Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = North Atlantic Subtropical High

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Viewed by 278
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 331
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

19 pages, 12447 KiB  
Article
Characteristics of Strong Cooling Events in Winter of Northeast China and Their Association with 10–20 d Atmosphere Low-Frequency Oscillation
by Qianhao Wang and Liping Li
Atmosphere 2024, 15(12), 1486; https://doi.org/10.3390/atmos15121486 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1155
Abstract
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) [...] Read more.
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) days. The minimum temperature series in 60 events exists in 10–20 d of significant low-frequency (LF) periods. The key LF circulation systems affecting RSCEs include the Lake Balkhash–Baikal ridge, the East Asian trough (EAT), the robust Siberian high (SH) and the weaker (stronger) East Asian temperate (subtropical) jet, with the related anomaly centers moving from northwest to southeast and developing into a nearly north–south orientation. The LF wave energy of the northern branch from the Atlantic Ocean disperses to Northeast China, which excites the downstream disturbance wave train. The corresponding LF positive vorticity enhances and moves eastward, leading to the formation of deep EAT. The enhanced subsidence motion behind the EAT leads to SH strengthening. The cold advection related to the northeast cold vortex is the main thermal factor causing the local temperature to decrease. The Scandinavian Peninsula is the primary cold air source, and the Laptev Sea is the secondary one, with cold air from the former along northwest path via the West Siberian Plain and Lake Baikal, and from the latter along the northern path via the Central Siberian Plateau, both converging towards Northeast China. Full article
Show Figures

Figure 1

24 pages, 4625 KiB  
Article
Extreme Temperature Index in China from a Statistical Perspective: Change Characteristics and Trend Analysis from 1961 to 2021
by Xulei Wang, Lifeng Wu and Huiying Liu
Atmosphere 2024, 15(11), 1398; https://doi.org/10.3390/atmos15111398 - 20 Nov 2024
Cited by 1 | Viewed by 1226
Abstract
Against the backdrop of intensified global climate change, the frequency and intensity of extreme weather events in mainland China continue to rise due to its unique topography and complex climate types. In-depth research on the trends and impacts of climate extremes can help [...] Read more.
Against the backdrop of intensified global climate change, the frequency and intensity of extreme weather events in mainland China continue to rise due to its unique topography and complex climate types. In-depth research on the trends and impacts of climate extremes can help develop effective adaptation and mitigation strategies to protect the environment and enhance social resilience. In this research, temperature data from 2029 meteorological stations for the period 1961–2021 were used to study 15 extreme temperature indices and 3 extreme composite temperature indices. Linear propensity estimation and the Mann–Kendall test were applied to analyze the spatial and temporal variations in extreme temperatures in China, and Pearson’s correlation analysis was used to reveal the relationship between these indices and atmospheric circulation. The results show that in the past 60 years, the extreme temperature index in China has shown a trend of decreasing low-temperature events and increasing high-temperature events; in particular, the increase in warm nights is significantly higher than that of warm days. In terms of spatial distribution, daily maximum temperature less than the 10th percentile (TX10P) and daily minimum temperature greater than the 90th percentile (TN90P) increased significantly in the warm temperate sub-humid (WTSH) region, north subtropical humid (NSH) region, and marginal tropical humid (MTH) region, whereas frost days (FD0) and diurnal temperature range (DTR) decreased significantly. In the extreme composite temperature index, extreme temperature range (ETR) showed a downward trend, while compound heatwave (CHW) and compound heatwave and relative humidity (CHW-RH20) increased, with the latter mainly concentrated in the WTSH and NSH regions. Correlation analysis with climate oscillation shows that Arctic Oscillation (AO), Atlantic Multiannual Oscillation (AMO), and El Niño–Southern Oscillation (ENSO) are positively correlated with extremely high temperatures, whereas North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) are negatively correlated. Full article
(This article belongs to the Special Issue Climate Change and Regional Sustainability in Arid Lands)
Show Figures

Figure 1

31 pages, 17222 KiB  
Article
Salinity Fronts in the South Atlantic
by Igor M. Belkin and Xin-Tang Shen
Remote Sens. 2024, 16(9), 1578; https://doi.org/10.3390/rs16091578 - 29 Apr 2024
Cited by 1 | Viewed by 2090
Abstract
Monthly climatology data for salinity fronts in the South Atlantic have been created from satellite SMOS sea surface salinity (SSS) measurements taken from 2011–2019, processed at the Barcelona Expert Center of Remote Sensing (BEC), and provided as high-resolution (1/20°) daily SSS data. The [...] Read more.
Monthly climatology data for salinity fronts in the South Atlantic have been created from satellite SMOS sea surface salinity (SSS) measurements taken from 2011–2019, processed at the Barcelona Expert Center of Remote Sensing (BEC), and provided as high-resolution (1/20°) daily SSS data. The SSS fronts have been identified with narrow zones of enhanced horizontal gradient magnitude (GM) of SSS, computed using the Belkin–O’Reilly algorithm (BOA). The SSS gradient fields generated by the BOA have been log-transformed to facilitate feature recognition. The log-transformation of SSS gradients markedly improved the visual contrast of gradient maps, which in turn allowed new features to be revealed and previously known features to be documented with a monthly temporal resolution and a mesoscale (~100 km) spatial resolution. Monthly climatologies were generated and analyzed for large-scale open-ocean SSS fronts and for low-salinity regions maintained by the Rio de la Plata discharge, Magellan Strait outflow, Congo River discharge, and Benguela Upwelling. A 2000 km-long triangular area between Africa and Brazil was found to be filled with regular quasi-meridional mesoscale striations that form a giant ripple field with a 100 km wave length. South of the Tropical Front, within the subtropical high-salinity pool, a trans-ocean quasi-zonal narrow linear belt of meridional SSS maximum (Smax) was documented. The meridional Smax belt shifts north–south seasonally while retaining its well-defined linear morphology, which is suggestive of a yet unidentified mechanism that maintains this feature. The Subtropical Frontal Zone (STFZ) consists of two tenuously connected fronts, western and eastern. The Brazil Current Front (BCF) extends SE between 40 and 45°S to join the subantarctic front (SAF). The STFZ trends NW–SE across the South Atlantic, seemingly merging with the SAF/BCF south of Africa to form a single front between 40 and 45°S. In the SW Atlantic, the Rio de la Plata plume migrates seasonally, expanding northward in winter (June–July) from 39°S into the South Brazilian Bight, up to Cabo Frio (23°S) and beyond. The inner Plata front moves in and out seasonally. Farther south, the Magellan Strait outflow expands northward in winter (June–July) from 53°S up to 39–40°S to nearly join the Plata outflow. In the SE Atlantic, the Congo River plume spreads radially from the river mouth, with the spreading direction varying seasonally. The plume is often bordered from the south by a quasi-zonal front along 6°S. The diluted Congo River water spreads southward seasonally down to the Angola–Benguela Front at 16°S. The Benguela Upwelling is delineated by a meridional front, which extends north alongshore up to 20°S, where the low-salinity Benguela Upwelling water forms a salinity front, which is separate from the thermal Angola–Benguela Front at 16°S. The high-salinity tropical water (“Angola water”) forms a wedge between the low-salinity waters of the Congo River outflow and Benguela Upwelling. This high-salinity wedge is bordered by salinity fronts that migrate north–south seasonally. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Ocean Salinity)
Show Figures

Figure 1

18 pages, 6002 KiB  
Article
The Impacts of Regime Shift in Summer Arctic Oscillation on Precipitation in East Asia
by Xuxin Zou, Li Yan, Jianjun Xu and Shaojun Zheng
Atmosphere 2024, 15(3), 283; https://doi.org/10.3390/atmos15030283 - 26 Feb 2024
Cited by 2 | Viewed by 2032
Abstract
Using multiple observational and reanalysis data, this paper investigates the impact of the interdecadal shift in summer Arctic Oscillation (AO) on precipitation in East Asia, by removing ENSO influences. The results indicate that the lower-layer activity center of summer AO in Atlantic shifted [...] Read more.
Using multiple observational and reanalysis data, this paper investigates the impact of the interdecadal shift in summer Arctic Oscillation (AO) on precipitation in East Asia, by removing ENSO influences. The results indicate that the lower-layer activity center of summer AO in Atlantic shifted eastward after the mid-1980s. This regime shift of summer AO has a significant impact on precipitation in East Asia. Before the mid-1980s, the key regions in which precipitation was affected by AO in East Asia were northern East Asia and Northeastern China and adjacent regions. After the mid-1980s, the key regions in which precipitation was affected by AO in East Asia were central Inner Mongolia and Southern China. The mechanism of precipitation changes can be attributed to changes in atmospheric circulation and water vapor transport related to AO changes. After the mid-1980s, the influence of AO on geopotential height over northern East Asia weakened; meanwhile, the impact of AO on geopotential height over China increased. Consistent with the changes in atmospheric circulation, water vapor transport in East Asia also underwent interdecadal changes before and after the mid-1980s. The differences in atmospheric circulation and water vapor transport in East Asia can be traced back to the North Atlantic. Before the mid-1980s, wave activity flux related to summer AO tended to propagate in high latitudes and subtropics; after the mid-1980s, the wave activity flux changed in its subtropical path and propagated eastward from the North Atlantic through the Middle East to China, significantly affecting the summer precipitation in China. Full article
(This article belongs to the Special Issue New Insights in Atmospheric Teleconnection)
Show Figures

Figure 1

37 pages, 6316 KiB  
Review
Interaction between the Westerlies and Asian Monsoons in the Middle Latitudes of China: Review and Prospect
by Xiang-Jie Li and Bing-Qi Zhu
Atmosphere 2024, 15(3), 274; https://doi.org/10.3390/atmos15030274 - 25 Feb 2024
Cited by 7 | Viewed by 2894
Abstract
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the [...] Read more.
The westerly circulation and the monsoon circulation are the two major atmospheric circulation systems affecting the middle latitudes of the Northern Hemisphere (NH), which have significant impacts on climate and environmental changes in the middle latitudes. However, until now, people’s understanding of the long-term paleoenvironmental changes in the westerly- and monsoon-controlled areas in China’s middle latitudes is not uniform, and the phase relationship between the two at different time scales is also controversial, especially the exception to the “dry gets drier, wet gets wetter” paradigm in global warming between the two. Based on the existing literature data published, integrated paleoenvironmental records, and comprehensive simulation results in recent years, this study systematically reviews the climate and environmental changes in the two major circulation regions in the mid-latitudes of China since the Middle Pleistocene, with a focus on exploring the phase relationship between the two systems at different time scales and its influencing mechanism. Through the reanalysis and comparative analysis of the existing data, we conclude that the interaction and relationship between the two circulation systems are relatively strong and close during the warm periods, but relatively weak during the cold periods. From the perspective of orbital, suborbital, and millennium time scales, the phase relationship between the westerly and Asian summer monsoon (ASM) circulations shows roughly in-phase, out-of-phase, and anti-phase transitions, respectively. There are significant differences between the impacts of the westerly and ASM circulations on the middle-latitude regions of northwest China, the Qinghai–Tibet Plateau, and eastern China. However, under the combined influence of varied environmental factors such as BHLSR (boreal high-latitude solar radiation), SST (sea surface temperature), AMOC (north Atlantic meridional overturning circulation), NHI (Northern Hemisphere ice volume), NAO (North Atlantic Oscillation), ITCZ (intertropical convergence zone), WPSH (western Pacific subtropical high), TIOA (tropical Indian Ocean anomaly), ENSO (El Niño/Southern Oscillation), CGT/SRP (global teleconnection/Silk Road pattern), etc., there is a complex and close coupling relationship between the two, and it is necessary to comprehensively consider their “multi-factor’s joint-action” mechanism and impact, while, in general, the dynamic mechanisms driving the changes of the westerly and ASM circulations are not the same at different time scales, such as orbital, suborbital, centennial to millennium, and decadal to interannual, which also leads to the formation of different types of phase relationships between the two at different time scales. Future studies need to focus on the impact of this “multi-factor linkage mechanism” and “multi-phase relationship” in distinguishing the interaction between the westerly and ASM circulation systems in terms of orbital, suborbital, millennium, and sub-millennium time scales. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

7 pages, 739 KiB  
Proceeding Paper
Variability of the North Atlantic Subtropical High in the Year’s Wet Season and Its Relationship with the Tropical Cyclonic Activity
by Yandy Rodríguez Rodríguez, Nathalí Valderá Figueredo and Leticia Peña Peña
Environ. Sci. Proc. 2023, 27(1), 27; https://doi.org/10.3390/ecas2023-15482 - 30 Oct 2023
Viewed by 727
Abstract
The variability of the North Atlantic Subtropical High and its influence on the behavior of tropical cyclogenesis are characterized and analyzed. The database of the Center for Environmental Prediction and the Center for Atmospheric Research was consulted for the months of May to [...] Read more.
The variability of the North Atlantic Subtropical High and its influence on the behavior of tropical cyclogenesis are characterized and analyzed. The database of the Center for Environmental Prediction and the Center for Atmospheric Research was consulted for the months of May to October between 1950 and 2019. The variables used were the central pressure to determine the position of the North Atlantic Subtropical High on the surface and the geopotential to obtain the position of the anticyclonic center at 850 hPa, as well as the geopotential at 500 and 200 hPa over the region of the anticyclone on the surface. This system weakens at the surface level and intensifies at other tropospheric levels. The relationship with tropical cyclone activity in the Atlantic basin was assured and updated. Low levels play an important role in tropical cyclogenesis; the position and extension of the anticyclonic ridge at this level are the parameters with the highest coincidence, and in the present century, the anticyclone parameters in the months of June and July have increased their significance. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

23 pages, 16126 KiB  
Article
The Thermal State of the North Atlantic Ocean and Hydrological Droughts in the Warta River Catchment in Poland during 1951–2020
by Andrzej A. Marsz, Leszek Sobkowiak, Anna Styszyńska, Dariusz Wrzesiński and Adam Perz
Water 2023, 15(14), 2547; https://doi.org/10.3390/w15142547 - 12 Jul 2023
Cited by 2 | Viewed by 1684
Abstract
This study presents the direct relationships between changes in the annual surface temperature of the North Atlantic (SST) and the number of days per year experiencing low flows in the Warta River catchment (WRC) in Central Europe, Poland, in the multi-annual period of [...] Read more.
This study presents the direct relationships between changes in the annual surface temperature of the North Atlantic (SST) and the number of days per year experiencing low flows in the Warta River catchment (WRC) in Central Europe, Poland, in the multi-annual period of 1951–2020. The number of days experiencing low flows (TLF) was used to describe the conditions of hydrological drought in the WRC. Moderately strong (r~0.5) but statistically highly significant (p < 0.001) relationships were found between TLF and the SST in the subtropical (30–40° N, 60–40° W) and subpolar North Atlantic (70° N, 10° W–10° E). With the increase in the annual SST in these parts of the North Atlantic, the number of days in a year experiencing low flows in the WRC also increased. It was determined that besides synchronous (i.e., in the same year) relationships between TLF and SST, asynchronous relations also occurred: the SST changes were one year ahead of the TLF changes. With the increase in the SST in the subtropical and subpolar North Atlantic, the sunshine duration and air temperature in the WRC increased, while the relative humidity decreased. The relationships between precipitation in the WRC and SST were negative (from −0.04 to −0.14), but statistically insignificant (p > 0.2). This indicates that the impact of SST changes on TLF in the WRC is mainly caused by the shaping of the amount of surface evaporation, which strongly increases in years of high SST, and the climatic water balance becomes negative, resulting in an increase in extremely low flows. The analysis of the causes of these relationships shows that the SST changes in the North Atlantic control, through changes in the height of the geopotential (h500), changes in the atmospheric circulation over Europe. In the periods of SST h500 growth over Central Europe, the atmospheric pressure (SLP) increases. That area is more frequently than average under the influence of the Azores High; this leads to an increase in the frequency of anticyclonic weather. A significant increase in the number of TLFs and prolonged periods of hydrological drought in the WRC after 2000 are associated with a strong increase in the SST in the area of the tropical and subtropical North Atlantic. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Water Resources: Assessment and Modeling)
Show Figures

Figure 1

16 pages, 4636 KiB  
Article
Evaluation on the Forecast Skills of Precipitation and Its Influencing Factors in the Flood Season in Liaoning Province of China
by Yihe Fang, Dakai Jiang, Chenghan Liu, Chunyu Zhao, Zongjian Ke, Yitong Lin, Fei Li and Yiqiu Yu
Atmosphere 2023, 14(4), 668; https://doi.org/10.3390/atmos14040668 - 31 Mar 2023
Cited by 1 | Viewed by 1817
Abstract
To clarify the precipitation forecast skills of climate forecast operations in the flood season in Liaoning Province of China, this study examines the forecast accuracies of China’s national and provincial operational climate prediction products and the self-developed objective prediction methods and climate model [...] Read more.
To clarify the precipitation forecast skills of climate forecast operations in the flood season in Liaoning Province of China, this study examines the forecast accuracies of China’s national and provincial operational climate prediction products and the self-developed objective prediction methods and climate model products by Shenyang Regional Climate Center (SRCC) in the flood season in Liaoning. Furthermore, the forecast accuracies of the main influencing factors on the precipitation in the flood season of Liaoning are assessed. The results show that the SRCC objective methods have a relatively high accuracy. The European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal forecast initialized at the sub-nearest time has the best performance in June. The National Climate Center (NCC) Climate System Model sub-seasonal forecast initialized at the sub-nearest time, and the ECMWF seasonal and sub-seasonal forecasts initialized at the nearest time, perform the best in July. The NCC sub-seasonal forecast initialized at the sub-nearest time has the best performance in August. For the accuracy of the SRCC objective method, the more significant the equatorial Middle East Pacific sea surface temperature (SST) anomaly is, the higher the evaluation score of the dynamic–analogue correction method is. The more significant the North Atlantic SST tripole is, the higher the score of the hybrid downscaling method is. For the forecast accuracy of the main influencing factors of precipitation, the tropical Atlantic SST and the north–south anti-phase SST in the northwest Pacific can well predict the locations of the southern vortex and the northern vortex in early summer, respectively. The warm (clod) SST in China offshore has a good forecast performance on the weak (strong) southerly wind in midsummer in Northeast China. The accuracy of using the SST in the Nino 1+2 areas to predict the north–south location of the western Pacific subtropical high is better than that of using Kuroshio SST. The accuracy of predicting northward-moving typhoons from July to September by using the SST in the west-wind-drift area is better than using the SST in the Nino 3 area. The above conclusions are of great significance for improving the short-term climate prediction in Liaoning. Full article
(This article belongs to the Special Issue Climate Change on Ocean Dynamics)
Show Figures

Figure 1

15 pages, 4898 KiB  
Article
A Glider View of the Spreading and Mixing Processes of Antarctic Intermediate Water in the Northeastern Subtropical Atlantic
by Juan Alberto Jiménez-Rincón, Andrés Cianca, Carmen Ferrero-Martín and Alfredo Izquierdo
J. Mar. Sci. Eng. 2023, 11(3), 576; https://doi.org/10.3390/jmse11030576 - 8 Mar 2023
Cited by 1 | Viewed by 2516
Abstract
The Antarctic Intermediate Water (AAIW), one of the most important global intermediate water masses, spreads over the world ocean. Its propagation limit at the Northeast Subtropical Atlantic is characterized by its encounter with the Mediterranean Water (MW), which presents dissimilar thermohaline properties. Previous [...] Read more.
The Antarctic Intermediate Water (AAIW), one of the most important global intermediate water masses, spreads over the world ocean. Its propagation limit at the Northeast Subtropical Atlantic is characterized by its encounter with the Mediterranean Water (MW), which presents dissimilar thermohaline properties. Previous studies of the AAIW in this region have been based on traditional oceanographic cruise observations, which were later complemented by observations using autonomous systems such as ARGO floats. However, these observations present limitations for the study of processes occurring at mesoscale and smaller scales. In this study, we used high-resolution observations made by cutting edge platforms such as underwater gliders. Specifically, a meridional glider section realized in spring 2016 between the islands of Madeira and Gran Canaria has been used. The temperature, salinity and dissolved oxygen minima have allowed the detection of the AAIW signal north of the Canarian archipelago and significantly westward from its main northward propagation pathway in this region. The results of this work have shown that the encounter of AAIW and MW generates thermohaline intrusions or interleaving layers. It is suggested that double diffusion processes may play a role in the development of these structures, which may be important for water masses mixing and, therefore, in determining the northward spreading boundary of AAIW. The use of the high-resolution glider observations combined with other data products is essential for the study of water masses and dynamics when relevant processes have a wide range of scales. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

15 pages, 3793 KiB  
Article
Manifestation of the Early 20th Century Warming in the East-European Plain: Atmospheric Circulation Anomalies and Its Connection to the North Atlantic SST and Sea Ice Variability
by Valeria Popova, Tatiana Aldonina and Daria Bokuchava
Atmosphere 2023, 14(3), 428; https://doi.org/10.3390/atmos14030428 - 21 Feb 2023
Cited by 1 | Viewed by 1692
Abstract
A study of the climatic characteristics and annual runoff of the Volga and Severnaya Dvina rivers demonstrates that, on the East European Plain (EEP), Early Twentieth Century Warming (ETCW) manifested in a multiyear drought between 1934 and 1940; this drought has no analogues [...] Read more.
A study of the climatic characteristics and annual runoff of the Volga and Severnaya Dvina rivers demonstrates that, on the East European Plain (EEP), Early Twentieth Century Warming (ETCW) manifested in a multiyear drought between 1934 and 1940; this drought has no analogues in this region in terms of intensity and duration according to Palmer’s classification, and caused extreme hydrological events. The circulation conditions during this event were characterized by an extensive anticyclone over Eastern Europe, combined with a cyclonic anomaly in the circumpolar region. An analysis of the spatial features of sea surface temperature (SST) anomalies indicate that the surface air temperature (SAT) anomalies in July on the EEP during ETCW were related not only to the North Atlantic (NA) warming and positive AMO phase, but also to a certain spatial pattern of SST anomalies characteristic of the 1920–1950 period. The difference between the SST anomalies of the opposite sign in the different NA zones, used as the indicator of the obtained spatial pattern, shows the quite close relations between the July SAT anomalies on the EEP and the atmospheric circulation patterns responsible for them. The positive phase of the Atlantic Multidecadal Oscillation (AMO) and the expansion of the subtropical high-pressure belt to the north and to the east can be considered as global-scale drivers of this phenomenon. The AMO also impacts the sea ice cover in the Barents–Kara Sea region, which, in turn, could have led to specific atmospheric circulation patterns and contributed to droughts on the EEP in the 1930s. Full article
(This article belongs to the Special Issue Advances in Atmospheric Sciences ‖)
Show Figures

Figure 1

17 pages, 5348 KiB  
Article
The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlantic SST
by Dan Yang and Lijuan Wang
Atmosphere 2022, 13(12), 2093; https://doi.org/10.3390/atmos13122093 - 13 Dec 2022
Cited by 10 | Viewed by 2808
Abstract
ERA5 monthly averaged reanalysis data during 1979–2020 are used to analyze the anomalous characteristics of summertime circulation types over Eurasia and their connections with the North Atlantic Oscillation (NAO) modulated by North Atlantic sea surface temperature (SST). A circulation index (CI) is defined [...] Read more.
ERA5 monthly averaged reanalysis data during 1979–2020 are used to analyze the anomalous characteristics of summertime circulation types over Eurasia and their connections with the North Atlantic Oscillation (NAO) modulated by North Atlantic sea surface temperature (SST). A circulation index (CI) is defined to describe the anomalous characteristics of summertime circulation types over the Eurasian mid-high latitude and classify the anomalous circulation into a double-ridge type (DR-type) and double-trough type (DT-type). The results show that these anomalous circulation types are closely related to the variation of the western Pacific subtropical high (WPSH), East Asian subtropical jet (EASJ), South Asia high (SAH) and summer precipitation anomalies in China. There is a significant negative correlation between summer NAO and circulation types over Eurasia. The positive CI is favorable for the southward movement of the EASJ and two positive height anomalies over the Ural Mountains and the Sea of Okhotsk, respectively. Accompanied by moisture convergence and a strong ascending motion over the middle and lower reaches of the Yangtze River Valley (MLYRV), the summer rainfall will be above normal. These patterns are reversed in positive NAO-index years. The connection between the NAO and circulation types over Eurasia is modulated by a tri-pole SST anomaly pattern over the North Atlantic, which may induce the NAO-like atmospheric circulation and strengthen the impacts of the NAO on Eurasian circulation types. A wave train from the North Atlantic to East Asia, which is aroused by the tri-pole SST anomaly pattern, is the potential mechanism for linking summer NAO and circulation types over Eurasia. Full article
Show Figures

Figure 1

9 pages, 8137 KiB  
Proceeding Paper
Analysis of SisPI Performance to Represent the North Atlantic Subtropical Anticyclone
by Jaina María Paula Méndez, Maibys Sierra Lorenzo and Pedro Manuel González Jardines
Environ. Sci. Proc. 2022, 19(1), 40; https://doi.org/10.3390/ecas2022-12804 - 14 Jul 2022
Viewed by 1227
Abstract
This research evaluates the performance of the Short-Range Forecast System (SisPI by its acronym in Spanish) to represent the North Atlantic subtropical anticyclone over the parent domain during the 2020 wet season. For this, an average for the 2010–2019 decade was calculated using [...] Read more.
This research evaluates the performance of the Short-Range Forecast System (SisPI by its acronym in Spanish) to represent the North Atlantic subtropical anticyclone over the parent domain during the 2020 wet season. For this, an average for the 2010–2019 decade was calculated using data from the ERA5 reanalysis at different levels of the troposphere for variables of geopotential height, relative humidity, temperature and wind to characterize the main systems that disturb the weather in the study area, to obtain the corresponding anomalies and to determine if the errors influence these anomalies or the SisPI configuration. For this, it was necessary to interpolate SisPI data to make them match the resolution of ERA5 reanalysis and to be able to perform the calculations and generate the maps, for which a Python code was designed. The results suggest that SisPI tends to locate the high geopotential areas further south of their real position, which modifies the synoptic flow forecasted. On the other hand, the northern and southern borders of the domain have the largest errors, mainly to the north, where, according to the decadal mean and the anomalies obtained in 2020, a baroclinic zone that creates additional noise tends to be generated. To the south, this baroclinic zone lies on segments of the ITCZ which may also be the reason for additional errors in the model. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Atmospheric Sciences)
Show Figures

Figure 1

15 pages, 3134 KiB  
Article
The Combined QBO and ENSO Influence on Tropical Cyclone Activity over the North Atlantic Ocean
by Alejandro Jaramillo, Christian Dominguez, Graciela Raga and Arturo I. Quintanar
Atmosphere 2021, 12(12), 1588; https://doi.org/10.3390/atmos12121588 - 29 Nov 2021
Cited by 5 | Viewed by 5061
Abstract
The Quasi-Biennal Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) largely modulate the zonal wind in the tropics. Previous studies showed that QBO phases produce changes in deep convection through an increase/decrease in the tropopause height over the tropics and subtropics. This study [...] Read more.
The Quasi-Biennal Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) largely modulate the zonal wind in the tropics. Previous studies showed that QBO phases produce changes in deep convection through an increase/decrease in the tropopause height over the tropics and subtropics. This study investigates the combined effects of QBO and ENSO on tropical cyclone activity by modulating tropopause height. We found that tropopause height increases over the Gulf of Mexico, the Caribbean region, and the Western North Atlantic Ocean during La Niña + QBOW, allowing deeper tropical convection to develop over those regions. As a consequence, TC activity over those regions is not only increased in number but also enhanced in intensity. Conversely, during El Niño + QBOE, most deep tropical convection is inhibited over those same regions due to the decrease in tropopause height over the subtropics. We conclude that QBO effects on TCs and deep convection should be studied in combination with ENSO. Additional comparative studies using long record data at high vertical resolution are needed to fully understand to what extent QBO interacts with ENSO in the lower tropical stratosphere and upper tropical troposphere. Full article
(This article belongs to the Special Issue Extreme Tropical Cyclones)
Show Figures

Figure 1

Back to TopTop