multiple Methods
by Md Nur Hossain, M. Mamun Miah, M. S. Abbas, K. El-Rashidy, J. R. M. Borhan and Mohammad Kanan
Symmetry 2024, 16(7), 879; https://doi.org/10.3390/sym16070879 - 11 Jul 2024
Cited by 5 | Viewed by 1829
Abstract
Solitary waves, inherent in nonlinear wave equations, manifest across various physical systems like water waves, optical fibers, and plasma waves. In this study, we present this type of wave solution within the integrable Mikhailov–Novikov–Wang (MNW) equation, an integrable system known for representing localized [...] Read more.
Solitary waves, inherent in nonlinear wave equations, manifest across various physical systems like water waves, optical fibers, and plasma waves. In this study, we present this type of wave solution within the integrable Mikhailov–Novikov–Wang (MNW) equation, an integrable system known for representing localized disturbances that persist without dispersing, retaining their form and coherence over extended distances, thereby playing a pivotal role in understanding nonlinear dynamics and wave phenomena. Beyond this innovative work, we examine the stability and modulation instability of its gained solutions. These new solitary wave solutions have potential applications in telecommunications, spectroscopy, imaging, signal processing, and pulse modeling, as well as in economic systems and markets. To derive these solitary wave solutions, we employ two effective methods: the improved Sardar subequation method and the (℧′/℧, 1/℧) method. Through these methods, we develop a diverse array of waveforms, including hyperbolic, trigonometric, and rational functions. We thoroughly validated our results using Mathematica software to ensure their accuracy. Vigorous graphical representations showcase a variety of soliton patterns, including dark, singular, kink, anti-kink, and hyperbolic-shaped patterns. These findings highlight the effectiveness of these methods in showing novel solutions. The utilization of these methods significantly contributes to the derivation of novel soliton solutions for the MNW equation, holding promise for diverse applications throughout different scientific domains. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Partial Differential Equations)
Show Figures

Figure 1

13 pages, 500 KiB  
Article
Performance Features of a Stationary Stochastic Novikov Engine
by Karsten Schwalbe and Karl Heinz Hoffmann
Entropy 2018, 20(1), 52; https://doi.org/10.3390/e20010052 - 12 Jan 2018
Cited by 18 | Viewed by 3923
Abstract
In this article a Novikov engine with fluctuating hot heat bath temperature is presented. Based on this model, the performance measure maximum expected power as well as the corresponding efficiency and entropy production rate is investigated for four different stationary distributions: continuous uniform, [...] Read more.
In this article a Novikov engine with fluctuating hot heat bath temperature is presented. Based on this model, the performance measure maximum expected power as well as the corresponding efficiency and entropy production rate is investigated for four different stationary distributions: continuous uniform, normal, triangle, quadratic, and Pareto. It is found that the performance measures increase monotonously with increasing expectation value and increasing standard deviation of the distributions. Additionally, we show that the distribution has only little influence on the performance measures for small standard deviations. For larger values of the standard deviation, the performance measures in the case of the Pareto distribution are significantly different compared to the other distributions. These observations are explained by a comparison of the Taylor expansions in terms of the distributions’ standard deviations. For the considered symmetric distributions, an extension of the well known Curzon–Ahlborn efficiency to a stochastic Novikov engine is given. Full article
Show Figures

Figure 1

12 pages, 1312 KiB  
Perspective
The History and Perspectives of Efficiency at Maximum Power of the Carnot Engine
by Michel Feidt
Entropy 2017, 19(7), 369; https://doi.org/10.3390/e19070369 - 19 Jul 2017
Cited by 42 | Viewed by 6304
Abstract
Finite Time Thermodynamics is generally associated with the Curzon–Ahlborn approach to the Carnot cycle. Recently, previous publications on the subject were discovered, which prove that the history of Finite Time Thermodynamics started more than sixty years before even the work of Chambadal and [...] Read more.
Finite Time Thermodynamics is generally associated with the Curzon–Ahlborn approach to the Carnot cycle. Recently, previous publications on the subject were discovered, which prove that the history of Finite Time Thermodynamics started more than sixty years before even the work of Chambadal and Novikov (1957). The paper proposes a careful examination of the similarities and differences between these pioneering works and the consequences they had on the works that followed. The modelling of the Carnot engine was carried out in three steps, namely (1) modelling with time durations of the isothermal processes, as done by Curzon and Ahlborn; (2) modelling at a steady-state operation regime for which the time does not appear explicitly; and (3) modelling of transient conditions which requires the time to appear explicitly. Whatever the method of modelling used, the subsequent optimization appears to be related to specific physical dimensions. The main goal of the methodology is to choose the objective function, which here is the power, and to define the associated constraints. We propose a specific approach, focusing on the main functions that respond to engineering requirements. The study of the Carnot engine illustrates the synthesis carried out and proves that the primary interest for an engineer is mainly connected to what we called Finite (physical) Dimensions Optimal Thermodynamics, including time in the case of transient modelling. Full article
(This article belongs to the Special Issue Carnot Cycle and Heat Engine Fundamentals and Applications)
Show Figures

Figure 1

36 pages, 2649 KiB  
Review
The Quantum Harmonic Otto Cycle
by Ronnie Kosloff and Yair Rezek
Entropy 2017, 19(4), 136; https://doi.org/10.3390/e19040136 - 23 Mar 2017
Cited by 308 | Viewed by 17532
Abstract
The quantum Otto cycle serves as a bridge between the macroscopic world of heat engines and the quantum regime of thermal devices composed from a single element. We compile recent studies of the quantum Otto cycle with a harmonic oscillator as a working [...] Read more.
The quantum Otto cycle serves as a bridge between the macroscopic world of heat engines and the quantum regime of thermal devices composed from a single element. We compile recent studies of the quantum Otto cycle with a harmonic oscillator as a working medium. This model has the advantage that it is analytically trackable. In addition, an experimental realization has been achieved, employing a single ion in a harmonic trap. The review is embedded in the field of quantum thermodynamics and quantum open systems. The basic principles of the theory are explained by a specific example illuminating the basic definitions of work and heat. The relation between quantum observables and the state of the system is emphasized. The dynamical description of the cycle is based on a completely positive map formulated as a propagator for each stroke of the engine. Explicit solutions for these propagators are described on a vector space of quantum thermodynamical observables. These solutions which employ different assumptions and techniques are compared. The tradeoff between power and efficiency is the focal point of finite-time-thermodynamics. The dynamical model enables the study of finite time cycles limiting time on the adiabatic and the thermalization times. Explicit finite time solutions are found which are frictionless (meaning that no coherence is generated), and are also known as shortcuts to adiabaticity.The transition from frictionless to sudden adiabats is characterized by a non-hermitian degeneracy in the propagator. In addition, the influence of noise on the control is illustrated. These results are used to close the cycles either as engines or as refrigerators. The properties of the limit cycle are described. Methods to optimize the power by controlling the thermalization time are also introduced. At high temperatures, the Novikov–Curzon–Ahlborn efficiency at maximum power is obtained. The sudden limit of the engine which allows finite power at zero cycle time is shown. The refrigerator cycle is described within the frictionless limit, with emphasis on the cooling rate when the cold bath temperature approaches zero. Full article
(This article belongs to the Special Issue Quantum Thermodynamics)
Show Figures

Figure 1

15 pages, 2904 KiB  
Article
Thermoeconomic Optimization of an Irreversible Novikov Plant Model under Different Regimes of Performance
by Juan Carlos Pacheco-Paez, Fernando Angulo-Brown and Marco Antonio Barranco-Jiménez
Entropy 2017, 19(3), 118; https://doi.org/10.3390/e19030118 - 15 Mar 2017
Cited by 14 | Viewed by 4312
Abstract
The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: [...] Read more.
The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: maximum power (MP), maximum ecological function (ME) and maximum efficient power (EP). In this study, different heat transfer laws are used: The Newton’s law of cooling, the Stefan–Boltzmann radiation law, the Dulong–Petit’s law and another phenomenological heat transfer law. For the thermoeconomic optimization of power plant models, a benefit function defined as the quotient of an objective function and the total economical costs is commonly employed. Usually, the total costs take into account two contributions: a cost related to the investment and another stemming from the fuel consumption. In this work, a new cost associated to the maintenance of the power plant is also considered. With these new total costs, it is shown that under the maximum ecological function regime the plant improves its economic and energetic performance in comparison with the other two regimes. The methodology used in this paper is within the context of finite-time thermodynamics. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

25 pages, 1036 KiB  
Article
Association of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine
by Yuxiang Dong, Amin El-Bakkali, Michel Feidt, Georges Descombes and Christelle Périlhon
Entropy 2012, 14(7), 1234-1258; https://doi.org/10.3390/e14071234 - 12 Jul 2012
Cited by 9 | Viewed by 7380
Abstract
In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will [...] Read more.
In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will show in this paper that the approach detailed in a previous paper [1] can be used to analytically model irreversible heat engines (with an additional assumption on the linearity of the heat transfer laws). By defining two dimensionless parameters, the intensity of internal dissipation and heat leakage within a heat engine were quantified. We then established the analogy between an endoreversible heat engine and an irreversible heat engine by using the apparent temperatures (TcsTλ,φ cs, ThsTλ,φ hs) and apparent conductances (KhKλ h, KcKλ c). We thus found the analytical expression of the maximum power of an irreversible heat engine. However, these apparent temperatures should not be used to calculate the conversion efficiency at the optimal operating point by analogy with the case of an endoreversible heat engine. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics)
Show Figures

Figure 1

12 pages, 175 KiB  
Article
Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine
by Yuxiang Dong, Amin El-Bakkali, Georges Descombes, Michel Feidt and Christelle Périlhon
Entropy 2012, 14(4), 642-653; https://doi.org/10.3390/e14040642 - 28 Mar 2012
Cited by 10 | Viewed by 8524
Abstract
In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature ) and a heat sink (at temperature ). The aim of this paper is [...] Read more.
In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature ) and a heat sink (at temperature ). The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for modeling endoreversible heat engines. This approach makes it possible for example to find in a simple way the characteristics of the optimal operating point at which the maximum mechanical power of the endoreversible heat engine is obtained with entropy flow rate as control variable. Furthermore it provides the analytical expressions of the optimal operating point of an irreversible heat engine where the energy conversion is accompanied by irreversibilities related to internal heat transfer and heat dissipation phenomena. This original approach, applied to an analysis of the performance of a thermoelectric generator, will be the object of a future publication. Full article
(This article belongs to the Special Issue Concepts of Entropy and Their Applications)
Show Figures

Figure 1

11 pages, 172 KiB  
Article
Local Stability Analysis of a Thermo-Economic Model of a Chambadal-Novikov-Curzon-Ahlborn Heat Engine
by Marco A. Barranco-Jiménez, Ricardo T. Páez-Hernández, Israel Reyes-Ramírez and Lev Guzmán-Vargas
Entropy 2011, 13(9), 1584-1594; https://doi.org/10.3390/e13091584 - 29 Aug 2011
Cited by 19 | Viewed by 8563
Abstract
In this work we present a local stability analysis of the thermo-economic model of an irreversible heat engine working at maximum power conditions. The thermo-economic model is based on the maximization of a benefit function which is defined by the ratio of the [...] Read more.
In this work we present a local stability analysis of the thermo-economic model of an irreversible heat engine working at maximum power conditions. The thermo-economic model is based on the maximization of a benefit function which is defined by the ratio of the power output and the total cost involved in the plant’s performance. Our study shows that, after a small perturbation, the system decays exponentially to the steady state determined by two different relaxation times. In particular, we show that the relaxation times are function of the temperature ratio τ = T2/T1 (T1 > T2), the cost function ƒ and the parameter R (a parameter related to the degree of internal irreversibilities). We observe that the stability of the system improves as τ increases whereas for changes in ƒ and R, the stability properties are characterized by a rapid decay along the fast eigendirection as ƒ increases and R decreases. Finally, we discuss our results in the context of energetic properties. Full article
Show Figures

Figure 1

15 pages, 320 KiB  
Article
A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models
by Marco A. Barranco-Jiménez, Israel Ramos-Gayosso, Marco A. Rosales and Fernando Angulo-Brown
Energies 2009, 2(4), 1042-1056; https://doi.org/10.3390/en20401042 - 10 Nov 2009
Cited by 11 | Viewed by 11933
Abstract
Within the context of Finite-Time Thermodynamics (FTT) a simplified thermal power plant model (the so-called Novikov engine) is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this [...] Read more.
Within the context of Finite-Time Thermodynamics (FTT) a simplified thermal power plant model (the so-called Novikov engine) is analyzed under economical criteria by means of the concepts of profit function and the costs involved in the performance of the power plant. In this study, two different heat transfer laws are used, the so called Newton’s law of cooling and the Dulong-Petit’s law of cooling. Two FTT optimization criteria for the performance analysis are used: the maximum power regime (MP) and the so-called ecological criterion. This last criterion leads the engine model towards a mode of performance that appreciably diminishes the engine’s wasted energy. In this work, it is shown that the energy-unit price produced under maximum power conditions is cheaper than that produced under maximum ecological (ME) conditions. This was accomplished by using a typical definition of profits function stemming from economics. The MP-regime produces considerably more wasted energy toward the environment, thus the MP energy-unit price is subsidized by nature. Due to this fact, an ecological tax is proposed, which could be a certain function of the price difference between the MP and ME modes of power production. Full article
(This article belongs to the Special Issue Energy Economics)
Show Figures

Figure 1

14 pages, 204 KiB  
Article
Van der Waals gas as working substance in a Curzon and Ahlborn-Novikov engine
by Delfino Ladino-Luna
Entropy 2005, 7(1), 108-121; https://doi.org/10.3390/e7010108 - 18 Mar 2005
Cited by 13 | Viewed by 9791
Abstract
Using a van der Waals gas as the working substance the so called Curzon and Ahlborn-Novikov engine is studied. It is shown that some previous results found in the literature of finite time thermodynamics can be written in a more general form, means [...] Read more.
Using a van der Waals gas as the working substance the so called Curzon and Ahlborn-Novikov engine is studied. It is shown that some previous results found in the literature of finite time thermodynamics can be written in a more general form, means of this gas and by taking a non linear heat transfer law. Full article
Show Figures

Figure 1

Back to TopTop