Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Northern Great Xing’an Range

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9353 KiB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 241
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

14 pages, 6630 KiB  
Article
Overprinting Mineralization in the Huoluotai Porphyry Cu (Mo) Deposit, NE China: Evidence from K-Feldspar Ar-Ar Geochronology and S-Pb Isotopes
by Yonggang Sun, Zhongjie Yang, Mingliang Wang, Chengcheng Xie, Xusheng Chen and Fanbo Meng
Minerals 2024, 14(9), 859; https://doi.org/10.3390/min14090859 - 24 Aug 2024
Viewed by 837
Abstract
The Great Xing’an Range (GXR) is a significant belt of polymetallic deposits located in the eastern segment of the Central Asian Orogenic Belt. The recently found Huoluotai porphyry Cu (Mo) deposit is situated in the northern GXR region in northeastern (NE) China. The [...] Read more.
The Great Xing’an Range (GXR) is a significant belt of polymetallic deposits located in the eastern segment of the Central Asian Orogenic Belt. The recently found Huoluotai porphyry Cu (Mo) deposit is situated in the northern GXR region in northeastern (NE) China. The deposit has been studied extensively using field geology and geochronological methods, which have identified two distinct mineralization events. These events include an early occurrence of porphyry-type Cu (Mo) mineralization and a later occurrence of vein-type Cu mineralization. Prior geochronology investigations have determined an approximate age of 147 Ma for the early porphyry-type Cu (Mo) mineralization. 40Ar/39Ar dating of K-feldspar of the altered Cu-mineralized quartz diorite porphyry veins for the overprinting vein-type Cu mineralization provides plateau ages of 123.1 ± 1.5 Ma, 122.3 ± 2.8 Ma, and 122.2 ± 0.4 Ma. Sulfide S-Pb isotope compositions of the two mineralization events suggest that both have a magmatic source. The origin of ore-forming metals displays the features of a crust–mantle mixing origin. The regional extensional tectonic setting in NE China during the Early Cretaceous was caused by large-scale lithosphere delamination and upwelling of the asthenospheric mantle. These processes were triggered by the rollback of the Paleo-Pacific Plate. The tectonic event in question resulted in the lithospheric thinning, significant magmatic activity, and mineralization in NE China. Full article
Show Figures

Figure 1

17 pages, 17521 KiB  
Article
The Ordovician Arc–Basin System in the Northern Great Xing’an Range (Northeast China): Constraints from Provenance Analysis of the Luohe Formation
by Liyang Li, Chuanheng Zhang and Zhiqiang Feng
Minerals 2024, 14(3), 258; https://doi.org/10.3390/min14030258 - 29 Feb 2024
Cited by 1 | Viewed by 1298
Abstract
The Northeast China Block is a major component of the Central Asian Orogenic Belt, and its tectonic evolution has attracted much research attention. Ordovician strata are important in reconstructing the tectonic evolution of the Northeast China Block. This paper presents the results of [...] Read more.
The Northeast China Block is a major component of the Central Asian Orogenic Belt, and its tectonic evolution has attracted much research attention. Ordovician strata are important in reconstructing the tectonic evolution of the Northeast China Block. This paper presents the results of sedimentological, zircon U–Pb, and geochemical analyses of sandstones of the Luohe Formation in the Wunuer area, Northern Great Xing’an Range, Northeast China. Lithological data, sedimentary structures, and grain-size analysis indicate that the Luohe Formation was deposited in a shallow marine environment. Detrital zircon U–Pb dating yields age peaks of 463, 504, 783, 826, 973, and 1882 Ma for sandstones from the Luohe Formation. The youngest zircon grain age of 451 ± 6 Ma represents the maximum depositional age of the Luohe Formation. The peak age at 463 Ma is consistent with the timing of post-collisional magmatism and the formation of the Duobaoshan island arc, while the peak at 504 Ma is consistent with the timing of magmatic activity related to the collision between the Erguna and Xing’an blocks. The peaks at 788, 826, 973, and 1882 Ma correspond to magmatism in the Erguna block, these ages indicate that the sandstones of the Luohe Formation were derived mainly from the Erguna block. Sandstone modal compositional analysis indicates that the provenance of the Luohe Formation was mainly a magmatic arc. The geochemical compositions of the sandstones suggest that the source rocks have continental island arc signatures. Based on the depositional age, sedimentary environment, provenance, and regional geology, it is concluded that the Luohe Formation was deposited in a back-arc basin setting during the formation of the Duobaoshan island arc–basin system in response to subduction of the Paleo-Asian oceanic plate. Full article
Show Figures

Figure 1

16 pages, 3380 KiB  
Article
Mineralogical and Geochemical Evidence for the Origin of the DL Uranium Deposit in the Songliao Basin, Northeast China
by Jialin Liu, Mingkuan Qin, Shaohua Huang, Zhangyue Liu and Liangliang Zhang
Minerals 2024, 14(2), 149; https://doi.org/10.3390/min14020149 - 30 Jan 2024
Cited by 1 | Viewed by 1536
Abstract
The DL deposit is a typical tabular-shaped U deposit hosted in sandstones of the Upper Cretaceous Yaojia Formation in the southwestern Songliao Basin, northeast China. Owing to its recent discovery, the origin of the deposit remains unclear. In this study, mineralogical and geochemical [...] Read more.
The DL deposit is a typical tabular-shaped U deposit hosted in sandstones of the Upper Cretaceous Yaojia Formation in the southwestern Songliao Basin, northeast China. Owing to its recent discovery, the origin of the deposit remains unclear. In this study, mineralogical and geochemical data were used to constrain the genesis of the DL deposit. Two sources of U were recognized: (1) pre-ore U enrichment in the Yaojia Formation during diagenesis; and (2) the provenance of the Yaojia Formation, which comprises late Permian–Early Cretaceous granitic rocks from the southern Great Xing’an Range and northern margin of the North China Craton, rather than the oils and diabase dikes in the study area. Mineralogical and geochemical characteristics indicate that organic matter (OM) in the Yaojia Formation was derived mainly from plant debris and hydrocarbons. In situ S isotope data for pyrite from the ore-bearing sandstones show that most of the pyrite has similar δ34S values (−43.8‰ to −20.6‰) to those of pyrite associated with bacterial sulfate reduction (BSR). The pyrite is often typically replaced and/or overgrown by pitchblende, which has a high P2O5 content (0.07–1.64 wt.%), indicative of a genetic relationship between BSR and U mineralization. The geological, mineralogical, and geochemical features suggest that the U mineralization in the DL deposit was mainly associated with BSR. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 5819 KiB  
Article
Geochemistry, Chronology and Tectonic Implications of the Hadayang Schists in the Northern Great Xing’an Range, Northeast China
by Fuchao Na, Weimin Song, Yingcai Liu, Junyu Fu, Yan Wang and Wei Sun
Minerals 2023, 13(11), 1379; https://doi.org/10.3390/min13111379 - 28 Oct 2023
Viewed by 1375
Abstract
The Late Paleozoic tectonic evolution of the Xing’an block in the eastern Central Asian orogenic belt has long been the subject of debate. In this paper, a comprehensive study of U-Pb zircon ages, Lu-Hf isotopes and whole-rock elemental analyses was carried out on [...] Read more.
The Late Paleozoic tectonic evolution of the Xing’an block in the eastern Central Asian orogenic belt has long been the subject of debate. In this paper, a comprehensive study of U-Pb zircon ages, Lu-Hf isotopes and whole-rock elemental analyses was carried out on Hadayang schists. Representative samples of the epidote-biotite-albite schist and biotite-albite schist yielded the weighted mean 206Pb/238U ages of 360 ± 2 Ma and 355 ± 3 Ma, respectively. This indicated the presence of Late Devonian–Early Carboniferous intermediate-basic rocks in the eastern Xing’an block. The Hadayang schists exhibited a Na-rich, tholeiitic and calc-alkaline affinity in composition with low Mg# (35.2–53.0), Cr (23.7–86.5 ppm), Ni (21.1–40.0 ppm) and Co (12.1–30.6 ppm). They were characterized by enrichment of LILEs, depletion of HFSEs and highly positive zircon εHf(t) values (the average values were +8.93 and +9.29, respectively). The magma source of the Hadayang schists was a mantle that consisted of both spinel and garnet lherzolite, with a partial melting degree of 1%–5%, and it had undergone fractional crystallization of olivine, orthopyroxene and plagioclase. The Hadayang schists, together with other Late Devonian–Early Carboniferous intermediate-basic magmatic rocks in the eastern Xing’an block, were formed in an intracontinental extension tectonic setting similar to that of the North American Basin and Range basalt. Moreover, Late Devonian–Early Carboniferous ophiolite under a similar tectonic background in the western Xing’an block has been reported. We believe that the Xing’an block would have been in the stage of intracontinental extension during the Late Devonian–Early Carboniferous. Full article
Show Figures

Figure 1

32 pages, 7755 KiB  
Article
Ore Genesis of the Lower Urgen Porphyry Molybdenum Deposit in the Northern Great Xing’an Range, Northeast China: Constraints from Molybdenite Re-Os Dating, Fluid Inclusions, and H-O-S-Pb Isotopes
by Guangliang Zhang, Wei Xie, Shouqin Wen, Qingdong Zeng, Lingli Zhou, Hui Wang, Kailun Zhang, Tieqiao Tang and Pengcheng Ma
Minerals 2023, 13(9), 1189; https://doi.org/10.3390/min13091189 - 10 Sep 2023
Cited by 1 | Viewed by 1836
Abstract
The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite [...] Read more.
The Lower Urgen molybdenum deposit (44,856 t Mo @ 0.141%), situated in the northern Great Xing’an Range, is a newly discovered porphyry molybdenum deposit. Mineralization is characterized by veinlet-disseminated- and vein-type quartz–sulfide orebodies primarily occurring in the cupola of the Early Cretaceous granite porphyry stock. In this study, we present a detailed description of the ore geology, molybdenite Re-Os dating, H-O-S-Pb isotopic compositions, and fluid inclusion (FI) analyses including petrography, laser Raman, and microthermometry to precisely constrain the timing of ore formation, the origin of ore-forming fluids and materials, as well as the metal precipitation mechanism. Molybdenite Re-Os dating yielded two model ages of 141.2 ± 1.5 and 147.7 ± 1.7 Ma, coeval with the regional Late Jurassic–Early Cretaceous molybdenum metallogenesis. The hydrothermal process can be divided into three stages: the quartz–molybdenite(–pyrite) stage, quartz–polymetallic sulfide stage, and quartz–carbonate stage. Four types of FIs were distinguished for quartz, including two-phase liquid-rich (L-type), saline (S-type), CO2-rich (C1-type), and CO2-bearing (C2-type) FIs. Microthermometric data showed that the homogenization temperatures and salinities from the early to late stages were 240–430 °C, 5.0–11.9, and 30.1–50.8 wt% NaCl equiv.; 180–280 °C and 3.0–9.1 wt% NaCl equiv.; and 120–220 °C and 0.2–7.9 wt% NaCl equiv., respectively, suggesting a decreasing trend. H-O isotopic compositions indicate that the ore-forming fluids were initially of magmatic origin with the increasing incorporation of meteoric water. S-Pb isotopic compositions indicate that the ore-forming materials originated from granitic magmas, and the mineralization is genetically related to the ore-bearing granite porphyry stock in the deposit. Fluid immiscibility and fluid–rock interaction are collectively responsible for the massive deposition of molybdenite in stage 1, whereas fluid mixing and immiscibility played a critical role in the deposition of polymetallic sulfide in stage 2. Full article
Show Figures

Figure 1

20 pages, 8957 KiB  
Article
Late Paleozoic Tectonic Evolution of the Northern Great Xing’an Range, Northeast China: Constraints from Carboniferous Magmatic Rocks in the Wunuer Area
by Liyang Li, Chuanheng Zhang and Zhiqiang Feng
Minerals 2023, 13(8), 1090; https://doi.org/10.3390/min13081090 - 15 Aug 2023
Cited by 1 | Viewed by 1432
Abstract
Northeast China composes the main part of the Central Asian Orogenic Belt. Traditionally, Northeast China has been considered a collage of several microcontinental blocks. However, the tectonic evolution of these blocks remains uncertain. Igneous rocks can be used to infer the magmatic histories [...] Read more.
Northeast China composes the main part of the Central Asian Orogenic Belt. Traditionally, Northeast China has been considered a collage of several microcontinental blocks. However, the tectonic evolution of these blocks remains uncertain. Igneous rocks can be used to infer the magmatic histories of the blocks and thus help reconstruct their evolution. In this study, we present new zircon U–Pb and whole-rock geochemical data for Carboniferous igneous rocks from the Wunuer area, northern Great Xing’an Range, Northeast China, to constrain the Carboniferous amalgamation of the united Xing’an–Erguna and Songnen–Zhangguangcai Range massifs. On the basis of zircon U–Pb dating results, we identify two main stages of magmatism, i.e., early Carboniferous (332–329 Ma) and late Carboniferous (312–310 Ma). The early Carboniferous igneous rocks include diorites and granodiorites, with the former being classified as calc-alkaline to tholeiitic and the latter as tholeiitic. Both rock types are enriched in Th and U and depleted in Nb and Ti. The rocks display slightly fractionated rare earth element (REE) patterns, with an enrichment in light REEs and a depletion in heavy (H)REEs. The geochemical characteristics of the early Carboniferous rocks indicate that they formed in a subduction-related continental-arc setting. The late Carboniferous igneous rocks include monzogranites and syenogranites, both of which are classified as high-K calc-alkaline rocks and show enrichment in Th, U, and Rb and depletion in Nb and Ti. The rocks display strongly fractionated REE patterns, with an enrichment in light REEs and a depletion in HREEs. The geochemical characteristics of the late Carboniferous rocks indicate that they formed in a syn-collisional tectonic setting. Combining the new geochronological and geochemical results and inferred tectonic settings with regional magmatic data, we propose a new three-stage model to interpret the late Paleozoic tectonic evolution of the united Xing’an–Erguna and Songnen–Zhangguangcai Range massifs of Northeast China: (1) early Carboniferous (360–340 Ma) subduction of the Paleo-Asian oceanic plate beneath the united Xing’an–Erguna Massif and formation of the Wunuer oceanic basin in the Yakeshi area; (2) early to late Carboniferous (340–310 Ma) sustained subduction of the Paleo-Asian oceanic plate beneath the united Xing’an–Erguna Massif and initiation of subduction of the Wunuer oceanic basin; and (3) late Carboniferous–early Permian (310–275 Ma) syn-collisional to post-collisional tectonic transition between the united Xing’an–Erguna Massif and the Songnen–Zhangguangcai Range Massif. Full article
(This article belongs to the Special Issue Geochronology, Geochemistry and Petrogenesis of Magmatic Rocks)
Show Figures

Graphical abstract

16 pages, 6804 KiB  
Article
Tectonic Transition from Passive to Active Continental Margin of Nenjiang Ocean: Insight from the Middle Devonian-Early Carboniferous Granitic Rocks in Northern Great Xing’an Range, NE China
by Li Zhang, Yongfei Ma, Yongjiang Liu, Sihua Yuan, Hongzhi Yang, Weimin Li, Chenyue Liang and Zhiqiang Feng
Minerals 2023, 13(8), 1003; https://doi.org/10.3390/min13081003 - 28 Jul 2023
Viewed by 1607
Abstract
Northeast China occupies the majority of the eastern Central Asian Orogenic Belt, which mainly consists of continental blocks and accretionary terranes. The Devonian was a tectonic quiet period in the NE China region due to a lack of tectono-magmatism, but the tectonic background [...] Read more.
Northeast China occupies the majority of the eastern Central Asian Orogenic Belt, which mainly consists of continental blocks and accretionary terranes. The Devonian was a tectonic quiet period in the NE China region due to a lack of tectono-magmatism, but the tectonic background of this period has been unclear, especially for the Hegenshan-Heihe Suture between Xing’an and Songliao accretionary terranes, which represents the Paleozoic Nenjiang Ocean (a branch ocean of the eastern Paleo-Asian Ocean). Here we report granitic rocks from the Woluohe area, Northern Great Xing’an Range, NE China, to constrain the tectonic process of the transition from the Devonian quiet period to the Early Carboniferous active tectonic period. Three granitic rock samples produce zircon U-Pb ages of 389 Ma, 368 Ma, and 351 Ma, belonging to the Middle and Late Devonian and Early Carboniferous, respectively. They have high Si, Al, K, and Na contents, but with low Mg, Fe, and Ti contents, together with positive Hf isotopic features and low molar Al2O3/(MgO+FeOT) ratios, we suggest that they were derived from partial melting of lower crustal igneous rocks. Meanwhile, the narrow major element variation at odd with the fractionation process and their negative Nb and Ta anomalies imply the obvious contribution of crustal. Comprehensive tectonic setting analysis shows all samples are in calc-alkali magmatic series with rightward fractionated REE and trace element patterns that are enriched in LREE and LILE and depleted in HREE and HFS, indicating a subduction-related magmatic arc setting. Considering the regional tectonic setting and the small scale of the Devonian plutons, we suggest a limited subduction tectonic setting during the quiet period of the northern Great Xing’an Range, which might indicate the beginning of an initial northwestward subduction of the Nenjiang Oceanic lithosphere beneath the Xing’an Accretionary Terrane in the Middle Devonian, accelerated subduction in the Late Devonian, and bidirectional subduction in the Early Carboniferous. Full article
(This article belongs to the Special Issue North China Craton: Geochemistry, Mineralogy and Tectonic Evolution)
Show Figures

Figure 1

12 pages, 6357 KiB  
Article
Fire Path Fighting in Forest Off-Road Using Improved ACA—An Example of The Northern Primitive Forest Region of The Great Xing’an Range in Inner Mongolia, China
by Zhaolin Lu, Shufa Sun, Mingju Yuan, Fei Yang and Haoyu Yin
Forests 2022, 13(10), 1717; https://doi.org/10.3390/f13101717 - 18 Oct 2022
Cited by 1 | Viewed by 1801
Abstract
In order to deal with the threat of forest fire to the original forest resources, improve the efficiency of firefighting, and better protect the forest ecological resources in the original forest area. In this paper, the ant colony algorithm is used as the [...] Read more.
In order to deal with the threat of forest fire to the original forest resources, improve the efficiency of firefighting, and better protect the forest ecological resources in the original forest area. In this paper, the ant colony algorithm is used as the search algorithm for the firefighting path, and the Qiqian Forestry Bureau in the northern primitive forest region of the Great Xing‘an Range in Inner Mongolia is taken as the research object to select road entry points with different linear distances from the fire poin. By adjusting the pheromone volatility coefficient, the improved ant colony algorithm can better deal with the off-road firefighting path planning in forest environment. The simulation results show that using the road entry point with linear distance of 24.5 km as the starting point for the path planning of off-road firefighting in the northern the Great Xing‘an Range can effectively shorten the path and minimize the loss caused by forest fire. At the same time, it verifies the effectiveness and rationality of the path planning of the improved ant colony algorithm under such environmental conditions. The optimization scheme meets the needs of forest fire fighting in the original forest area, and can play a guiding role in design of the forest fire path planning in the original forest area in the northern Great Xing‘an Range of Inner Mongolia and a reference for fire path planning in other forest areas in China. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

19 pages, 15251 KiB  
Article
Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis
by Yonggang Sun, Bile Li, Xusheng Chen, Fanbo Meng, Qingfeng Ding, Ye Qian and Linlin Wang
Minerals 2022, 12(9), 1072; https://doi.org/10.3390/min12091072 - 25 Aug 2022
Cited by 1 | Viewed by 1959
Abstract
The Huoluotai Cu (Mo) deposit is a recently discovered porphyry Cu deposit in the northern Great Xing’an Range, NE China. Fluid inclusion (FI) micro-thermometry results and the C–H–O–S–Pb isotope compositions of the Huoluotai Cu (Mo) deposit are presented in this study. The ore-forming [...] Read more.
The Huoluotai Cu (Mo) deposit is a recently discovered porphyry Cu deposit in the northern Great Xing’an Range, NE China. Fluid inclusion (FI) micro-thermometry results and the C–H–O–S–Pb isotope compositions of the Huoluotai Cu (Mo) deposit are presented in this study. The ore-forming process consists of the sulfide-barren quartz stage (I), the quartz + chalcopyrite ± pyrite ± molybdenite stage (II), the quartz + polymetallic sulfide stage (III), and the quartz + calcite ± pyrite ± fluorite stage (IV). Cu mineralization occurred mainly in stage II. Four types of FIs were recognized: liquid-rich two-phase FIs (L-type), vapor-rich two-phase FIs (V-type), daughter-mineral-bearing three-phase FIs (S-type), and CO2-bearing FIs (C-type). In stage I, the ore-forming fluids belong to an H2O−NaCl−CO2 system. In stages II, III, and IV, the ore-forming fluids belong to an H2O−NaCl system. The results of the FI micro-thermometry and H–O isotope analysis show that the ore-forming fluids originated from a magmatic origin in stage I and mixed with meteoric water from stages II to IV. The S–Pb isotope results suggest that the source of the ore-forming materials has the characteristics of a crust–mantle-mixing origin. Fluid boiling occurred in stages I and II. The FI micro-thermometric data further show that Cu was mainly deposited below 400 °C in stage II, suggesting that fluid boiling occurring below 400 °C may be the primary factor for Cu precipitation in the Huoluotai Cu (Mo) deposit. Full article
(This article belongs to the Special Issue Genesis and Metallogeny of Non-ferrous and Precious Metal Deposits)
Show Figures

Figure 1

27 pages, 7868 KiB  
Article
Petrogenesis and Tectonic Setting of Early Cretaceous Intrusive Rocks in the Northern Ulanhot Area, Central and Southern Great Xing’an Range, NE China
by Baoqiang Tai, Wentian Mi, Genhou Wang, Yingjie Li and Xu Kong
Minerals 2021, 11(12), 1414; https://doi.org/10.3390/min11121414 - 14 Dec 2021
Cited by 1 | Viewed by 3093
Abstract
Abundant Early Cretaceous magmatism is conserved in the central and southern Great Xing’an Range (GXR) and has significant geodynamic implications for the study of the Late Mesozoic tectonic framework of northeast China. In this study, we provide new high-precision U–Pb zircon geochronology, whole-rock [...] Read more.
Abundant Early Cretaceous magmatism is conserved in the central and southern Great Xing’an Range (GXR) and has significant geodynamic implications for the study of the Late Mesozoic tectonic framework of northeast China. In this study, we provide new high-precision U–Pb zircon geochronology, whole-rock geochemistry, and zircon Hf isotopic data for representative intrusive rocks from the northern part of the Ulanhot area to illustrate the petrogenesis types and magma source of these rocks and evaluate the tectonic setting of the central-southern GXR. Laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) zircon U–Pb dating showed that magmatism in the Ulanhot area (monzonite porphyry: 128.07 ± 0.62 Ma, quartz monzonite porphyry: 127.47 ± 0.36, quartz porphyry: 124.85 ± 0.34, and granite porphyry: 124.15 ± 0.31 Ma) occurred during the Early Cretaceous. Geochemically, monzonite porphyry belongs to the metaluminous and alkaline series rocks and is characterized by high Al2O3 (average 17.74 wt.%) and TiO2 (average 0.88 wt.%) and low Ni (average 4.63 ppm), Cr (average 6.69 ppm), Mg# (average 31.11), Y (average 15.16 ppm), and Yb (average 1.62 ppm) content with enrichment in Ba, K, Pb, Sr, Zr, and Hf and depletion in Ti, Nb, and Ta. The granitic rocks (e.g., quartz monzonite porphyry, quartz porphyry, and granite porphyry) pertain to the category of high-K calc-alkaline rocks and are characterized by high SiO2 content (>66 wt.%) and low MgO (average 0.69 wt.%), Mg# (average 31.49 ppm), Ni (average 2.78 ppm), and Cr (average 8.10 ppm) content, showing an affinity to I-type granite accompanied by Nb, Ta, P, and Ti depletion and negative Eu anomalies (δEu = 0.57–0.96; average 0.82). The Hf isotopic data suggest that these rocks were the product of the partial melting of juvenile crustal rocks. Notably, fractionation crystallization plays a crucial role in the process of magma emplacement. Combining our study with published ones, we proposed that the Early Cretaceous intrusive rocks in the Ulanhot area were formed in an extensional tectonic background and compactly related to the subduction of the Paleo-Pacific Ocean plate. Full article
Show Figures

Figure 1

25 pages, 7061 KiB  
Article
Mineralization Age and Hydrothermal Evolution of the Fukeshan Cu (Mo) Deposit in the Northern Great Xing’an Range, Northeast China: Evidence from Fluid Inclusions, H–O–S–Pb Isotopes, and Re–Os Geochronology
by Yong-gang Sun, Bi-le Li, Qing-feng Ding, Yuan Qu, Cheng-ku Wang, Lin-lin Wang and Qing-lin Xu
Minerals 2020, 10(7), 591; https://doi.org/10.3390/min10070591 - 30 Jun 2020
Cited by 13 | Viewed by 3236
Abstract
The Fukeshan Cu (Mo) deposit is a newfound porphyry deposit in the northern Great Xing’an Range (GXR), northeast China. In this paper, we present results of chalcopyrite Re–Os geochronology, microthermometry of the fluid inclusions (FIs), and isotopic (H–O–S–Pb) compositions of the Fukeshan Cu [...] Read more.
The Fukeshan Cu (Mo) deposit is a newfound porphyry deposit in the northern Great Xing’an Range (GXR), northeast China. In this paper, we present results of chalcopyrite Re–Os geochronology, microthermometry of the fluid inclusions (FIs), and isotopic (H–O–S–Pb) compositions of the Fukeshan Cu (Mo) deposit. Its ore-forming process can be divided into sulfide-barren quartz veins (A vein; stage I), quartz + chalcopyrite + pyrite veins (B vein; stage II), quartz + polymetallic sulfide veins (D vein; stage III), and barren quartz + carbonate ± pyrite veins (E vein; stage IV), with Cu mineralization mainly occurred in stage II. Three types of FIs are identified in this deposit: liquid-rich two-phase (L-type) FIs, vapor-rich two-phase (V-type) FIs, daughter mineral-bearing three-phase (S-type) FIs. The homogenization temperatures of primary FIs hosted in quartz of stages I–IV are 381–494 °C, 282–398 °C, 233–340 °C, and 144–239 °C, with salinities of 7.2–58.6, 4.8–9.9, 1.4–7.9, and 0.9–3.9 wt. % NaCl equivalent, respectively. FIs microthermometry and H–O isotope data suggest that the ore-forming fluids were magmatic in origin and were gradually mixed with meteoric water from stages II to IV. Sulfur and lead isotope results indicate that the ore-forming materials of the Fukeshan Cu (Mo) deposit were likely to have originated from Late Jurassic intrusive rocks. The available data suggest that fluid cooling and incursions of meteoric water into the magmatic fluids were two important factors for Cu precipitation in the Fukeshan Cu (Mo) deposit. Chalcopyrite Re–Os dating yielded an isochron age of 144.7 ± 5.4 Ma, which is similar to the zircon U–Pb age of the quartz diorite porphyry, indicating that Late Jurassic quartz diorite porphyry and Cu mineralization occurred contemporaneously. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

18 pages, 6591 KiB  
Article
Petrogenesis and Tectonic Setting of Ore-Associated Intrusive Rocks in the Baiyinnuoer Zn–Pb Deposit, Southern Great Xing’an Range (NE China): Constraints from Zircon U–Pb Dating, Geochemistry, and Sr–Nd–Pb Isotopes
by Qing Zhao, Rongge Xiao, Dehui Zhang, Jianping Wang, Yanfei Zhang and Panpan Li
Minerals 2020, 10(1), 19; https://doi.org/10.3390/min10010019 - 24 Dec 2019
Cited by 11 | Viewed by 3622
Abstract
The Baiyinnuoer skarn Zn–Pb deposit, located in the Southern Great Xing’an Range, Northeast China, is the largest Zn–Pb deposit of the northern China, with a total reserve of 32.74 Mt at average grades of 5.44% Zn and 2.02% Pb. The Zn–Pb ore bodies [...] Read more.
The Baiyinnuoer skarn Zn–Pb deposit, located in the Southern Great Xing’an Range, Northeast China, is the largest Zn–Pb deposit of the northern China, with a total reserve of 32.74 Mt at average grades of 5.44% Zn and 2.02% Pb. The Zn–Pb ore bodies are hosted in the Lower Permian Huanggangliang Formation. The results of zircon U–Pb geochronology show that the ore-associated granodiorite porphyry, granodiorite, and diorite were emplaced at 248 ± 1.3, 251 ± 1.8, and 249 ± 1.4 Ma, respectively. The granodiorites and granodiorite porphyry have low P2O5 (0.13–0.23 wt %) and A/CNK (0.79–1.05) values, and their SiO2 and P2O5 contents are negatively correlated, indicating I-type affinity. The positive εNd(t) values (+1.3 to +1.8) and young two-stage model ages (TDM2) (880–916 Ma) of the Baiyinnuoer intrusive rocks suggest that they might have formed by the mixing of both mantle and crustal materials. The variations in the major elements, Rb, Sr, and Ba, and the negative Nb–Ta–Ti anomalies indicate that fractional crystallization might have occurred during magma ascent. In combination with the regional geology, the new geochronological, geochemical, and isotopic data reveal that the ore-associated intrusive rocks at Baiyinnuoer were formed in a post-collision setting in the Late Permian. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop