Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = NFC applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4194 KB  
Article
A Wearable Monitor to Detect Tripping During Daily Life in Children with Intoeing Gait
by Warren Smith, Zahra Najafi and Anita Bagley
Sensors 2025, 25(20), 6437; https://doi.org/10.3390/s25206437 - 17 Oct 2025
Viewed by 345
Abstract
Children with intoeing gait are at increased risk of tripping and consequent injury, reduced mobility, and psychological issues. Quantification of tripping is needed outside the gait lab during daily life for improved clinical assessment and treatment evaluation and to enrich the database for [...] Read more.
Children with intoeing gait are at increased risk of tripping and consequent injury, reduced mobility, and psychological issues. Quantification of tripping is needed outside the gait lab during daily life for improved clinical assessment and treatment evaluation and to enrich the database for artificial intelligence (AI) learning. This paper presents the development of a low-cost, wearable tripping monitor to log a child’s Tripping Hazard Events (THEs) and steps taken during two weeks of everyday activity. A combination of sensors results in a high probability of THE detection, even during rapid gait, while guarding against false positives and minimizing power and therefore monitor size. A THE is logged when the feet come closer than a predefined threshold during the intoeing foot swing phase. Foot proximity is determined by a Radio Frequency Identification (RFID) reader in “sniffer” mode on the intoeing foot and a target of passive Near-Field Communication (NFC) tags on the contralateral foot. A Force Sensitive Resistor (FSR) in the intoeing shoe sets a time window for sniffing during gait and enables step counting. Data are stored in 15 min epochs. Laboratory testing and an IRB-approved human participant study validated system performance and identified the need for improved mechanical robustness, prompting a redesign of the monitor. A custom Python (version 3.10.13)-based Graphical User Interface (GUI) lets clinicians initiate recording sessions and view time records of THEs and steps. The monitor’s flexible design supports broader applications to real-world activity detection. Full article
(This article belongs to the Special Issue Artificial Intelligence and Sensor-Based Gait Recognition)
Show Figures

Figure 1

15 pages, 2371 KB  
Article
Zn/Fe-MOF-Derived Carbon Nanofibers via Electrospinning for Efficient Plasma-Catalytic Antibiotic Removal
by Ying Xia, Shaoqun Tao, Yu Liu, Chenyu Zhao, Weichuan Qiao, Sen Chen, Jingqi Ruan, Ming Zhang and Cheng Gu
Catalysts 2025, 15(10), 944; https://doi.org/10.3390/catal15100944 - 1 Oct 2025
Viewed by 436
Abstract
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth [...] Read more.
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth of the Zn/Fe-MOF on their surfaces. After pyrolysis at different temperatures, a series of carbon-based catalysts (FeNFC) were obtained. This new type of catalyst possesses advantages such as high porosity, a large specific surface area, and mechanical stability. Using tetracycline (TTCH) as the target pollutant, the performance of the catalyst was evaluated in the dielectric barrier discharge (DBD) system. The study showed that the addition of FeNFC significantly increased the degradation rate of TTCH in the system. Comparing different pyrolysis temperatures, at 900 °C, the comprehensive performance of the catalyst (FeNFC-900) was the best (the kinetic constant was kobs = 0.126 min−1, and the removal rate of TTCH was 91.8% within 30 min). The catalytic performance was influenced by factors such as the dosage of the catalyst, the concentration of TTCH, the power of DBD, and the initial pH. The catalytic effect of the material increased within a certain range with the increase in the catalyst dosage. The increase in TTCH concentration led to a decrease in the catalytic performance. The higher the power of the DBD, the higher the removal rate of TTCH. Moreover, when the initial pH was strongly alkaline, the catalytic effect of the catalyst was the best (kobs = 0.275 min−1, and the removal rate of TTCH was 98.7% within 30 min). Ionic interference tests demonstrated the strong resistance of FeNFC to common water matrix components, while radical quenching experiments revealed that multiple reactive species contributed to TTCH degradation. This work has broad application prospects for enhancing the efficiency of DBD systems in the removal of TTCH. Full article
Show Figures

Figure 1

15 pages, 883 KB  
Review
Hybrid NFC-VLC Systems: Integration Strategies, Applications, and Future Directions
by Vindula L. Jayaweera, Chamodi Peiris, Dhanushika Darshani, Sampath Edirisinghe, Nishan Dharmaweera and Uditha Wijewardhana
Network 2025, 5(3), 37; https://doi.org/10.3390/network5030037 - 15 Sep 2025
Viewed by 575
Abstract
The hybridization of Near-Field Communication (NFC) with Visible Light Communication (VLC) presents a promising framework for robust, secure, and efficient wireless transmission. By combining proximity-based authentication of NFC with high-speed and interference-resistant data transfer of VLC, this approach mitigates the inherent limitations of [...] Read more.
The hybridization of Near-Field Communication (NFC) with Visible Light Communication (VLC) presents a promising framework for robust, secure, and efficient wireless transmission. By combining proximity-based authentication of NFC with high-speed and interference-resistant data transfer of VLC, this approach mitigates the inherent limitations of each technology, such as the restricted range of NFC and authentication challenges of VLC. The resulting hybrid system leverages NFC for secure handshaking and VLC for high-throughput communication, enabling scalable, real-time applications across diverse domains. This study examines integration strategies, technical enablers, and potential use cases, including smart street poles for secure citizen engagement, patient authentication and record access systems in healthcare, personalized retail advertising, and automated attendance tracking in education. Additionally, this paper addresses key challenges in hybridization and explores future research directions, such as the integration of Artificial Intelligence and 6G networks. Full article
(This article belongs to the Special Issue Advances in Wireless Communications and Networks)
Show Figures

Figure 1

35 pages, 3170 KB  
Review
Effects of Moisture Absorption on the Mechanical and Fatigue Properties of Natural Fiber Composites: A Review
by Ana Pavlovic, Lorenzo Valzania and Giangiacomo Minak
Polymers 2025, 17(14), 1996; https://doi.org/10.3390/polym17141996 - 21 Jul 2025
Cited by 4 | Viewed by 1157
Abstract
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% [...] Read more.
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% and in elastic modulus by 20–30% depending on fiber type, mass fraction (typically in the range of 30–60%), and surface treatments. The review highlights Ithat while surface modifications (e.g., alkaline and silane treatments) significantly mitigate moisture-induced degradation, their effectiveness is highly sensitive to the processing conditions. Additionally, hybridization strategies and optimized fiber orientations show promise in enhancing fatigue resistance under humid environments. Despite substantial progress, major challenges remain, including the lack of standardized testing protocols and the limited understanding of multiscale aging mechanisms. Future research directions include developing predictive models that couple moisture diffusion and mechanical deterioration, implementing advanced in situ monitoring of damage evolution, and exploring novel bio-based treatments. By addressing these gaps, NFCs can become more reliable and widely adopted as sustainable alternatives in structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 6166 KB  
Article
Design of an Integrated Near-Field Communication and Wireless Power Transfer Coupler for Mobile Device Applications
by Hongguk Bae and Sangwook Park
Technologies 2025, 13(5), 207; https://doi.org/10.3390/technologies13050207 - 17 May 2025
Cited by 2 | Viewed by 962
Abstract
In this study, we propose a model that integrates a near-field communication (NFC) coupler and a wireless power transfer (WPT) coupler for mobile device applications. The NFC and WPT couplers were independently designed and then combined into a four-port NFC–WPT coupler. The proposed [...] Read more.
In this study, we propose a model that integrates a near-field communication (NFC) coupler and a wireless power transfer (WPT) coupler for mobile device applications. The NFC and WPT couplers were independently designed and then combined into a four-port NFC–WPT coupler. The proposed practical equivalent circuit (PEC) introduces a novel multi-port network representation, where inductive and capacitive coupling structures are modeled using T-model and Pi-model configurations, respectively. Based on this circuit model, we present a detailed theoretical approach for deriving a 4 × 4 S-parameter matrix by converting the transmission matrices of the partitioned circuit networks into S-parameters. The comparison between the theoretical analysis and the simulation results shows an error of less than 2.4%, which demonstrates the high accuracy of the proposed method. Full article
Show Figures

Figure 1

27 pages, 7017 KB  
Article
Efficient Internet of Things Communication System Based on Near-Field Communication and Long Range Radio
by Ting Chai, Dongryool Kim and Seungsoo Shin
Sensors 2025, 25(8), 2509; https://doi.org/10.3390/s25082509 - 16 Apr 2025
Viewed by 1738
Abstract
Efficient communication in the Internet of Things (IoT) is essential for enabling smart applications. While NFC excels in near-field device interaction, its limited communication range hinders LoRa’s long-range communication due to its low data throughput. Together with NFC and LoRa technologies, Raspberry Pi [...] Read more.
Efficient communication in the Internet of Things (IoT) is essential for enabling smart applications. While NFC excels in near-field device interaction, its limited communication range hinders LoRa’s long-range communication due to its low data throughput. Together with NFC and LoRa technologies, Raspberry Pi is used as a microcontroller (MCU) in this paper to look into how to make near-field and long-distance communication work better together and fix the issue of an imbalance between communication range and energy consumption in the IoT system. By optimizing the communication algorithm and parameter tuning, the power consumption of the system is significantly reduced, and the communication range and data throughput are improved. Our research gives you the technical information you need to make an IoT communication system that works well, uses little power, and has a wide coverage area. This kind of system is good for situations where you need to collect data from a close distance and keep an eye on things from afar. This makes the system more power-efficient and better at communicating, which also makes it easier for users to manage data. It is suitable for a wide range of application scenarios, such as warehousing, healthcare, agriculture, and smart cities. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

12 pages, 5182 KB  
Article
Testing the Influence of Null-Flux Coil Geometry Parameters on Levitation and Stability of Electrodynamic Suspension Systems Using a New Stationary Simulation Platform
by Jianru Liu, Jun Zheng and Yuhang Yuan
Actuators 2025, 14(4), 188; https://doi.org/10.3390/act14040188 - 11 Apr 2025
Cited by 1 | Viewed by 744
Abstract
The geometric parameters of the Null-Flux coil (NFC) are crucial to the load capacity and economic viability of electrodynamic suspension (EDS) systems. This study investigates the influence of NFC geometry on the electromagnetic force characteristics in EDS systems. Through the electromagnetic modeling of [...] Read more.
The geometric parameters of the Null-Flux coil (NFC) are crucial to the load capacity and economic viability of electrodynamic suspension (EDS) systems. This study investigates the influence of NFC geometry on the electromagnetic force characteristics in EDS systems. Through the electromagnetic modeling of EDS mechanisms, an analytical model for EDS systems is established. Systematic experiments compare electromagnetic forces under varying NFC lengths and gaps, supported by a self-developed stationary EDS dynamic simulation platform. The results demonstrate that the average levitation force is positively correlated with the coil length, and it is larger when the coil length is close to its width. Meanwhile, the NFC length has a significant impact on the lift-to-drag ratio, while the NFC gap has a relatively smaller effect on it. This work provides a complete methodology integrating analytical modeling and experimental validation, offering practical guidelines for NFC design in maglev actuators. The findings advance EDS system optimization through quantifiable geometric criteria, particularly for transportation applications requiring precision electromagnetic force control. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

15 pages, 5934 KB  
Article
A Waterborne, Flexible, and Highly Conductive Silver Ink for Ultra-Rapid Fabrication of Epidermal Electronics
by Patrick Rwei, Jia-Wei Shiu, Mehmet Senel, Amirhossein Hajiaghajani, Chengyang Qian, Chin-Wen Chen, Peter Tseng and Michelle Khine
Sensors 2025, 25(7), 2092; https://doi.org/10.3390/s25072092 - 27 Mar 2025
Cited by 1 | Viewed by 4626
Abstract
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor–skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present [...] Read more.
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor–skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present a nontoxic, waterborne conductive ink made of silver and child-safe slime for the fabrication of skin-compatible electronics. The ink formulation includes polyvinyl acetate (PVAc), known as school glue, as a matrix, glyceryl triacetate (GTA) as a plasticizer, sodium tetraborate (Borax) as a crosslinker, and silver (Ag) flakes as the conducting material. Substituting citric acid (CA) for GTA enhances the deformability by more than 100%. With exceptional conductivity (up to 1.17 × 104 S/cm), we demonstrate the ink’s potential in applications such as an epidermal near-field communication (NFC) antenna patch and a wireless ECG system for motion monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

33 pages, 2657 KB  
Review
Prevention of Biofouling Due to Water Absorption of Natural Fiber Composites in the Aquatic Environment: A Critical Review
by Cristiano Fragassa, Sara Mattiello, Martina Fronduti, Jo’ Del Gobbo, Radmila Gagic and Carlo Santulli
J. Compos. Sci. 2024, 8(12), 532; https://doi.org/10.3390/jcs8120532 - 15 Dec 2024
Cited by 8 | Viewed by 5630
Abstract
Introducing lignocellulosic fibers as the matrix reinforcement in composites is an opportunity for weight reduction and also for the use of by-products and biomass waste from other systems, such as agriculture and textiles. In the case of nautical applications, biofouling, meaning damage during [...] Read more.
Introducing lignocellulosic fibers as the matrix reinforcement in composites is an opportunity for weight reduction and also for the use of by-products and biomass waste from other systems, such as agriculture and textiles. In the case of nautical applications, biofouling, meaning damage during service by marine organisms, represents a significant issue. To address this problem, a number of measures can be taken: these include the introduction of various types of fillers, mainly mineral, in composites, tailored treatment of fibers, and hybrid approaches, including a number of different modifications, such as matrix or fiber grafting. This review reports the state of the art in the various studies carried out to elucidate the performance of natural fiber composites and hybrids as regards water absorption and more specifically exposure to seawater for a prolonged time so as to simulate service conditions. The perspectives on the use of natural fiber composites (NFCs) in aquatic environments will be discussed with respect to the possible onset of degradation by biofouling. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Graphical abstract

23 pages, 2454 KB  
Article
CO-TSM: A Flexible Model for Secure Embedded Device Ownership and Management
by Konstantinos Markantonakis, Ghada Arfaoui, Sarah Abu Ghazalah, Carlton Shepherd, Raja Naeem Akram and Damien Sauveron
Smart Cities 2024, 7(5), 2887-2909; https://doi.org/10.3390/smartcities7050112 - 8 Oct 2024
Viewed by 2177
Abstract
The Consumer-Oriented Trusted Service Manager (CO-TSM) model has been recognised as a significant advancement in managing applications on Near Field Communication (NFC)-enabled mobile devices and multi-application smart cards. Traditional Trusted Service Manager (TSM) models, while useful, often result in market fragmentation and limit [...] Read more.
The Consumer-Oriented Trusted Service Manager (CO-TSM) model has been recognised as a significant advancement in managing applications on Near Field Communication (NFC)-enabled mobile devices and multi-application smart cards. Traditional Trusted Service Manager (TSM) models, while useful, often result in market fragmentation and limit widespread adoption due to their centralised control mechanisms. The CO-TSM model addresses these issues by decentralising management and offering greater flexibility and scalability, making it more adaptable to the evolving needs of embedded systems, particularly in the context of the Internet of Things (IoT) and Radio Frequency Identification (RFID) technologies. This paper provides a comprehensive analysis of the CO-TSM model, highlighting its application in various technological domains such as smart cards, HCE-based NFC mobile phones, TEE-enabled smart home IoT devices, and RFID-based smart supply chains. By evaluating the CO-TSM model’s architecture, implementation challenges, and practical deployment scenarios, this paper demonstrates how CO-TSM can overcome the limitations of traditional TSM approaches. The case studies presented offer practical insights into the model’s adaptability and effectiveness in real-world scenarios. Through this examination, the paper aims to underscore the CO-TSM model’s role in enhancing scalability, flexibility, and user autonomy in secure embedded device management, while also identifying areas for future research and development. Full article
Show Figures

Figure 1

14 pages, 2377 KB  
Article
Unbleached Nanofibrillated Cellulose as Additive and Coating for Kraft Paper
by Elaine Cristina Lengowski, Eraldo Antonio Bonfatti Júnior, Leonardo Coelho Simon, Vitória Maria Costa Izidio, Alan Sulato de Andrade, Silvana Nisgoski and Graciela Inês Bolzon de Muniz
Coatings 2024, 14(8), 962; https://doi.org/10.3390/coatings14080962 - 1 Aug 2024
Cited by 4 | Viewed by 2159
Abstract
Although paper packages are biodegradable, their applications in food packaging are limited due to high affinity for absorbing moisture and the high permeability of gases and liquids with surroundings. Therefore, exploring the use biodegradable coatings such as nanocellulose to improve barrier is a [...] Read more.
Although paper packages are biodegradable, their applications in food packaging are limited due to high affinity for absorbing moisture and the high permeability of gases and liquids with surroundings. Therefore, exploring the use biodegradable coatings such as nanocellulose to improve barrier is a relevant strategy. This study assessed the efficacy of unbleached nanofibrillated cellulose (NFC) as an additive to paper and coatings. Using NFC derived from unbleached eucalyptus pulp, a 5% mass addition to the paper pulp and a 2 mm wet nanocellulose coating to kraft paper handsheets made from pine pulp were investigated. In addition, nanocellulose films of similar thicknesses were appraised. The physical, morphological, mechanical, and thermal characteristics of the resulting papers were assessed. Incorporating NFC notably enhanced the morphology area of the paper by padding its pores, thus increasing its density by up to 48% and improving its water barrier properties by up to 50%. The mechanical strength showed significant enhancements, particularly in bursting and tensile strength with increases of up to 134% and 50%, respectively. Anyhow, the films exhibited lower bursting indices and no improvement in the tearing index. Nonetheless, the thermal stability of the handsheets with NFC coating meets the minimum requirements for food packaging. Full article
(This article belongs to the Special Issue Edible Films and Coatings: Fundamentals and Applications, 2nd Edition)
Show Figures

Figure 1

24 pages, 4954 KB  
Review
Wireless Battery Management Systems: Innovations, Challenges, and Future Perspectives
by Zhi Cao, Wei Gao, Yuhong Fu and Chris Mi
Energies 2024, 17(13), 3277; https://doi.org/10.3390/en17133277 - 4 Jul 2024
Cited by 20 | Viewed by 8239
Abstract
With the growing adoption of battery energy storage systems in renewable energy sources, electric vehicles (EVs), and portable electronic devices, the effective management of battery systems has become increasingly critical. The advent of wireless battery management systems (wBMSs) represents a significant innovation in [...] Read more.
With the growing adoption of battery energy storage systems in renewable energy sources, electric vehicles (EVs), and portable electronic devices, the effective management of battery systems has become increasingly critical. The advent of wireless battery management systems (wBMSs) represents a significant innovation in battery management technology. Traditional wired battery management systems (BMSs) face challenges, including complexity, increased weight, maintenance difficulties, and a higher chance of connection failure. In contrast, wBMSs offer a robust solution, eliminating physical connections. wBMSs offer enhanced flexibility, reduced packaging complexity, and improved reliability. Given that wBMSs are still in a preliminary stage, this review paper explores their evolution, current state, and future directions. A comprehensive survey of state-of-the-art wBMS technologies, including academic and commercial solutions, is elaborated in this paper. We compare wireless communication technologies like Bluetooth Low Energy (BLE), Zigbee, Near-Field Communication (NFC), Wi-Fi, and cellular networks in the context of wBMSs. We discuss their performance in terms of efficiency, reliability, scalability, and security. Despite its promising outlook, wBMSs still face challenges such as data security, signal interference, regulatory and standardization issues, and competition from the continued advancement of wired BMS technologies, making the advantages of wBMSs less evident. This paper concludes with guidelines for future research and development of wBMSs, aiming to address these challenges and pave the way for a broad adoption of wBMSs across various applications. This paper aims to inspire further research and innovation in the field, contributing to developing an industry-ready wBMS. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 3582 KB  
Article
Effect of Dynamic High-Pressure Microfluidization on the Quality of Not-from-Concentrate Cucumber Juice
by Zhiwei Zhang, Meiyue Zhang, Zhenhong Gao, Yuying Cheng, Xinyi Yang, Shuaixue Mu and Kunsheng Qu
Foods 2024, 13(13), 2125; https://doi.org/10.3390/foods13132125 - 3 Jul 2024
Cited by 6 | Viewed by 2046
Abstract
The effects of dynamic high-pressure microfluidization (DHPM at 400 MPa) and heat treatment (HT) on the microbial inactivation, quality parameters, and flavor components of not-from-concentrate (NFC) cucumber juice were investigated. Total aerobic bacteria, yeasts and molds were not detected in the 400 MPa-treated [...] Read more.
The effects of dynamic high-pressure microfluidization (DHPM at 400 MPa) and heat treatment (HT) on the microbial inactivation, quality parameters, and flavor components of not-from-concentrate (NFC) cucumber juice were investigated. Total aerobic bacteria, yeasts and molds were not detected in the 400 MPa-treated cucumber juice. Total phenolic content increased by 16.2% in the 400 MPa-treated cucumber juice compared to the control check (CK). The significant reduction in pulp particle size (volume peak decreasing from 100–1000 μm to 10–100 μm) and viscosity increased the stability of the cucumber juice while decreasing the fluid resistance during processing. HT decreased the ascorbic acid content by 25.9% (p < 0.05), while the decrease in ascorbic acid content was not significant after 400 MPa treatment. A total of 59 volatile aroma substances were identified by gas chromatography–ion mobility spectrometry (GC-IMS), and a variety of characteristic aroma substances (i.e., valeraldehyde, (E)-2-hexenal, (E)-2-nonenal, and (E,Z)-2,6-nonadienal, among others) were retained after treatment with 400 MPa. In this study, DHPM technology was innovatively applied to cucumber juice processing with the aim of providing a continuous non-thermal processing technology for the industrial production of cucumber juice. Our results provide a theoretical basis for the application of DHPM technology in cucumber juice production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

23 pages, 16243 KB  
Article
Andiroba Oil (Carapa guianensis Aubletet) as a Functionalizing Agent for Titica Vine (Heteropsis flexuosa) Nanofibril Films: Biodegradable Products from Species Native to the Amazon Region
by Cleyson Santos de Paiva, Felipe Gomes Batista, Danillo Wisky Silva, Mário Vanoli Scatolino, Dayane Targino de Medeiros, Adriano Reis Prazeres Mascarenhas, Rafael Carvalho do Lago, Carine Setter, Ianca Oliveira Borges, Gustavo Henrique Denzin Tonoli, Tiago Marcolino de Souza, Lourival Marin Mendes, Lina Bufalino, Francisco Tarcísio Alves Junior, Fabiana da Silva Felix and Marali Vilela Dias
Sustainability 2024, 16(11), 4395; https://doi.org/10.3390/su16114395 - 22 May 2024
Cited by 1 | Viewed by 2641
Abstract
The diversity of species in Amazonia is exceptionally vast and unique, and it is of great interest for industry sectors to explore the potential of derivatives with functional properties for packaging applications. This study proposes the functionalization of cellulose micro/nanofibril (MFC/NFC) suspensions from [...] Read more.
The diversity of species in Amazonia is exceptionally vast and unique, and it is of great interest for industry sectors to explore the potential of derivatives with functional properties for packaging applications. This study proposes the functionalization of cellulose micro/nanofibril (MFC/NFC) suspensions from Heteropsis flexuosa with andiroba oil to produce films with packaging potential. MFC/NFC was produced by using mechanical fibrillation from suspensions of H. flexuosa fibers. Proportions of 1, 3, and 5% of andiroba oil were added to make films with concentrations of 1% (m/m). Suspensions with andiroba oil provided greater viscosity, with changes in the physical properties of the films. Functionalization with andiroba oil provided films with lower degradation in water, greater contact angle, and lower wettability despite high permeability to water vapor. The films with 1% andiroba oil showed a hydrophobic characteristic (contact angle > 90°) and greater puncture resistance (6.70 N mm−1). Films with 3% oil showed a more transparent appearance and high biodegradation, while 1% oil generated more opaque films with a higher thermal degradation temperature and high antioxidant activity. It was concluded that films produced from H. flexuosa fibers functionalized with andiroba oil showed packaging potential for light, low-moisture products due to their adequate thermal and barrier characteristics. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

20 pages, 377 KB  
Review
A Survey of Short-Range Wireless Communication for Ultra-Low-Power Embedded Systems
by Billy Baker, John Woods, Martin J. Reed and Martin Afford
J. Low Power Electron. Appl. 2024, 14(2), 27; https://doi.org/10.3390/jlpea14020027 - 14 May 2024
Cited by 8 | Viewed by 6095
Abstract
Wireless short-range communication has become widespread in the modern era, partly due to the advancement of the Internet of Things (IoT) and smart technology. This technology is now utilized in various sectors, including lighting, medical, and industrial applications. This article aims to examine [...] Read more.
Wireless short-range communication has become widespread in the modern era, partly due to the advancement of the Internet of Things (IoT) and smart technology. This technology is now utilized in various sectors, including lighting, medical, and industrial applications. This article aims to examine the historical, present, and forthcoming advancements in wireless short-range communication. Additionally, the review will analyze the modifications made to communication protocols, such as Bluetooth, RFID and NFC, in order to better accommodate modern applications. Batteryless technology, particularly batteryless NFC, is an emerging development in short-range wireless communication that combines power and data transmission into a single carrier. This modification will significantly influence the trajectory of short-range communication and its applications. The foundation of most low-power, short-range communication applications relies on an ultra-low-power microcontroller. Therefore, this study will encompass an analysis of ultra-low-power microcontrollers and an investigation into the potential limitations they might encounter in the future. In addition to offering a thorough examination of current Wireless short-range communication, this article will also attempt to forecast future patterns and identify possible obstacles that future research may address. Full article
(This article belongs to the Special Issue Ultra-Low-Power ICs for the Internet of Things (2nd Edition))
Show Figures

Figure 1

Back to TopTop