Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = Nav1.4 channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7293 KiB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Viewed by 278
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Active Colitis-Induced Atrial Electrophysiological Remodeling
by Hiroki Kittaka, Edward J. Ouille V, Carlos H. Pereira, Andrès F. Pélaez, Ali Keshavarzian and Kathrin Banach
Biomolecules 2025, 15(7), 982; https://doi.org/10.3390/biom15070982 - 10 Jul 2025
Viewed by 400
Abstract
Patients with ulcerative colitis exhibit an increased risk for supraventricular arrhythmia during the active disease phase of the disease and show signs of atrial electrophysiological remodeling in remission. The goal of this study was to determine the basis for colitis-induced changes in atrial [...] Read more.
Patients with ulcerative colitis exhibit an increased risk for supraventricular arrhythmia during the active disease phase of the disease and show signs of atrial electrophysiological remodeling in remission. The goal of this study was to determine the basis for colitis-induced changes in atrial excitability. In a mouse model (C57BL/6; 3 months) of dextran sulfate sodium (DSS)-induced active colitis (3.5% weight/volume, 7 days), electrocardiograms (ECG) revealed altered atrial electrophysiological properties with a prolonged P-wave duration and PR interval. ECG changes coincided with a decreased atrial conduction velocity in Langendorff perfused hearts. Action potentials (AP) recorded from isolated atrial myocytes displayed an attenuated maximal upstroke velocity and amplitude during active colitis, as well as a prolonged AP duration (APD). Voltage clamp analysis revealed a colitis-induced shift in the voltage-dependent activation of the Na-current (INa) to more depolarizing voltages. In addition, protein levels of Nav1.5 protein and connexin isoform Cx43 were reduced. APD prolongation depended on a reduction in the transient outward K-current (Ito) mostly generated by Kv4.2 channels. The changes in ECG, atrial conductance, and APD were reversible upon remission. The change in conduction velocity predominantly depended on the reversibility of the reduced Cx43 and Nav1.5 expression. Treatment of mice with inhibitors of Angiotensin-converting enzyme (ACE) or Angiotensin II (AngII) receptor type 1 (AT1R) prevented the colitis-induced atrial electrophysiological remodeling. Our data support a colitis-induced increase in AngII signaling that promotes atrial electrophysiological remodeling and puts colitis patients at an increased risk for atrial arrhythmia. Full article
(This article belongs to the Special Issue Molecular Advances in Inflammatory Bowel Disease)
Show Figures

Figure 1

26 pages, 1786 KiB  
Review
Saxitoxin: A Comprehensive Review of Its History, Structure, Toxicology, Biosynthesis, Detection, and Preventive Implications
by Huiyun Deng, Xinrui Shang, Hu Zhu, Ning Huang, Lianghua Wang and Mingjuan Sun
Mar. Drugs 2025, 23(7), 277; https://doi.org/10.3390/md23070277 - 2 Jul 2025
Viewed by 1316
Abstract
Saxitoxin (STX) is a potent toxin produced by marine dinoflagellates and freshwater or brackish water cyanobacteria, and is a member of the paralytic shellfish toxins (PSTs). As a highly specific blocker of voltage-gated sodium channels (NaVs), STX blocks sodium ion influx, thereby inhibiting [...] Read more.
Saxitoxin (STX) is a potent toxin produced by marine dinoflagellates and freshwater or brackish water cyanobacteria, and is a member of the paralytic shellfish toxins (PSTs). As a highly specific blocker of voltage-gated sodium channels (NaVs), STX blocks sodium ion influx, thereby inhibiting nerve impulse transmission and leading to systemic physiological dysfunctions in the nervous, respiratory, cardiovascular, and digestive systems. Severe exposure can lead to paralysis, respiratory failure, and mortality. STX primarily enters the human body through the consumption of contaminated shellfish, posing a significant public health risk as the causative agent of paralytic shellfish poisoning (PSP). Beyond its acute toxicity, STX exerts cascading impacts on food safety, marine ecosystem integrity, and economic stability, particularly in regions affected by harmful algal blooms (HABs). Moreover, the complex molecular structure of STX—tricyclic skeleton and biguanide group—and its diverse analogs (more than 50 derivatives) have made it the focus of research on natural toxins. In this review, we traced the discovery history, chemical structure, molecular biosynthesis, biological enrichment mechanisms, and toxicological actions of STX. Moreover, we highlighted recent advancements in the potential for detection and treatment strategies of STX. By integrating multidisciplinary insights, this review aims to provide a holistic understanding of STX and to guide future research directions for its prevention, management, and potential applications. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Figure 1

25 pages, 4951 KiB  
Review
Advances in Structural Biology for Anesthetic Drug Mechanisms: Insights into General and Local Anesthesia
by Hanxiang Liu, Zheng Liu, Huixian Zhou, Rongkai Yan, Yuzhen Li, Xiaofeng Zhang, Lingyu Bao, Yixin Yang, Jinming Zhang and Siyuan Song
BioChem 2025, 5(2), 18; https://doi.org/10.3390/biochem5020018 - 12 Jun 2025
Viewed by 862
Abstract
Anesthesia is a cornerstone of modern medicine, enabling surgery, pain management, and critical care. Despite its widespread use, the precise molecular mechanisms of anesthetic action remain incompletely understood. Recent advancements in structural biology, including cryo-electron microscopy (Cryo-EM), X-ray crystallography, and computational modeling, have [...] Read more.
Anesthesia is a cornerstone of modern medicine, enabling surgery, pain management, and critical care. Despite its widespread use, the precise molecular mechanisms of anesthetic action remain incompletely understood. Recent advancements in structural biology, including cryo-electron microscopy (Cryo-EM), X-ray crystallography, and computational modeling, have provided high-resolution insights into anesthetic–target interactions. This review examines key molecular targets, including GABA_A receptors, NMDA receptors, two-pore-domain potassium (K2P) channels (e.g., TREK-1), and voltage-gated sodium (Nav) channels. General anesthetics modulate GABA_A and NMDA receptors, affecting inhibitory and excitatory neurotransmission, while local anesthetics primarily block Nav channels, preventing action potential propagation. Structural studies have elucidated anesthetic binding sites and gating mechanisms, providing a foundation for drug optimization. Advances in computational drug design and AI-assisted modeling have accelerated the development of safer, more selective anesthetics, paving the way for precision anesthesia. Future research aims to develop receptor-subtype-specific anesthetics, Nav1.7-selective local anesthetics, and investigate the neural mechanisms of anesthesia-induced unconsciousness and postoperative cognitive dysfunction (POCD). By integrating structural biology, AI-driven drug discovery, and neuroscience, anesthesia research is evolving toward safer, more effective, and personalized strategies, enhancing clinical outcomes and patient safety. Full article
Show Figures

Figure 1

43 pages, 2735 KiB  
Review
Voltage-Gated Ion Channels in Neuropathic Pain Signaling
by Ricardo Felix, Alejandra Corzo-Lopez and Alejandro Sandoval
Life 2025, 15(6), 888; https://doi.org/10.3390/life15060888 - 30 May 2025
Viewed by 1241
Abstract
Neuropathic pain is a chronic and debilitating disorder of the somatosensory system that affects a significant proportion of the population and is characterized by abnormal responses such as hyperalgesia and allodynia. Voltage-gated ion channels, including sodium (NaV), calcium (CaV), [...] Read more.
Neuropathic pain is a chronic and debilitating disorder of the somatosensory system that affects a significant proportion of the population and is characterized by abnormal responses such as hyperalgesia and allodynia. Voltage-gated ion channels, including sodium (NaV), calcium (CaV), and potassium (KV) channels, play a pivotal role in modulating neuronal excitability and pain signal transmission following nerve injury. This review intends to provide a comprehensive analysis of the molecular and cellular mechanisms by which dysregulation in the expression, localization, and function of specific NaV channel subtypes (mainly NaV1.7 and NaV1.8) and their auxiliary subunits contributes to aberrant neuronal activation, the generation of ectopic discharges, and sensitization in neuropathic pain. Likewise, special emphasis is placed on the crucial role of CaV channels, particularly CaV2.2 and the auxiliary subunit CaVα2δ, whose overexpression increases calcium influx, neurotransmitter release, and neuronal hyperexcitability, thus maintaining persistent pain states. Furthermore, KV channels (particularly KV7 channels) function as brakes on neuronal excitability, and their dysregulation facilitates the development and maintenance of neuropathic pain. Therefore, targeting specific KV channel subtypes to restore their function is also a promising therapeutic strategy for alleviating neuropathic pain symptoms. On the other hand, recent advances in the development of small molecules as selective modulators or inhibitors targeting voltage-gated ion channels are also discussed. These agents have improved efficacy and safety profiles in preclinical and clinical studies by attenuating pathophysiological channel activity and restoring neuronal function. This review seeks to contribute to guiding future research and drug development toward more effective mechanism-based treatments by discussing the molecular mechanisms underlying neuropathic pain and highlighting translational therapeutic opportunities. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

22 pages, 3988 KiB  
Systematic Review
Decoding SCN2A Variants: Bridging Genetics and Phenotypes in Autism Spectrum Disorder
by Nicholas DiStefano, Jaimee N. Cooper, David H. Elisha, Max Zalta, Jeenu Mittal, David Cohen, Andrea Monterrubio, Ryan Hossain, Akhila Sangadi, Rahul Mittal and Adrien A. Eshraghi
J. Clin. Med. 2025, 14(11), 3790; https://doi.org/10.3390/jcm14113790 - 28 May 2025
Viewed by 957
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a rising prevalence, driven by multifactorial genetic and environmental factors. Among the genetic contributors identified, SCN2A, a critical gene encoding the Nav1.2 sodium channel, has been implicated in ASD and other [...] Read more.
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a rising prevalence, driven by multifactorial genetic and environmental factors. Among the genetic contributors identified, SCN2A, a critical gene encoding the Nav1.2 sodium channel, has been implicated in ASD and other related neurological conditions. This systematic review aims to explore the relationship between SCN2A mutations and ASD phenotypes. Methods: This review systematically analyzed data from studies reporting SCN2A mutations in individuals diagnosed with ASD. The primary focus was on the characterization of mutation types, associated clinical features, and phenotypic variability. Results: The mutations identified were predominantly de novo missense mutations and were associated with a spectrum of neurological and developmental challenges, including seizures, intellectual disability, movement disorders, and repetitive behaviors. A notable finding was the significant phenotypic variability observed across individuals. Gender differences emerged, suggesting a potentially greater impact on females compared to trends typically seen in ASD genetic studies. Specific mutations, such as c.2919+4delT, and mosaicism were identified as novel contributors to the observed heterogeneity. Conclusions: The review highlights the clinical significance of SCN2A mutations in ASD and highlights their relevance in genetic counseling and the development of targeted therapies. Understanding the diverse genotype–phenotype correlations associated with SCN2A can drive progress in personalized medicine, paving the way for precision therapies tailored to individuals with SCN2A-related ASD. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

10 pages, 2161 KiB  
Article
The Plant Alkaloid Harmaline Blocks the Voltage-Gated Sodium Channel Nav1.7: A Study Using an Automated Patch-Clamp
by Jörg Eisfeld, Marina Schumacher, Mirjam Krautwald, Stephan Wierschke, Lu Qin, Taoufiq Fechtali and Heinrich Brinkmeier
Int. J. Mol. Sci. 2025, 26(10), 4636; https://doi.org/10.3390/ijms26104636 - 13 May 2025
Viewed by 457
Abstract
The voltage-gated sodium channel Nav1.7 is essential for pain perception and is an interesting target for the development of pain-relieving substances. Here, we investigated whether the Nav1.7 channel is sensitive to harmaline, an alkaloid produced by the North African [...] Read more.
The voltage-gated sodium channel Nav1.7 is essential for pain perception and is an interesting target for the development of pain-relieving substances. Here, we investigated whether the Nav1.7 channel is sensitive to harmaline, an alkaloid produced by the North African plant Peganum harmala. To this end, we used Chinese hamster ovary (CHO) cells expressing the human Nav1.7 channel and studied Na+ channel pharmacology with an automated patch-clamp technique. Cells stimulated with depolarizing voltage pulses responded with typical transient inward currents. The Na+ channel blocker ranolazine inhibited whole-cell currents in a concentration-dependent manner (IC50: 12.1 µM). Harmaline inhibited both peak and late Na+ currents. A complete block was achieved at 300 µM of harmaline, with half maximum inhibition occurring at 35.5 µM. In contrast to ranolazine, the effect of harmaline was voltage independent. Neither the current/voltage curves nor the steady-state inactivation curves were shifted in response to drug application (30 µM). We conclude that the plant alkaloid harmaline, which is used in traditional medicine in North Africa, is an effective blocker of the voltage-gated Na+ channel Nav1.7. Our results offer a rationale for the use of harmaline against certain pain syndromes and rise hopes for the development of a new class of anti-nociceptive drugs targeting Nav1.7. Full article
Show Figures

Figure 1

18 pages, 11476 KiB  
Article
The Identification of Opioid Receptors and Peptide Precursors in Human DRG Neurons Expressing Pain-Signaling Molecules Confirms Their Potential as Analgesic Targets
by Shaaban A. Mousa, Mohammed Shaqura, Sascha Tafelski, Jan David Wandrey, Özgür Celik, Sascha Treskatsch and Michael Schäfer
Cells 2025, 14(10), 694; https://doi.org/10.3390/cells14100694 - 11 May 2025
Cited by 1 | Viewed by 1092
Abstract
The presence and function of the opioidergic system in sensory dorsal root ganglia (DRG) was demonstrated in various animal models of pain. To endorse recent functional and transcriptional evidence of opioid receptors in human DRG, this study compared morphological and transcriptional evidence in [...] Read more.
The presence and function of the opioidergic system in sensory dorsal root ganglia (DRG) was demonstrated in various animal models of pain. To endorse recent functional and transcriptional evidence of opioid receptors in human DRG, this study compared morphological and transcriptional evidence in human and rat DRG using immunofluorescence confocal microscopy and mRNA transcript analysis. Specifically, it examined the neuronal expression of mu (MOR), delta (DOR), and kappa (KOR) opioid receptors, opioid peptide precursors (POMC, PENK, and PDYN), and key pain-signaling molecules. The results demonstrate abundant immunoreactivity in human DRG for key pain transduction receptors, including the thermosensitive ion channels TRPV1, TRPV4 and TRPA1, mechanosensitive PIEZO1 and PIEZO2, and the nociceptive-specific Nav1.8. They colocalized with calcitonin gene-related peptide (CGRP), a marker for peptidergic sensory neurons. Within this same subpopulation, we identified MOR, DOR, and KOR, while their ligand precursors were less abundant. Notably, the mRNA transcripts of MOR and PENK in human DRG were highest among the opioid-related genes; however, they were considerably lower than those of key pain-signaling molecules. These findings were corroborated by functional evidence in demonstrating the fentanyl-induced inhibition of voltage-gated calcium currents in rat DRG, which was antagonized by naloxone. The immunohistochemical and transcriptional demonstration of opioid receptors and their endogenous ligands in both human and rat DRG support recent electrophysiologic and in situ hybridization evidence in human DRG and confirms their potential as analgesic targets. This peripherally targeted approach has the advantage of mitigating central opioid-related side effects, endorsing the potential of future translational pain research from rodent models to humans. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

16 pages, 738 KiB  
Review
Nav1.8 and Chronic Pain: From Laboratory Animals to Clinical Patients
by Yu-Feng Xie
Biomolecules 2025, 15(5), 694; https://doi.org/10.3390/biom15050694 - 10 May 2025
Cited by 1 | Viewed by 2007
Abstract
As a subtype of voltage-gated sodium channel and predominantly expressed in the sensory neurons located in the dorsal root ganglion (DRG), the Nav1.8 channel encoded by the SCN10A gene is found to have different variants in patients suffering chronic pain or insensitivity to [...] Read more.
As a subtype of voltage-gated sodium channel and predominantly expressed in the sensory neurons located in the dorsal root ganglion (DRG), the Nav1.8 channel encoded by the SCN10A gene is found to have different variants in patients suffering chronic pain or insensitivity to pain due to the gain-of-function or loss-of-function of Nav1.8 channels. In animal models of chronic pain, Nav1.8 is also verified to be involved, suggesting that Nav1.8 may be a potential target for treatment of chronic pain. Another voltage-gated sodium channel, Nav1.7, is also proposed to be a target for chronic pain, supported by clinical findings in patients and laboratory animal models; however, there is no Nav1.7-specific drug that has passed clinical trials, although they demonstrated satisfactory effects in laboratory animals. This discrepancy between clinical and preclinical studies may be related to the differences between humans and laboratory animals or due to the degeneracy in different sodium channels governing the DRG neuronal excitability, which is thought of as the underlying machinery of chronic pain and mostly studied. This review summarizes recent findings of Nav1.8 in chronic pain from clinics and laboratories and discusses the difference, which may be helpful for future investigation of Nav1.8 in chronic pain, considering the dilemma of the Nav1.7 channel in chronic pain. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

12 pages, 1707 KiB  
Article
Deciphering the Structural and Functional Effects of the R1150W Non-Synonymous Variant in SCN9A Linked to Altered Pain Perception
by Faisal A. Al-Allaf, Zainularifeen Abduljaleel and Mohammad Athar
NeuroSci 2025, 6(2), 38; https://doi.org/10.3390/neurosci6020038 - 2 May 2025
Viewed by 631
Abstract
The SCN9A gene, a critical regulator of pain perception, encodes the voltage-gated sodium channel Nav1.7, a key mediator of pain signal transmission. This study conducts a multimodal assessment of SCN9A, integrating genetic variation, structural architecture, and molecular dynamics to elucidate its role in [...] Read more.
The SCN9A gene, a critical regulator of pain perception, encodes the voltage-gated sodium channel Nav1.7, a key mediator of pain signal transmission. This study conducts a multimodal assessment of SCN9A, integrating genetic variation, structural architecture, and molecular dynamics to elucidate its role in pain regulation. Using advanced computational methods, I-TASSER simulations generated structural decoys of the SCN9A homology domain, producing an ensemble of conformational states. SPICKER clustering identified five representative models with a C-score of −3.19 and TM-score of 0.36 ± 0.12, reflecting moderate structural similarity to experimental templates while highlighting deviations that may underpin functional divergence. Validation via ProSA-web supported model reliability, yielding a Z-score of −1.63, consistent with native-like structures. Central to the analysis was the R1150W non-synonymous variant, a potential pathogenic variant. Structural modeling revealed localized stability in the mutant conformation but disrupted hydrogen bonding and altered charge distribution. Its pathogenicity was underscored by a high MetaRNN score (0.7978498) and proximity to evolutionarily conserved regions, suggesting functional importance. Notably, the variant lies within the Sodium-Ion-Transport-Associated Domain, where perturbations could impair ion conductance and channel gating—mechanisms critical for neuronal excitability. These findings illuminate how SCN9A variants disrupt pain signaling, linking genetic anomalies to molecular dysfunction. While computational insights advance mechanistic understanding, experimental validation is essential to confirm the variant’s impact on Nav1.7 dynamics and cellular physiology. By refining SCN9A’s molecular blueprint and highlighting its therapeutic potential as a target for precision analgesics, this work provides a roadmap for mitigating pain-related disorders through channel-specific modulation. Integrating structural bioinformatics with functional genomics, this study deciphers SCN9A’s role in pain biology, laying the groundwork for novel strategies to manage pathological pain. Full article
Show Figures

Figure 1

32 pages, 2124 KiB  
Review
Preclinical Animal Models to Investigate the Role of Nav1.7 Ion Channels in Pain
by Alvaro Yogi, Umberto Banderali, Maria J. Moreno and Marzia Martina
Life 2025, 15(4), 640; https://doi.org/10.3390/life15040640 - 12 Apr 2025
Cited by 2 | Viewed by 1947
Abstract
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be [...] Read more.
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be critical for the transmission of pain-related signaling. This is highlighted by demonstrations that gain-of-function mutations in the Nav1.7 gene SCN9A result in various pain pathologies, whereas loss-of-function mutations cause complete insensitivity to pain. A substantial body of evidence demonstrates that chronic neuropathy and inflammation result in an upregulation of Nav1.7, suggesting that this channel contributes to pain transmission and sensation. As such, Nav1.7 is an attractive human-validated target for the treatment of pain. Nonetheless, a lack of subtype selectivity, insufficient efficacy, and adverse reactions are some of the issues that have hindered Nav1.7-targeted drug development. This review summarizes the pain behavior profiles mediated by Nav1.7 reported in multiple preclinical models, outlining the current knowledge of the biophysical, physiological, and distribution properties required for a Nav1.7 inhibitor to produce analgesia. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

27 pages, 1584 KiB  
Article
Structure–Property Relationships in Novel Series of Photoswitchable Local Anesthetic Ethercaine Derivatives: Emphasis on Biological and Photophysical Properties
by Alexey Noev, Daria Likhobabina, Janna Sutemieva, Anna Plyutinskaya, Dmitry Cheshkov, Natalia Morozova, Aleksandra Vinokurova, Yuriy Vasil’ev, Nikita Suvorov, Elena Nemtzova, Andrei Pankratov, Elena Filonenko, Petr Shegay, Andrey Kaprin and Mikhail Grin
Int. J. Mol. Sci. 2025, 26(7), 3244; https://doi.org/10.3390/ijms26073244 - 31 Mar 2025
Viewed by 776
Abstract
The insufficient selectivity of existing local anesthetics can lead to serious adverse effects. Considering the widespread use of this class of drugs, the development of new local anesthetics that do not cause side effects is an important task. One approach to address this [...] Read more.
The insufficient selectivity of existing local anesthetics can lead to serious adverse effects. Considering the widespread use of this class of drugs, the development of new local anesthetics that do not cause side effects is an important task. One approach to address this issue is the use of photopharmacology, which enables the creation of agents with light-controlled biological activity. Several examples of azobenzene-based photoswitchable blockers of voltage-gated sodium (Nav) channels have been described so far. These compounds can be used as light-controlled local anesthetics, one of which is ethercaine, synthesized by our group earlier. However, systematic studies of the “structure-activity” relationship in the series of light-controlled local anesthetics based on azobenzene are absent in the literature. The aim of this study was to obtain new derivatives of ethercaine and investigate their photophysical and biological properties. A total of 14 new derivatives were synthesized, and their structure was confirmed by various physicochemical analysis methods. The Z-E isomerization half-lifes were determined for all the synthesized compounds. The cytotoxic effect on normal cells was studied in vitro using human dermal fibroblasts (DF2). The local anesthetic activity of all the synthesized compounds was evaluated in vivo on a model of surface anesthesia in both darkness and under UV light irradiation. Based on the results obtained, conclusions were drawn regarding the potential of the proposed substances, and optimal pathways for structural modification were identified. Full article
Show Figures

Figure 1

15 pages, 1618 KiB  
Brief Report
Ion-Channel-Targeting Scorpion Recombinant Toxin as Novel Therapeutic Agent for Breast Cancer
by Natalia Mata de los Rios, Argel Gastelum-Arellanez, Herlinda Clement, Karely Álvarez-Cruz, Diana Romero-Terrazas, Carolina Alvarado-González, Luis Carlos Hinojos-Gallardo, Gerardo Corzo and Gerardo Pável Espino-Solis
Toxins 2025, 17(4), 166; https://doi.org/10.3390/toxins17040166 - 26 Mar 2025
Viewed by 903
Abstract
Breast cancer remains the leading cause of cancer-related mortality among women worldwide, with limited therapeutic efficacy due to treatment resistance and adverse effects. Emerging evidence suggests that ion channels play crucial roles in tumor progression, regulating proliferation, apoptosis, migration, and metastasis. Voltage-gated potassium [...] Read more.
Breast cancer remains the leading cause of cancer-related mortality among women worldwide, with limited therapeutic efficacy due to treatment resistance and adverse effects. Emerging evidence suggests that ion channels play crucial roles in tumor progression, regulating proliferation, apoptosis, migration, and metastasis. Voltage-gated potassium (Kv) and sodium (Nav) channels have been implicated in oncogenic signaling pathways. Scorpion venom peptides, known for their selective ion-channel-blocking properties, have demonstrated promising antineoplastic activity. This study explores the potential therapeutic applications of bioactive fractions derived from Chihuahuanus coahuilae, in breast cancer cell lines. Through chromatographic separation, mass spectrometry, and functional assays, we assess their effects on cell viability, proliferation, and ion channel modulation. Our preliminary data suggest that these venom-derived peptides interfere with cancer cell homeostasis by altering ion fluxes, promoting apoptosis, and inhibiting metastatic traits. These findings support the therapeutic potential of ion-channel-targeting peptides as selective anticancer agents. Further investigations into their molecular mechanisms may pave the way for novel, targeted therapies with improved efficacy and specificity for breast cancer treatment. Full article
Show Figures

Figure 1

18 pages, 3803 KiB  
Article
A High-Throughput Biosensing Approach for Rapid Screening of Compounds Targeting the hNav1.1 Channel: Marine Toxins as a Case Study
by Huijing Shen, Yuxia Cui, Shiyuan Liang, Shuang Zhou, Yingji Li, Yongning Wu and Junxian Song
Mar. Drugs 2025, 23(3), 119; https://doi.org/10.3390/md23030119 - 9 Mar 2025
Viewed by 1312
Abstract
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel [...] Read more.
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel activity, its labor-intensive and time-consuming nature highlights the need for fast screening strategies to facilitate a preliminary selection of potential drugs or hazards. In this study, a high-throughput and cost-effective biosensing method was developed to rapidly identify specific agonists and inhibitors targeting the human Nav1.1 (hNav1.1) channel. It combines a red fluorescent dye sensitive to transmembrane potentials with CHO cells stably expressing the hNav1.1 α-subunit (hNav1.1-CHO). In the initial screening mode, the tested compounds were mixed with pre-equilibrated hNav1.1-CHO cells and dye to detect potential agonist effects via fluorescence enhancement. In cases where no fluorescence enhancement was observed, the addition of a known agonist veratridine allowed the indication of inhibitor candidates by fluorescence reduction, relative to the veratridine control without test compounds. Potential agonists or inhibitors identified in the initial screening were further evaluated by measuring concentration–response curves to determine EC50/IC50 values, providing semi-quantitative estimates of their binding strength to hNav1.1. This robust, high-throughput biosensing assay was validated through comparisons with the patch-clamp results and tested with 12 marine toxins, yielding consistent results. It holds promise as a low-cost, rapid, and long-term stable approach for drug discovery and non-target screening of neurotoxins. Full article
(This article belongs to the Special Issue Toxins as Marine-Based Drug Discovery, 2nd Edition)
Show Figures

Figure 1

10 pages, 4242 KiB  
Article
Veratridine-Induced Oscillations in Nav 1.7 but Not Nav 1.5 Sodium Channels Are Revealed by Membrane Potential Sensitive Dye
by Sarah C. R. Lummis, Samantha C. Salvage, Christopher L.-H. Huang and Antony P. Jackson
Membranes 2025, 15(3), 80; https://doi.org/10.3390/membranes15030080 - 5 Mar 2025
Viewed by 1171
Abstract
Voltage-gated sodium channels (Navs) are critical for membrane potential depolarisation in cells, with especially important roles in neuronal and cardiomyocyte membranes. Their malfunction results in a range of disorders, and they are the target of many widely used drugs. A rapid yet accurate [...] Read more.
Voltage-gated sodium channels (Navs) are critical for membrane potential depolarisation in cells, with especially important roles in neuronal and cardiomyocyte membranes. Their malfunction results in a range of disorders, and they are the target of many widely used drugs. A rapid yet accurate functional assay is therefore desirable both to probe for novel active compounds and to better understand the many different Nav isoforms. Here, we use fluorescence to monitor Nav function: cells expressing either the cardiac Nav 1.5 or pain-associated Nav 1.7 were loaded with fluorescent membrane potential sensitive dye and then stimulated with veratridine. Cells expressing Nav 1.5 show a concentration-dependent slow rise and then a plateau in fluorescence. In contrast, cells expressing Nav 1.7 show a more rapid rise and then unexpected oscillatory behavior. Inhibition by flecainide and mexiletine demonstrates that these oscillations are Nav-dependent. Thus, we show that this fluorescent membrane potential dye can provide useful functional data and that we can readily distinguish between these two Nav isoforms because of the behavior of cells expressing them when activated by veratridine. We consider these distinct behaviors may be due to different interactions of veratridine with the different Nav isoforms, although more studies are needed to understand the mechanism underlying the oscillations. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

Back to TopTop