Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = NAF cover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5443 KiB  
Article
A Novel System for the Measurement of an Evaporation Duct Using the Magnetic Coupling Principle for Power Feeding and Data Transmission
by Qiang Wang, Xingfei Li, Hongyu Li, Shaobo Yang, Shizhong Yang, Linlin Ma and Jingbo Zhao
Sensors 2022, 22(19), 7376; https://doi.org/10.3390/s22197376 - 28 Sep 2022
Viewed by 2540
Abstract
Since the evaporation duct height (EDH) only covers the antenna height of most shipborne microwave radars, mastering the EDH in advance has great significance in achieving long-range target detection. In this paper, a set of hydrological and meteorological sensors based on the gradient [...] Read more.
Since the evaporation duct height (EDH) only covers the antenna height of most shipborne microwave radars, mastering the EDH in advance has great significance in achieving long-range target detection. In this paper, a set of hydrological and meteorological sensors based on the gradient meteorological instrument (GMI) were built to monitor the evaporation duct of the South China Sea (SCS). However, the monitoring needed to be interrupted during the battery replacement of the sensor, which could result in the loss of some important data collection. On the basis of the inductively coupled power transfer (ICPT) technology, the resonance principle was used to compensate the inductive reactance on the closed steel ring (CSR), and the energy stored in the super capacitor was introduced for data collection and return. A novel measuring system for the detection of an evaporation duct was proposed. To avoid iterative calculation by setting the initial value of the current evaporation duct models in large-scale and multi time evaporation duct prediction and diagnosis, on the basis of the non-iterative air–sea flux (NAF) model, the EDH was obtained by introducing the K theoretical flux observation method into the atmospheric refractive index equation. Finally, preliminary experimental results are presented for the detection of evaporation duct to demonstrate the feasibility and effectiveness of the proposed system. The communication accuracy rate of the proposed system was 99.7%. The system transmission power reached 22.8 W. The research results of the NAF model adaptability showed that the mean value of the EDH was 8.7 m, which was lower than the mean EDH of the SCS. The EDH calculated by the NAF model in the unstable air–sea stratification state was slightly lower than that calculated by the NPS model. The diagnosis of the EDH by the NAF model was similar to that of the NPS model, but the calculation stability of the NAF model was better. Full article
Show Figures

Figure 1

10 pages, 3345 KiB  
Article
Analysis of Corrosion of Hastelloy-N, Alloy X750, SS316 and SS304 in Molten Salt High-Temperature Environment
by Ketan Kumar Sandhi and Jerzy Szpunar
Energies 2021, 14(3), 543; https://doi.org/10.3390/en14030543 - 21 Jan 2021
Cited by 16 | Viewed by 5112
Abstract
Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used [...] Read more.
Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used in MSR reactors with 46.5% LiF+ 11.5% NaF+ 42% KF. The corrosion tests were run at 700 °C for 100 h under the Ar cover gas. After corrosion, significant weight loss was observed in the alloy X750. Weight loss registered in SS316 and SS304 was also high. However, Hastelloy-N gained weight after exposure to molten salt corrosion. This could be attributed to electrochemical plating of corrosion products from other alloys on Hastelloy-N surface. SEM–energy-dispersive X-ray spectroscopy (EDXS) scans of cross-section of alloys revealed maximum corrosion damage to the depth of 250 µm in X750, in contrast to only 20 µm on Hastelloy-N. XPS wide survey scans revealed the presence of Fe, Cr, and Ni elements on the surface of all corroded alloys. In addition, Cr clusters were formed at the triple junctions of grains, as confirmed by SEM–EBSD (Electron Back Scattered Diffraction) analysis. The order of corrosion resistance in FLiNaK environment was X750 < SS316 < SS304 < Hastelloy-N. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Graphical abstract

14 pages, 1935 KiB  
Review
Atherosclerosis Imaging with 18F-Sodium Fluoride PET
by Poul F. Høilund-Carlsen, Reza Piri, Caius Constantinescu, Kasper Karmark Iversen, Thomas J. Werner, Michael Sturek, Abass Alavi and Oke Gerke
Diagnostics 2020, 10(10), 852; https://doi.org/10.3390/diagnostics10100852 - 20 Oct 2020
Cited by 23 | Viewed by 4017
Abstract
The evidence on atherosclerosis imaging with 18F-sodium-fluoride (NaF) positron emission tomography (PET) is hotly debated because of the different patient characteristics, methodology, vascular beds, etc. in reported studies. This review is a continuation of a previous review on this topic, which covered [...] Read more.
The evidence on atherosclerosis imaging with 18F-sodium-fluoride (NaF) positron emission tomography (PET) is hotly debated because of the different patient characteristics, methodology, vascular beds, etc. in reported studies. This review is a continuation of a previous review on this topic, which covered the period 2010–2018. The purpose was to examine whether some of the most important questions that the previous review had left open had been elucidated by the most recent literature. Using principles of a systematic review, we ended analyzing 25 articles dealing with the carotids, coronary arteries, aorta, femoral, intracranial, renal, and penile arteries. The knowledge thus far can be summarized as follows: by targeting active arterial microcalcification, NaF uptake is considered a marker of early stage atherosclerosis, is age-dependent, and consistently associated with cardiovascular risk. Longitudinal studies on NaF uptake, conducted in the abdominal aorta only, showed unchanged uptake in postmenopausal women for nearly four years and varying uptake in prostate cancer patients over 1.5 years, despite constant or increasing calcium volume detected by computed tomography (CT). Thus, uncertainty remains about the transition from active arterial wall calcification marked by increased NaF uptake to less active or consolidated calcification detected by CT. The question of whether early-phase atherosclerosis and calcification can be modified remains also unanswered due to lack of intervention studies. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

10 pages, 11503 KiB  
Communication
Influence of Annealing Temperature on Corrosion Resistance of TiO2 Nanotubes Grown on Ti–30Ta Alloy
by Patricia Capellato, Daniela Sachs, Filipe Bueno Vilela, Mirian M. Melo, Gilbert Silva, Geovani Rodrigues, Cecilia A. de C. Zavaglia, Roberto Z. Nakazato and Ana Paula R. A. Claro
Metals 2020, 10(8), 1106; https://doi.org/10.3390/met10081106 - 18 Aug 2020
Cited by 4 | Viewed by 2799
Abstract
With little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) [...] Read more.
With little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450 °C, 530 °C and 600 °C (5 °C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90°). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450 °C, 530 °C and 600 °C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions. Full article
Show Figures

Graphical abstract

22 pages, 17549 KiB  
Article
Detecting and Assessing Nondominant Farmland Area with Long-Term MODIS Time Series Images
by Shengnan Yu, Xiaokang Zhang, Xinle Zhang, Huanjun Liu, Jiaguo Qi and Yankun Sun
Remote Sens. 2020, 12(15), 2441; https://doi.org/10.3390/rs12152441 - 30 Jul 2020
Cited by 9 | Viewed by 2753
Abstract
While most land use and land cover (LULC) studies have focused on modeling, change detection and driving forces at the class or categorical level, few have focused on the subclass level, especially regarding the quality change within a class such as farmland. The [...] Read more.
While most land use and land cover (LULC) studies have focused on modeling, change detection and driving forces at the class or categorical level, few have focused on the subclass level, especially regarding the quality change within a class such as farmland. The concept of nondominant farmland area (NAF) is proposed in this study to assess within class variability and quantify farmland areas where poor environmental conditions, unsuitable natural factors, natural disasters or unsustainable management practices lead to poor crop growth and thus low yield. A 17-year (2000–2016) time series of the Normalized Difference Vegetation Index (NDVI) was used to develop a NAF extraction model with abnormal features in the NDVI curves and subsequently applied to Heilongjiang province in China. The NAF model was analyzed and assessed from three aspects: agricultural disasters, soil types and medium- and low-yield fields, to determine dominant factors of the NAF patterns. The results suggested that: (1) the NAF model was able to extract a variety of NAF types with an overall accuracy of ~80%. The NAF area accumulated more than 8 years in 17 years is 6.20 thousand km2 in Heilongjiang Province, accounting for 3.75% of the total cultivated land area; (2) the NAF had significant spatial clustering characteristics and temporal variability. 53.24% of the NAF accumulated more than 8 years in 17 years is mainly concentrated in the west of Heilongjiang Province. The inter-annual NAF variability was related with meteorological variations, topography and soil properties; and (3) the spatial and temporal NAF patterns seem to reflect a cumulative impact of meteorological disasters, poor farmland quality, and soil degradation on crop growth. The determinant factors of the observed NAF patterns differed across regions, and must be interpreted in the local context of topography, soil properties and meteorological environment. Spatial and temporal NAF variability could provide useful, diagnostic information for precision farmland management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

10 pages, 2041 KiB  
Article
Control of Acid Generation from Pyrite Oxidation in a Highly Reactive Natural Waste: A Laboratory Case Study
by Yan Zhou, Michael D. Short, Jun Li, Russell C. Schumann, Roger St. C. Smart, Andrea R. Gerson and Gujie Qian
Minerals 2017, 7(6), 89; https://doi.org/10.3390/min7060089 - 30 May 2017
Cited by 10 | Viewed by 5127
Abstract
Laboratory kinetic leach column (KLC) tests were carried out to define the conditions required to control acid generation from a highly reactive, potentially acid-forming (PAF) iron ore waste rock. It was found that lime addition (0.1 wt % blended) plus either blending of [...] Read more.
Laboratory kinetic leach column (KLC) tests were carried out to define the conditions required to control acid generation from a highly reactive, potentially acid-forming (PAF) iron ore waste rock. It was found that lime addition (0.1 wt % blended) plus either blending of silicates (25 wt % K-feldspar and 25 wt % chlorite), or addition of a non-acid forming (NAF) top cover containing about 10% dolomite (PAF:NAF = 5:1 wt %), when watered/flushed with lime-saturated water, greatly reduced acid generation as compared to the control KLC (PAF alone, watered/flushed with Milli-Q water), but did not result in circum-neutral pH as required for pyrite surface passivation and effective acid and metalliferous drainage (AMD) mitigation. In contrast, the combined use of these treatments—blended lime and silicates with an NAF cover and watering/flushing with lime-saturated water—resulted in leachate pH of 12 (up to 24 weeks). Mass balance calculations for Ca2+ and scanning electron microscopy (SEM) analyses suggest that calcite or gypsum may have formed in the NAF-amended KLCs and lime with added silicate KLC. Although the combined approach in the form trialled here may not be practical or cost-effective, control of a highly reactive natural PAF waste by pyrite surface passivation appears to be possible, and an improved treatment methodology (e.g., slightly increased lime blending without the need for further lime watering/flushing) could usefully be examined in the future. Full article
(This article belongs to the Special Issue Biogeochemistry of Acid Mine Drainage)
Show Figures

Figure 1

15 pages, 4465 KiB  
Article
Strategies for Reduced Acid and Metalliferous Drainage by Pyrite Surface Passivation
by Gujie Qian, Russell C. Schumann, Jun Li, Michael D. Short, Rong Fan, Yubiao Li, Nobuyuki Kawashima, Yan Zhou, Roger St. C. Smart and Andrea R. Gerson
Minerals 2017, 7(3), 42; https://doi.org/10.3390/min7030042 - 17 Mar 2017
Cited by 27 | Viewed by 7002
Abstract
Acid and metalliferous drainage (AMD) is broadly accepted to be a major global environmental problem facing the mining industry, requiring expensive management and mitigation. A series of laboratory-scale kinetic leach column (KLC) experiments, using both synthetic and natural mine wastes, were carried out [...] Read more.
Acid and metalliferous drainage (AMD) is broadly accepted to be a major global environmental problem facing the mining industry, requiring expensive management and mitigation. A series of laboratory-scale kinetic leach column (KLC) experiments, using both synthetic and natural mine wastes, were carried out to test the efficacy of our pyrite passivation strategy (developed from previous research) for robust and sustainable AMD management. For the synthetic waste KLC tests, initial treatment with lime-saturated water was found to be of paramount importance for maintaining long-term circum-neutral pH, favourable for the formation and preservation of the pyrite surface passivating layer and reduced acid generation rate. Following the initial lime-saturated water treatment, minimal additional alkalinity (calcite-saturated water) was required to maintain circum-neutral pH for the maintenance of pyrite surface passivation. KLC tests examining natural potentially acid forming (PAF) waste, with much greater peak acidity than that of the synthetic waste, blended with lime (≈2 wt %) with and without natural non-acid-forming (NAF) waste covers, were carried out. The addition of lime and use of NAF covers maintained circum-neutral leachate pH up to 24 weeks. During this time, the net acidity generated was found to be significantly reduced by the overlying NAF cover. If the reduced rate of acidity production from the natural PAF waste is sustained, the addition of smaller (more economically-feasible) amounts of lime, together with application of NAF wastes as covers, could be trialled as a potential cost-effective AMD mitigation strategy. Full article
(This article belongs to the Special Issue Biogeochemistry of Acid Mine Drainage)
Show Figures

Figure 1

Back to TopTop