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Abstract: With little success, researchers has been searching for alloys with elements such as tantalum
to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa
that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure
surface modification influences cell behavior and antimicrobial activity. So, this study investigates the
corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization
process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and
annealed in 450 ◦C, 530 ◦C and 600 ◦C (5 ◦C/min). The electrochemical behavior was evaluated by three
electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode
and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned
region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic
polarization curves were obtained with a potentiostat. The sample was characterized by scanning
electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact
angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic
(<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing
at 450 ◦C, 530 ◦C and 600 ◦C; the exceptions were the anodized-without-annealing treatment and
without-surface-modification alloys. The electrochemical behavior of the five groups investigated
showed similar high resistance to corrosion solution under all conditions.

Keywords: Ti–30Ta alloy; TiO2 nanotube; corrosion resistance; annealing temperature

1. Introduction

Among metallic biomaterials, titanium are the most popular as structural materials in the
biomedical field due to their excellent mechanical and chemical properties, their good corrosion
resistance and biocompatibility. The field of the application is wide, including hip joints, bone plates,
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screws, dental implants, stents and applications which are mainly used in implants that replace hard
tissue [1–4].

However, researchers have been searching for alloys composed by elements such tantalum to
improve the long-term life of the implant. Other improvements may apply in medical field by modifying
Ti alloys such as weight reduction, corrosion resistance and good fracture resistance. The addiction of
30% of tantalum changes the elastics modulus to E = 69 GPa, being nearer to the bone (E = 17–25 GPa)
than Ti commercially pure (E = 105 GPa) [5–10]. The elastic modulus is an important featuring for
any hard implant. Once implanted in the body, different elastic modulus between metallic implant
and the material adjacent bone leads to stress shielding phenomenon, causing lesions to the tissue.
The studied alloy features E = 69 GPa. Being its elastic modulus nearer to the bone by comparing Ti cp.
It is the main reason to development alloys with elastic modulus lower than 100 GPa [5–10].

Materials with an elastic modulus lower than 100 GPa are still presenting failures on long-term
clinical application by bio-inert surface that cannot bind directly to living bone at the early stage after
implantation into human body. Hence, in order to improve cellular response, the studies have modified
the surface on nanoscale topography [11–15].

Our previous studies have investigated the nanostructure influence on cell behavior and
antimicrobial activity on Ti–30Ta alloy. The biologic properties of Ti–30Ta alloy can be selectively
improved by using simple anodization process associated with surface annealing process [7,9,16–19].

Corrosion stands for deterioration of the metals due to their reaction with surrounding corrosive
elements. Corrosion damages can drive to metallic implant failure causing not just perjury in terms
of economic, but also pain, productive work decrease and social effects [20–25]. Zhou investigated
Ti–30Ta alloy surfaces and conclude that the alloy presents better corrosion behavior than Ti cp in the
same test solution [6]. However, there is still a gap on corrosion research of the Ti–Ta alloys surface
modification. It is essential the acknowledgment of how annealing temperature influences on corrosion
behavior for biomedical application.

Hence, this study investigates the corrosion behavior of TiO2 nanotubes grown on Ti–30Ta alloy
after anodization process in an electrolyte contained glycerol + NH4F 0.25% at 30 V, for 9 h without
annealing and annealed in three different temperatures: 450 ◦C, 530 ◦C and 600 ◦C with a ramping rate
of 5 ◦C/min.

2. Materials and Methods

2.1. Alloy Processing

The Ti–30Ta alloy was obtained from a titanium (Ti) and tantalum (Ta) pure metals in a high purity
argon atmosphere. The ingot was homogenized in a vacuum at 1000 ◦C for 24 h. Then, the alloy was
cold-worked by a rotary swaging process and solubilized at 950 ◦C for 2 h followed by water-cooling.
The bars were cut into discs of 10 mm in diameter and 3 mm in thickness [10,26].

2.2. Nanotubes Growth

The nanotubes of TiO2 were obtained on the Ti substrate by anodization process in an electrolyte
contained glycerol and NH4F 0.25% using a dual electrode system with platinum (counter electrode) and
Ti–30Ta alloy (working electrode) fixed a 15 mm of distance. Then, applied 30 V at room temperature.
The as-grown TiO2 nanotubes were then annealed in a furnace at different temperatures: 450 ◦C, 530 ◦C
and 600 ◦C with a ramping rate of 5 ◦C/min, for 9 h [18,27].

Hence, the samples were divided into 5 groups: 1—Ti–30Ta alloy without surface modification,
2—anodized without (w/o) annealing-nanotubes of TiO2 without annealing, 3—450 ◦C-nanotubes of
TiO2 annealed at 450 ◦C, 4—530 ◦C-nanotubes of TiO2 annealed at 530 ◦C annealed and 5—600 ◦C-
nanotubes of TiO2 annealed at 600 ◦C.
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2.3. Electrochemical Behavior

The electrochemical behavior of five groups: 1—Ti–30Ta alloy without surface modification,
2—anodized without (w/o) annealing-nanotubes of TiO2 without annealing, 3—450 ◦C-nanotubes
of TiO2 annealed at 450 ◦C, 4—530 ◦C-nanotubes of TiO2 annealed at 530 ◦C annealed and
5—600 ◦C-nanotubes of TiO2 annealed at 600 ◦C was evaluated through corrosion resistance tests.
The characterization was performed by three electrodes cell. The counter-electrode of graphite,
reference-electrode of saturated calomel electrode and worked-electrode, with 1 cm2 exposed, samples
of the 4 conditions The electrochemical measures were performed by having as electrolyte a solution of
0.15-M NaCl + 0.03-M NaF, with pH = 6 for 8000 s. The scanned region from −0.8 V until values close
3.5 V with sweep rate 0.166 mV/s. In addition, the potentiodynamic polarization curves were obtained
with a potentiostat EG&G PAR 283 (PerkinElmer Instruments Inc., Guaratinguetá, Brazil) [28,29].

2.4. Sample Characterization

The surface topography was characterized by scanning electron microscopy (SEM) imaging (JEOL
JSM 6100, Carl Zeiss, Guaratinguetá, Brazil). All substrates were coated with 15 nm layer of gold prior
to imaging. The crystallinity of the samples was investigated by X-ray diffraction analysis (XRD),
using X’ Pert Philips PMD (Philips, São Carlos, Brazil) with Panalytical X’Celerator detector (using a
CuKα radiation, X = 1.5418 A, Philips, São Carlos, Brazil). The wettability of the substrate surfaces was
investigated using sessile drop method (2 mL) with a contact angle goniometer (Kruss DSA 10, Kruss,
Guaratinguetá, Brazil), equipped with video capture. The resulting images at the water–substrate
interface were fit by the circle fitting profile.

3. Results and Discussion

Mechanical properties and surface are important criteria to choosing biomaterial for metal
implants. Ti–30Ta alloy shows elastic modulus nearer to bone (E = 69 GPa) when comparing to Ti Cp
(E = 105 GPa). The not commercial Ti–30Ta alloy smooth surface corrosion behavior was investigated
and presented high corrosion resistance [6]. This word presents five condition named 5 Groups:
1—Ti–30Ta alloy without surface modification, 2—anodized w/o annealing-nanotubes of TiO2 without
annealing, 3—450 ◦C-nanotubes of TiO2 annealed at 450 ◦C, 4—530 ◦C-nanotubes of TiO2 annealed at
530 ◦C annealed and 5—600 ◦C-nanotubes of TiO2 annealed at 600 ◦C. In addition, the chemical surface
modification was performed to active an attractive surface to cell. The layers of nanotubes are studied
in surface modifications because of their chemical stability and structural properties that mimic the
human bone. The morphologies of SEM micrographs of Ti–30Ta alloy surface after anodization process
in 0.25% NH4F + glycerol at 30 V for 9 h and the annealing process was performed at (a) anodized w/o
annealing, (b) 450 ◦C, (c) 530 ◦C and (d) 600 ◦C (5 ◦C/min) for 1 h are shown in Figure 1.

Figure 1a shows the anodized w/o annealing with nanotubes unorganized covered all surface of
the alloy of Ti–30Ta after anodization process. The TiO2 layer presents nanotubes of average diameter
about 80 to 100 nm. The effect the annealing temperature on the morphology of TiO2 nanotubes can
be evaluated on Figure 1b–d. When the temperature was increased the diameter of the nanotube
decreased. Likewise, the top of the nanotube seems to be covered of oxide at annealing temperature at
450 ◦C, 530 ◦C and 600 ◦C. The software ImageJ was used to determine the diameter h of the TiO2

nanotubes [30–33].
The crystallinity of the amorphous layer and nanotubular structure was investigated by X-ray

diffraction. In Figure 2, the spectra obtained after anodizing in electrolyte glycerol +0.25% NH4F at
30 V for 9 h. The first spectrum show the Ti–30Ta alloy surface with titanium element. That anodized
w/o annealing surface, and annealing at 450 ◦C, 530 ◦C and 600 ◦C showed anatase phase with the
highest peaked around 25◦. Tsurkan, 2020 found similar results when investigated the crystallinity of
nanotubular topography on titanium [34,35]. The anatase phase is a desirable surface due to provides
an improvement in the cellular response that is ideal for biomedical applications [20,34,36–38].
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Figure 1. SEM images of Ti–30Ta alloy surface after nanotubes of TiO2 growth in 0.25% NH4F + 
glycerol at 30 V for 9 h. (a) Group 2—anodized w/o annealing, (b) group 3—450 °C-nanotubes of TiO2 
annealed at 450 °C, (c) group 4—530 °C-nanotubes of TiO2 annealed at 530 °C annealed and (d) group 
5—600 °C-nanotubes of TiO2 annealed at 600 °C. 

 

Figure 1. SEM images of Ti–30Ta alloy surface after nanotubes of TiO2 growth in 0.25% NH4F + glycerol
at 30 V for 9 h. (a) Group 2—anodized w/o annealing, (b) group 3—450 ◦C-nanotubes of TiO2 annealed
at 450 ◦C, (c) group 4—530 ◦C-nanotubes of TiO2 annealed at 530 ◦C annealed and (d) group 5—600 ◦C
-nanotubes of TiO2 annealed at 600 ◦C.
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Figure 2. XRD of Ti–30Ta alloy surface before and after nanotubes of TiO2 growth in 0.25% NH4F +

glycerol at 30 V for 9 h. Group 1—Ti–30Ta alloy without surface modification, Group 2—anodized
without annealing, Group 3—450 ◦C-nanotubes of TiO2 annealed at 450 ◦C, Group 4—530 ◦C-nanotubes
of TiO2 annealed at 530 ◦C annealed and group 5—600 ◦C-nanotubes of TiO2 annealed at 600 ◦C.
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The wettability of the surface is an important parameter to evaluating ideal biomaterial. Metallic
biomaterial to biomedical application demands a hydrophilic surface due to cell behavior. The result
shows all surfaces hydrophilic (<90◦), as seen in Figure 3. The nanostructured topography favors the
surface to interaction with cells. Previous studies have shown the antimicrobial effect on the TiO2

nanotubular surface [7,16,30,39].

1 
 

 

Figure 3. Contact angle of Ti–30Ta alloy before and after nanotubes of TiO2 growth in 0.25% NH4 F +

glycerol at 30 V for 9 h. Group 1—Ti–30Ta alloy without surface modification, Group 2—anodized
without annealing, Group 3—450 ◦C-nanotubes of TiO2 annealed at 450 ◦C, Group 4—530 ◦C-nanotubes
of TiO2 annealed at 530 ◦C annealed and group 5—600 ◦C-nanotubes of TiO2 annealed at 600 ◦C.

The electrochemical reactions at the interface of a material depend on the electrode potential.
The reactions are verified in the applied potential and the current generated in the electrochemical
reactions developed (anodic and cathodic). The scan potential and generated current present the
electrochemical behavior of a biomaterial. It generates the polarization. Potentiodynamic polarization
is the technique for obtaining polarization curves also provides continuous scanning of the potential.
The corrosion potential is called open circuit potential which is established when the material is
immersed in the solution [21,25,40,41].

Table 1 exhibit the impedance modulus, corrosion current density and corrosion potential of
the Ti–30Ta alloy, amorphous layer, annealed surface at 450 ◦C, 530 ◦C and 600 ◦C. Table 1 shows
the values of impedance modulus, corrosion current density and corrosion potential for the studied
materials. The lowest value of corrosion potential is obtained for the Ti30 Ta alloy without surface
modification. This indicates a higher reactivity of the alloy in the presence of the 0.15 M NaCl +

0.03 M NaF electrolyte. There is an increase in the corrosion potential for TiO2 nanotubes formed after
anodizing and when it is subjected to annealing at 450 ◦C, 530 ◦C and 600 ◦C. This increase in the
potential for corrosion is attributed to changes in the nature of the nanotube layer formed, as mentioned
earlier in the X-ray diffraction analysis, which indicates the presence of the anatase phase, after heat
treatment. The corrosion current density values obtained are very close and vary from 2.76 × 10−8

A/cm2 to 5.8 × 10−8 A/cm2. The small difference in this parameter does not allow ordering the different
materials studied for corrosion resistance, but the extremely low values of current density indicate that
they all have high resistance to corrosion. The lower impedance modulus values observed for annealed
TiO2 nanotubes reveal that, in general, this treatment decreases corrosion resistance, which can be
attributed to the change in properties such as porosity and conductivity of the TiO2 nanotube layer.

Figure 4 shows the potentiodynamic polarization curves obtained from Ti–Ta alloy before and
after anodization process in 0.25% NH4F + glycerol at 30 V for 9 h. Previous and post annealing
process performed at, 450 ◦C, 530 ◦C and 600 ◦C (5 ◦C/min) for 1 h. The polarization measurement
evaluates the stability and intensity for passive oxide film formation. All condition exhibited typical
spontaneous passivation characteristics [15,42,43].
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Table 1. Impedance modulus, corrosion current density and corrosion potential of the Ti–30Ta alloy,
amorphous layer, annealed surface at 450 ◦C, 530 ◦C and 600 ◦C.

Values Impedance Modulus
(Ω cm2)

Corrosion Current
Density
(A cm−2)

Corrosion Potential
(V)

Alloy 3.81 × 106 2.84 × 10−8 −0.299
Anodized w/o Anneling 5.66 × 105 5.80 × 10−8 −0.288

450 ◦C 2.98 × 104 3.68 × 10−8 −0.284
530 ◦C 3.98 × 105 4.90 × 10−8 −0.221
600 ◦C 6.29 × 104 2.76 × 10−8 −0.122

The open circuit potential (OCP) is the potential of working electrode relative to the reference
electrode when no potential or current is being applied to the corrosion system. Therefore, OCP shows
the tendency of metallic substrate to be subject in the electrochemical corrosion reactions. The electrolyte
was 0.15 M NaCl + 0.03 M NaF, pH = 6, for 8000 s. OCP vs. time increases and reaches a stable
value, consequently the investigated surface Ti–30Ta alloy, anodized without annealing, annealed at
450 ◦C, 530 ◦C and 600 ◦C had a noble behavior and it can resist to the electrolyte aggressive action,
forming a protective film for the exposure time (Figure 5). The chemical surface analysis on the metallic
substrates are useful to validate these conclusions that this material has great potential to biomedical
application [23,30,43–45].

Then, in a complimentary analysis electrochemical impedance spectroscopy (EIS) evaluated
the effect of annealing temperature on the capacitive response of the oxide film. Figure 6 shows
representative Bode plots from 4 samples. All four conditions exhibited capacitive behavior over a
wide range of frequencies. In the high frequency range, the spectra showed a flat portion due to the
response of the electrolyte resistance. In the lower frequency the spectra revealed a linear slope which
is indicative of the capacitive characteristics of a passive film. The impedance response, described by
the equivalent circuit (EC) model can be used to describe the capacitive behavior of Ti–30Ta alloys
before and after anodization process and also on three different temperature of annealing; 450 ◦C,
530 ◦C and 600 ◦C [24,45,46].
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4. Conclusions

Researchers have been searching for alloys with elements like tantalum to improve the long-term
life of implant and nanostructure surface modifications to improve cell interactions in the implant and
the human body.

Hence, in this study the corrosion behavior of TiO2 nanotube annealed at 450 ◦C, 530 ◦C and
600 ◦C for one hour was investigated.

The results obtained show TiO2 nanotube growth on the Ti–30Ta alloy and all surfaces are
hydrophilic (<90◦). Crystals covered the surface with TiO2 nanotubes showing anatase phase after
annealed 450 ◦C, 530 ◦C and 600 ◦C in opposite of anodized without annealing and alloy without
surface modification. The electrochemical behavior of the five groups investigated had good resistance
to a corrosive solution of 0.15 M NaCl + 0.03 M NaF for 8000 s. In addition, all five groups presented
the same corrosion features.
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M.M.M., D.S., A.P.R.A.C. All authors have read and agreed to the published version of the manuscript.
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