Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = NF-kB, influenza

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3064 KiB  
Review
Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents
by Arturo Ponce, Catalina Flores-Maldonado and Ruben G. Contreras
Biomolecules 2025, 15(6), 885; https://doi.org/10.3390/biom15060885 - 17 Jun 2025
Viewed by 1437
Abstract
Cardiac glycosides (CGs), a class of plant- and animal-derived compounds historically used to treat heart failure, have garnered renewed interest for their diverse pharmacological properties beyond Na+/K+-ATPase (NKA) inhibition. Recent studies reveal that CGs modulate key signaling pathways—such as [...] Read more.
Cardiac glycosides (CGs), a class of plant- and animal-derived compounds historically used to treat heart failure, have garnered renewed interest for their diverse pharmacological properties beyond Na+/K+-ATPase (NKA) inhibition. Recent studies reveal that CGs modulate key signaling pathways—such as NF-κB, PI3K/Akt, JAK/STAT, and MAPK—affecting processes central to cancer, viral infections, immune regulation, and neurodegeneration. In cancer, CGs induce multiple forms of regulated cell death, including apoptosis, ferroptosis, pyroptosis, and immunogenic cell death, while also inhibiting angiogenesis, epithelial–mesenchymal transition, and cell cycle progression. They demonstrate broad-spectrum antiviral activity by disrupting viral entry, replication, and mRNA processing in viruses such as HSV, HIV, influenza, and SARS-CoV-2. Immunologically, CGs regulate Th17 differentiation via RORγ signaling, although both inhibitory and agonistic effects have been reported. In the nervous system, CGs modulate neuroinflammation, support synaptic plasticity, and improve cognitive function in models of Alzheimer’s disease, epilepsy, and multiple sclerosis. Despite their therapeutic potential, clinical translation is hindered by narrow therapeutic indices and systemic toxicity. Advances in drug design and nanocarrier-based delivery are critical to unlocking CGs’ full potential as multi-target agents for complex diseases. This review synthesizes the current knowledge on the emerging roles of CGs and highlights strategies for their safe and effective repurposing. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 4701 KiB  
Article
Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus
by Periyasamy Vijayakumar, Anamika Mishra, Ram Pratim Deka, Sneha M. Pinto, Yashwanth Subbannayya, Richa Sood, Thottethodi Subrahmanya Keshava Prasad and Ashwin Ashok Raut
Microorganisms 2024, 12(7), 1288; https://doi.org/10.3390/microorganisms12071288 - 25 Jun 2024
Cited by 1 | Viewed by 2188
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, [...] Read more.
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein–protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
Show Figures

Figure 1

20 pages, 28743 KiB  
Article
Exploring the Underlying Mechanisms of Qingxing Granules Treating H1N1 Influenza Based on Network Pharmacology and Experimental Validation
by Hujun Du, Lianying Zhang, Haoxiang Sun, Shaoqin Zheng, Hongying Zhang, Shijia Yuan, Jiuyao Zhou, Zihao Fang, Jianping Song, Manxue Mei and Changsheng Deng
Pharmaceuticals 2024, 17(6), 731; https://doi.org/10.3390/ph17060731 - 5 Jun 2024
Cited by 5 | Viewed by 2155
Abstract
Background: H1N1 is one of the major subtypes of influenza A virus (IAV) that causes seasonal influenza, posing a serious threat to human health. A traditional Chinese medicine combination called Qingxing granules (QX) is utilized clinically to treat epidemic influenza. However, its chemical [...] Read more.
Background: H1N1 is one of the major subtypes of influenza A virus (IAV) that causes seasonal influenza, posing a serious threat to human health. A traditional Chinese medicine combination called Qingxing granules (QX) is utilized clinically to treat epidemic influenza. However, its chemical components are complex, and the potential pharmacological mechanisms are still unknown. Methods: QX’s effective components were gathered from the TCMSP database based on two criteria: drug-likeness (DL ≥ 0.18) and oral bioavailability (OB ≥ 30%). SwissADME was used to predict potential targets of effective components, and Cytoscape was used to create a “Herb-Component-Target” network for QX. In addition, targets associated with H1N1 were gathered from the databases GeneCards, OMIM, and GEO. Targets associated with autophagy were retrieved from the KEGG, HAMdb, and HADb databases. Intersection targets for QX, H1N1 influenza, and autophagy were identified using Venn diagrams. Afterward, key targets were screened using Cytoscape’s protein–protein interaction networks built using the database STRING. Biological functions and signaling pathways of overlapping targets were observed through GO analysis and KEGG enrichment analysis. The main chemical components of QX were determined by high-performance liquid chromatography (HPLC), followed by molecular docking. Finally, the mechanism of QX in treating H1N1 was validated through animal experiments. Results: A total of 786 potential targets and 91 effective components of QX were identified. There were 5420 targets related to H1N1 and 821 autophagy-related targets. The intersection of all targets of QX, H1N1, and autophagy yielded 75 intersecting targets. Ultimately, 10 core targets were selected: BCL2, CASP3, NFKB1, MTOR, JUN, TNF, HSP90AA1, EGFR, HIF1A, and MAPK3. Identification of the main chemical components of QX by HPLC resulted in the separation of seven marker ingredients within 195 min, which are amygdalin, puerarin, baicalin, phillyrin, wogonoside, baicalein, and wogonin. Molecular docking results showed that BCL2, CASP3, NFKB1, and MTOR could bind well with the compounds. In animal studies, QX reduced the degenerative alterations in the lung tissue of H1N1-infected mice by upregulating the expression of p-mTOR/mTOR and p62 and downregulating the expression of LC3, which inhibited autophagy. Conclusions: According to this study’s network pharmacology analysis and experimental confirmation, QX may be able to treat H1N1 infection by regulating autophagy, lowering the expression of LC3, and increasing the expression of p62 and p-mTOR/mTOR. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 12934 KiB  
Article
Comparative Investigation of Coincident Single Nucleotide Polymorphisms Underlying Avian Influenza Viruses in Chickens and Ducks
by Hendrik Bertram, Selina Wilhelmi, Abirami Rajavel, Marc Boelhauve, Margareta Wittmann, Faisal Ramzan, Armin Otto Schmitt and Mehmet Gültas
Biology 2023, 12(7), 969; https://doi.org/10.3390/biology12070969 - 7 Jul 2023
Cited by 4 | Viewed by 2681
Abstract
Avian influenza is a severe viral infection that has the potential to cause human pandemics. In particular, chickens are susceptible to many highly pathogenic strains of the virus, resulting in significant losses. In contrast, ducks have been reported to exhibit rapid and effective [...] Read more.
Avian influenza is a severe viral infection that has the potential to cause human pandemics. In particular, chickens are susceptible to many highly pathogenic strains of the virus, resulting in significant losses. In contrast, ducks have been reported to exhibit rapid and effective innate immune responses to most avian influenza virus (AIV) infections. To explore the distinct genetic programs that potentially distinguish the susceptibility/resistance of both species to AIV, the investigation of coincident SNPs (coSNPs) and their differing causal effects on gene functions in both species is important to gain novel insight into the varying immune-related responses of chickens and ducks. By conducting a pairwise genome alignment between these species, we identified coSNPs and their respective effect on AIV-related differentially expressed genes (DEGs) in this study. The examination of these genes (e.g., CD74, RUBCN, and SHTN1 for chickens and ABCA3, MAP2K6, and VIPR2 for ducks) reveals their high relevance to AIV. Further analysis of these genes provides promising effector molecules (such as IκBα, STAT1/STAT3, GSK-3β, or p53) and related key signaling pathways (such as NF-κB, JAK/STAT, or Wnt) to elucidate the complex mechanisms of immune responses to AIV infections in both chickens and ducks. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

11 pages, 388 KiB  
Article
NFκB1 Polymorphisms Are Associated with Severe Influenza A (H1N1) Virus Infection in a Canadian Population
by Suhrobjon Mullo Mirzo, Anand Kumar, Naresh Kumar Sharma, Lin Li, Robert Balshaw, Francis A. Plummer, Ma Luo and Binhua Liang
Microorganisms 2022, 10(10), 1886; https://doi.org/10.3390/microorganisms10101886 - 21 Sep 2022
Cited by 1 | Viewed by 1719
Abstract
Background: We examined associations between NFκB1 polymorphisms and influenza A (H1N1) clinical outcomes in Canadian. Methods: A total of thirty-six Caucasian patients admitted to the intensive care unit (ICU) in hospitals in Canada were recruited during the 2009 H1N1 pandemic. Genomic DNA was [...] Read more.
Background: We examined associations between NFκB1 polymorphisms and influenza A (H1N1) clinical outcomes in Canadian. Methods: A total of thirty-six Caucasian patients admitted to the intensive care unit (ICU) in hospitals in Canada were recruited during the 2009 H1N1 pandemic. Genomic DNA was extracted from the whole blood samples. The NFkB1 gene was targeted for genotyping using next-generation sequencing technology—Roche 454. Results: A total of 136 single nucleotide polymorphisms (SNPs) were discovered within the NFκB1 gene. Among them, 63 SNPs were significantly enriched in patients admitted in the ICU (p < 0.05) compared with the British Caucasian population in the 1000 Genomes study. These enriched SNPs are mainly intron variants, and only two are exon SNPs from the non-transcribing portion of the NFκB1 gene. Conclusions: Genetic variations in the NFκB1 gene could influence clinical outcomes of pandemic H1N1 infections. Our findings showed that sequence variations of the NFκB1 gene might influence patient response to influenza infection. Full article
(This article belongs to the Special Issue Novel Therapeutics Targeting the Host-Pathogen Interaction)
Show Figures

Figure 1

18 pages, 1769 KiB  
Review
How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism
by Francesco Galli, Giada Marcantonini, Daniela Giustarini, Maria Cristina Albertini, Anna Migni, Linda Zatini, Antimo Gioiello, Ranieri Rossi and Desirée Bartolini
Antioxidants 2022, 11(7), 1366; https://doi.org/10.3390/antiox11071366 - 14 Jul 2022
Cited by 21 | Viewed by 4583
Abstract
SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients’ age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include [...] Read more.
SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients’ age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection. Full article
(This article belongs to the Special Issue The 10th Anniversary of Antioxidants: Past, Present and Future)
Show Figures

Figure 1

18 pages, 3072 KiB  
Article
Cellular Protein Phosphatase 2A Regulates Cell Survival Mechanisms in Influenza A Virus Infection
by Vanessa Gerlt, Juliane Mayr, Juliana Del Sarto, Stephan Ludwig and Yvonne Boergeling
Int. J. Mol. Sci. 2021, 22(20), 11164; https://doi.org/10.3390/ijms222011164 - 16 Oct 2021
Cited by 5 | Viewed by 3220
Abstract
Influenza A viruses (IAVs) are respiratory pathogens that are able to hijack multiple cellular mechanisms to drive their replication. Consequently, several viral and cellular proteins undergo posttranslational modifications such as dynamic phosphorylation/dephosphorylation. In eukaryotic cells, dephosphorylation is mainly catalyzed by protein phosphatase 2A [...] Read more.
Influenza A viruses (IAVs) are respiratory pathogens that are able to hijack multiple cellular mechanisms to drive their replication. Consequently, several viral and cellular proteins undergo posttranslational modifications such as dynamic phosphorylation/dephosphorylation. In eukaryotic cells, dephosphorylation is mainly catalyzed by protein phosphatase 2A (PP2A). While the function of kinases in IAV infection is quite well studied, only little is known about the role of PP2A in IAV replication. Here, we show, by using knockdown and inhibition approaches of the catalytic subunit PP2Ac, that this phosphatase is important for efficient replication of several IAV subtypes. This could neither be attributed to alterations in the antiviral immune response nor to changes in transcription or translation of viral genes. Interestingly, decreased PP2Ac levels resulted in a significantly reduced cell viability after IAV infection. Comprehensive kinase activity profiling identified an enrichment of process networks related to apoptosis and indicated a synergistic action of hyper-activated PI3K/Akt, MAPK/JAK-STAT and NF-kB signaling pathways, collectively resulting in increased cell death. Taken together, while IAV seems to effectively tap leftover PP2A activity to ensure efficient viral replication, reduced PP2Ac levels fail to orchestrate cell survival mechanisms to protect infected cells from early cell death. Full article
(This article belongs to the Special Issue Role of Signaling Pathways in the Viral Life Cycle 2.0)
Show Figures

Figure 1

9 pages, 3564 KiB  
Article
Uncovering Quercetin’s Effects against Influenza A Virus Using Network Pharmacology and Molecular Docking
by Minjee Kim and Young Bong Kim
Processes 2021, 9(9), 1627; https://doi.org/10.3390/pr9091627 - 9 Sep 2021
Cited by 6 | Viewed by 3924
Abstract
(1) Background: Re-emerging influenza threats continue to challenge medical and public health systems. Quercetin is a ubiquitous flavonoid found in food and is recognized to possess antioxidant, anti-inflammatory, antiviral, and anticancer activities. (2) Methods: To elucidate the targets and mechanisms underlying the action [...] Read more.
(1) Background: Re-emerging influenza threats continue to challenge medical and public health systems. Quercetin is a ubiquitous flavonoid found in food and is recognized to possess antioxidant, anti-inflammatory, antiviral, and anticancer activities. (2) Methods: To elucidate the targets and mechanisms underlying the action of quercetin as a therapeutic agent for influenza, network pharmacology and molecular docking were employed. Biological targets of quercetin and target genes associated with influenza were retrieved from public databases. Compound–disease target (C-D) networks were constructed, and targets were further analyzed using KEGG pathway analysis. Potent target genes were retrieved from the compound–disease–pathway (C-D-P) and protein–protein interaction (PPI) networks. The binding affinities between quercetin and the targets were identified using molecular docking. (3) Results: The pathway study revealed that quercetin-associated influenza targets were mainly involved in viral diseases, inflammation-associated pathways, and cancer. Four targets, MAPK1, NFKB1, RELA, and TP53, were identified to be involved in the inhibitory effects of quercetin on influenza. Using the molecular docking method, we evaluated the binding affinity of each ligand (quercetin)–target and discovered that quercetin and MAPK1 showed the strongest calculated binding energy among the four ligand–target complexes. (4) Conclusion: These findings identified potential targets of quercetin and suggest quercetin as a potential drug for influenza treatment. Full article
(This article belongs to the Special Issue Network Pharmacology Modelling for Drug Discovery)
Show Figures

Figure 1

16 pages, 3148 KiB  
Article
Complexes of Oligoribonucleotides with d-Mannitol Modulate the Innate Immune Response to Influenza A Virus H1N1 (A/FM/1/47) In Vivo
by Nataliia Melnichuk, Vladimir Kashuba, Svitlana Rybalko and Zenoviy Tkachuk
Pharmaceuticals 2018, 11(3), 73; https://doi.org/10.3390/ph11030073 - 22 Jul 2018
Cited by 7 | Viewed by 5219
Abstract
Rapid replication of the influenza A virus and lung tissue damage caused by exaggerated pro-inflammatory host immune responses lead to numerous deaths. Therefore, novel therapeutic agents that have anti-influenza activities and attenuate excessive pro-inflammatory responses that are induced by an influenza virus infection [...] Read more.
Rapid replication of the influenza A virus and lung tissue damage caused by exaggerated pro-inflammatory host immune responses lead to numerous deaths. Therefore, novel therapeutic agents that have anti-influenza activities and attenuate excessive pro-inflammatory responses that are induced by an influenza virus infection are needed. Oligoribonucleotides-d-mannitol (ORNs-d-M) complexes possess both antiviral and anti-inflammatory activities. The current research was aimed at studying the ORNs-d-M effects on expression of innate immune genes in mice lungs during an influenza virus infection. Expression of genes was determined by RT-qPCR and Western blot assays. In the present studies, we found that the ORNs-d-M reduced the influenza-induced up-expression of Toll-like receptors (TLRs) (tlr3, tlr7, tlr8), nuclear factor NF-kB (nfkbia, nfnb1), cytokines (ifnε, ifnk, ifna2, ifnb1, ifnγ, il6, il1b, il12a, tnf), chemokines (ccl3, ccl4, сcl5, cxcl9, cxcl10, cxcl11), interferon-stimulated genes (ISGs) (oas1a, oas2, oas3, mx1), and pro-oxidation (nos2, xdh) genes. The ORNs-d-M inhibited the mRNA overexpression of tlr3, tlr7, and tlr8 induced by the influenza virus, which suggests that they impair the upregulation of NF-kB, cytokines, chemokines, ISGs, and pro-oxidation genes induced by the influenza virus by inhibiting activation of the TLR-3, TLR-7, and TLR-8 signaling pathways. By impairing activation of the TLR-3, TLR-7, and TLR-8 signaling pathways, the ORNs-d-M can modulate the innate immune response to an influenza virus infection. Full article
Show Figures

Figure 1

28 pages, 1102 KiB  
Article
Mechanisms of Geomagnetic Field Influence on Gene Expression Using Influenza as a Model System: Basics of Physical Epidemiology
by Valeriy Zaporozhan and Andriy Ponomarenko
Int. J. Environ. Res. Public Health 2010, 7(3), 938-965; https://doi.org/10.3390/ijerph7030938 - 10 Mar 2010
Cited by 44 | Viewed by 20947
Abstract
Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF). Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY) are "epigenetic sensors" of the MF fluctuations, i.e., [...] Read more.
Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF). Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY) are "epigenetic sensors" of the MF fluctuations, i.e., magnetic field-sensitive part of the epigenetic controlling mechanism. It was shown that CRY represses activity of the major circadian transcriptional complex CLOCK/BMAL1. At the same time, function of CRY, is apparently highly responsive to weak MF because of radical pairs that periodically arise in the functionally active site of CRY and mediate the radical pair mechanism of magnetoreception. It is known that the circadian complex influences function of every organ and tissue, including modulation of both NF-κB- and glucocorticoids- dependent signaling pathways. Thus, MFs and solar cycles-dependent geomagnetic field fluctuations are capable of altering expression of genes related to function of NF-κB, hormones and other biological regulators. Notably, NF-κB, along with its significant role in immune response, also participates in differential regulation of influenza virus RNA synthesis. Presented data suggests that in the case of global application (example—geomagnetic field), MF-mediated regulation may have epidemiological and other consequences. Full article
(This article belongs to the Special Issue Advances in Epidemiology)
Show Figures

Graphical abstract

Back to TopTop