Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = Mg/Al dissimilar joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 16432 KB  
Article
Interfacial Interlocking Characteristics in Al/Mg Friction Stir Welding and Their Effects on Mechanical Properties
by Xiaowei Lei, Yang Xu, Peng Jiang, Liyang Chen, Shujin Chen, Yifan Lv, Qi Gao and Xiaoru Zhuo
Coatings 2026, 16(1), 78; https://doi.org/10.3390/coatings16010078 - 9 Jan 2026
Viewed by 200
Abstract
Friction stir welding (FSW) was employed to achieve a reliable joining of 2 mm thick dissimilar metals, 6061 aluminum alloy and AZ31B magnesium alloy. This study revealed the evolution of interfacial interlocking features and their impact on the mechanical properties of the joints [...] Read more.
Friction stir welding (FSW) was employed to achieve a reliable joining of 2 mm thick dissimilar metals, 6061 aluminum alloy and AZ31B magnesium alloy. This study revealed the evolution of interfacial interlocking features and their impact on the mechanical properties of the joints under different welding speeds (25–35 mm/min). The results indicate that the Al/Mg FSW joint interface exhibits a strip-like interlaced structure, the morphological characteristics of which are closely related to the welding speed. For quantitative analysis, the ratio of interlocking length to plate thickness (embedding ratio) was used as a quantitative indicator of the structural interlocking feature. As the welding speed increased from 25 mm/min to 35 mm/min, the embedding ratio decreased from 13.2 to 7.9, and the average thickness of the intermetallic compound (IMC) layer decreased from 2.71 μm to 2.19 μm. Transmission Electron Microscopy (TEM) results confirmed that the Al/Mg FSW joint interface consists of a bilayer of IMCs, specifically Al3Mg2 and Al12Mg17, with thicknesses of 220 nm and 470 nm, respectively. Tensile testing of joints with different embedding ratios demonstrated that the tensile strength of the welded joint exhibits a positive correlation with the embedding ratio, reaching a maximum of 178 MPa. Full article
Show Figures

Figure 1

13 pages, 2156 KB  
Article
Diffusion of Mg/Al Interface Under Heat Treatment After Being Manufactured by Magnetic Pulse Welding
by Hanwu Dong, Xiaozhou Ye and Ke Liu
Metals 2025, 15(12), 1331; https://doi.org/10.3390/met15121331 - 3 Dec 2025
Viewed by 1360
Abstract
There is limited research on dissimilar joints of RE-containing Mg alloys and Al alloys, and the diffusion of elements is fundamental for the properties of Mg/Al interfaces. In this study, samples were manufactured by magnetic pulse welding (MPW) with plates of the AA1060 [...] Read more.
There is limited research on dissimilar joints of RE-containing Mg alloys and Al alloys, and the diffusion of elements is fundamental for the properties of Mg/Al interfaces. In this study, samples were manufactured by magnetic pulse welding (MPW) with plates of the AA1060 aluminum alloy and the as-cast Mg–4.80Gd–1.92Zn (in wt.%) alloy, and the effects of heat treatments at 200 °C and 250 °C, from 1 h to 4 h, on the diffusion of the Mg/Al interface were investigated. The results indicated that diffusion of the Mg and Al elements occurs at 250 °C for no less than 2 h, since Gd and Zn are mainly concentrated in precipitates in the Mg–4.80Gd–1.92Zn alloy. When the heat treatment time at 250 °C is increased from 2 h to 4 h, the width of the Mg/Al interface increases from ~15 μm to ~20 μm. At positions near precipitates in the Mg alloy, the diffusion of Al atoms into the Mg lattice can be hindered by the precipitates, leading to an abnormal decrease in the width of the interface, which is also related to the difficulties of the Mg element diffusing into the Al matrix. Full article
Show Figures

Figure 1

23 pages, 4527 KB  
Article
Aluminum Surface Corrosion Behavior and Microstructural Evolution in Dissimilar AA6016-T4 Aluminum to DP600 Steel via Refill Friction Stir Spot Welding
by Willian S. de Carvalho, Guilherme dos Santos Vacchi, Uceu F. H. Suhuddin, Rodrigo da Silva, Danielle C. C. Magalhães and Carlos A. D. Rovere
Metals 2025, 15(12), 1288; https://doi.org/10.3390/met15121288 - 25 Nov 2025
Viewed by 441
Abstract
Refill friction stir spot welding (refill FSSW) is a solid-state joining technique that enables dissimilar welding between aluminum and steel alloys with minimal intermetallic compound (IMC) formation. Previous studies have focused on the interfacial mechanical performance of such joints, limited attention has been [...] Read more.
Refill friction stir spot welding (refill FSSW) is a solid-state joining technique that enables dissimilar welding between aluminum and steel alloys with minimal intermetallic compound (IMC) formation. Previous studies have focused on the interfacial mechanical performance of such joints, limited attention has been given to the localized corrosion behavior of the aluminum surface after welding, particularly in relation to microstructural evolution. This study investigates the effect of refill FSSW on the localized corrosion resistance of the aluminum surface in dissimilar joints with DP600 steel, since the Al side is typically the exposed surface in automotive service conditions. Emphasis is placed on the correlation between microstructural changes induced by the welding thermal cycle, such as grain refinement and precipitate coarsening, and localized corrosion behavior. The welded samples were characterized by optical and scanning electron microscopy, Vickers hardness measurements and potentiodynamic polarization techniques. Corrosion tests revealed a slight reduction in corrosion resistance in the stir zone compared to the base metal, mainly attributed to Mg2Si coarsening. Pit initiation sites were associated with Al(Fe, Mn)Si and Mg2Si precipitates. These findings offer new insights into the corrosion mechanisms acting on the aluminum surface of refill FSSW joints, supporting the development of more corrosion-resistant dissimilar structures. Full article
Show Figures

Figure 1

18 pages, 8946 KB  
Article
Dissimilar Resistance Spot Weld of Ni-Coated Aluminum to Ni-Coated Magnesium Using Cold Spray Coating Technology
by Mazin Oheil, Dulal Saha, Hamid Jahed and Adrian Gerlich
Metals 2025, 15(9), 940; https://doi.org/10.3390/met15090940 - 24 Aug 2025
Viewed by 1163
Abstract
Direct fusion welding of aluminum (Al) to magnesium (Mg) results in the formation of brittle intermetallic compounds (IMCs) that significantly restrict the application of these joints in structural applications. In this study, cold spray, a promising solid-state coating deposition technology, was employed to [...] Read more.
Direct fusion welding of aluminum (Al) to magnesium (Mg) results in the formation of brittle intermetallic compounds (IMCs) that significantly restrict the application of these joints in structural applications. In this study, cold spray, a promising solid-state coating deposition technology, was employed to introduce a nickel (Ni) interlayer to facilitate joining of Al to Mg sheets by means of resistance spot welding (RSW). The ability of cold spraying to deposit metallic powder on the substrate without melting proves beneficial in mitigating the formation of the Al-Mg IMCs. The Ni-coated coupons were subsequently welded via resistance spot welding at optimized parameters: 27 kA for 15 cycles in two pulses with a 5-cycle inter-pulse delay. Scanning electron microscopy confirmed metallurgical bonding between the Al, Mg, and Ni coatings in the fusion zone. It is shown that the bonding between the three elements inhibits the formation of deleterious IMCs. Tensile shear testing showed joint strength exceeding 4.2 kN, highlighting the potential of the proposed cold spray RSW approach for dissimilar joining in structural applications. Full article
Show Figures

Figure 1

16 pages, 8610 KB  
Article
Effect of Elastic Strain Energy on Dynamic Recrystallization During Friction Stir Welding of Dissimilar Al/Mg Alloys
by Faliang He, Lei Shi and Chuansong Wu
Metals 2025, 15(6), 577; https://doi.org/10.3390/met15060577 - 23 May 2025
Cited by 1 | Viewed by 951
Abstract
Dynamic recrystallization (DRX) is a critical microstructural evolution mechanism in friction stir welding (FSW) of metallic materials, directly determining the mechanical properties and corrosion resistance of weld joints. In the field of DRX simulation, conventional models primarily consider intragranular dislocation strain energy as [...] Read more.
Dynamic recrystallization (DRX) is a critical microstructural evolution mechanism in friction stir welding (FSW) of metallic materials, directly determining the mechanical properties and corrosion resistance of weld joints. In the field of DRX simulation, conventional models primarily consider intragranular dislocation strain energy as the driving force for recrystallization, while neglecting the elastic strain energy generated by coordinated deformation in polycrystalline materials. This study presents an improved DRX modeling framework that incorporates the multiphase-field method to systematically investigate the role of elastic strain energy in microstructural evolution during FSW of Al/Mg dissimilar materials. The results demonstrate that elastic strain energy can modulate nucleation and the growth of recrystallized grains during microstructural evolution, resulting in post-weld average grain size increases of 0.8% on the Al side and 2.1% on the Mg side in the FSW nugget zone. This research provides new insights into multi-energy coupling mechanisms in DRX simulation and offers theoretical guidance for process optimization in dissimilar material welding. Full article
(This article belongs to the Special Issue Friction Stir Welding and Processing of Dissimilar Materials)
Show Figures

Graphical abstract

18 pages, 7410 KB  
Article
Influence of Bonding Temperature on Microstructure and Mechanical Properties of AZ31/Zn/Sn/5083 Diffusion Joint
by Tianbao Tan, Yangyang Guo, Gang Chen, Zijun Rong and Houhong Pan
Materials 2024, 17(24), 6110; https://doi.org/10.3390/ma17246110 - 13 Dec 2024
Cited by 2 | Viewed by 1091
Abstract
Diffusion bonding with an interlayer is considered an effective means of obtaining Mg/Al dissimilar alloy joints. However, at low temperatures, it is often impossible to simultaneously achieve joints between the interlayer and Mg/Al under the same bonding parameters. For this reason, the interlayer [...] Read more.
Diffusion bonding with an interlayer is considered an effective means of obtaining Mg/Al dissimilar alloy joints. However, at low temperatures, it is often impossible to simultaneously achieve joints between the interlayer and Mg/Al under the same bonding parameters. For this reason, the interlayer is usually prefabricated on the substrate, followed by conducting diffusion bonding. Due to the higher diffusion rate of atoms in the liquid phase compared to atoms in the solid phase, creating a liquid phase field in diffusion bonding to reduce diffusion resistance and thus omitting the step of prefabricating the interlayer is a feasible approach. In this study, solid-state diffusion bonding and TLP (transient liquid phase) diffusion bonding were combined. The low-temperature diffusion bonding of the Mg/Al alloy was achieved under the same parameters using a Zn/Sn composite interlayer, utilizing the formation of a Zn-Sn eutectic liquid phase and the complete melting of Sn during heating without requiring a prefabricated interlayer. Unlike conventional composite interlayers used in diffusion bonding, the Sn layer of the Zn/Sn composite interlayer completely melts into liquid and is squeezed out of the bonding interface at the bonding temperature. The Mg/Zn interface was bonded by solid-state diffusion bonding, while the Al/Zn interface was joined through TLP diffusion bonding. Research on the bonding temperature showed that the bonding temperature range was narrow and that variation in the bonding temperature had a significant impact on the microstructure of the joints. Full article
Show Figures

Figure 1

19 pages, 10840 KB  
Article
Microstructural and Mechanical Properties of Dissimilar AA7075 and AA2024 Rotary Friction Weldments
by Sandip Kumar Bauri, Nagumothu Kishore Babu, Malkapuram Ramakrishna, Ateekh Ur Rehman, Vanam Jaya Prasad and Minnam Reddy Suryanarayana Reddy
Crystals 2024, 14(12), 1011; https://doi.org/10.3390/cryst14121011 - 21 Nov 2024
Cited by 3 | Viewed by 1455
Abstract
This study aims to explore the effects of various pre- and post-weld heat treatments (PWHTs) on the microstructural and mechanical properties of dissimilar aluminium alloys, namely AA7075 and AA2024, joined through rotary friction welding. The joints were rigorously evaluated through multiple characterization methods, [...] Read more.
This study aims to explore the effects of various pre- and post-weld heat treatments (PWHTs) on the microstructural and mechanical properties of dissimilar aluminium alloys, namely AA7075 and AA2024, joined through rotary friction welding. The joints were rigorously evaluated through multiple characterization methods, revealing no signs of cracking or incomplete bonding. This study observed that dissimilar joints between AA7075 and AA2024 alloys showed increased flash formation on the AA7075 side due to its lower melting point relative to the AA2024 alloy. Various zones within the weld region were identified, such as the dynamic recrystallized zone (DRZ), the thermo-mechanically affected zone (TMAZ)—which includes TMAZ-1 with elongated grains and TMAZ-2 with compressed or distorted grains—the heat-affected zone (HAZ), and the base metal (BM) zone. Of all the welding conditions examined, the post-weld heat-treated (PWHT) AA2024/AA7075 joint produced by rotary friction welding showed the highest strength, with a yield strength (YS) of 305 ± 2 MPa and an ultimate tensile strength (UTS) of 477 ± 3 MPa. This improvement in strength can be attributed to the significant strengthening precipitates of MgZn2 (found on the AA7075 side), θ-Al2Cu, and S-Al2CuMg (found on the AA2204 side) formed during post-weld ageing. Notably, all dissimilar welds failed in the HAZ region on the AA2024 side due to coarse grain formation, identifying this as the weakest area. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 7876 KB  
Article
Grain Microstructure in Friction-Stir-Welded Dissimilar Al/Mg Joints of Thin Sheets with/without Ultrasonic Vibration
by Jialin Yin, Jie Liu and Chuansong Wu
Materials 2024, 17(19), 4874; https://doi.org/10.3390/ma17194874 - 4 Oct 2024
Cited by 4 | Viewed by 3604
Abstract
Electron backscattered diffraction (EBSD) characterization was conducted on the typical regions in friction-stir-welded dissimilar Al/Mg joints of 2 mm thick sheets with/without ultrasonic assistance. The effects of ultrasonic vibration (UV) on the grain size, recrystallization mechanisms, and degree of recrystallization on both sides [...] Read more.
Electron backscattered diffraction (EBSD) characterization was conducted on the typical regions in friction-stir-welded dissimilar Al/Mg joints of 2 mm thick sheets with/without ultrasonic assistance. The effects of ultrasonic vibration (UV) on the grain size, recrystallization mechanisms, and degree of recrystallization on both sides of the Al-Mg bonding interface and the intermetallic compounds (IMCs) were investigated. It was found that on the Mg side of the weld nugget zone (WNZ), the primary dynamic recrystallization (DRX) mechanisms were discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX), with geometric dynamic recrystallization (GDRX) playing a secondary role. On the Al side of the WNZ, CDRX was identified as the primary mechanism, with GDRX as a secondary contributor. While UV did not significantly alter the DRX mechanisms in either alloy within the WNZ, it promoted the aggregation and rearrangement of dislocations. This led to an increase in high-angle grain boundaries (HAGBs) and an enhanced degree of recrystallization in the welds. The average grain size in both the Al and Mg alloys of the WNZ followed a pattern of initially increasing and then decreasing along the thickness direction, reaching a maximum in the upper-middle part and a minimum at the bottom. The influence of UV on the average grain size in the WNZ was minimal, with only slight grain refinement observed, and the minimum refinement degree was only 0.9%. The Schmid factor (SF) on the WNZ and thermo-mechanically affected zone (TMAZ) boundary regions of the advancing side (AS) indicates that the application of UV increased the likelihood of basal slip and extension twinning in the crystal structure. In addition, UV reduced the thickness of IMCs and improved the strength of the Al-Mg bonding interface. These results suggest a higher probability of fracture along the TMAZ and WNZ boundary on the AS when UV was applied. Full article
Show Figures

Graphical abstract

16 pages, 24218 KB  
Article
Ultrasonic Influence on Macrostructure and Mechanical Properties of Friction Stir Welded Joints of Al/Mg Sheets with 2 mm Thickness
by Jialin Yin, Jie Liu and Chuansong Wu
Materials 2024, 17(16), 4044; https://doi.org/10.3390/ma17164044 - 14 Aug 2024
Cited by 4 | Viewed by 1595
Abstract
Friction stir welding (FSW) and ultrasonic vibration enhanced FSW (UVeFSW) experiments were conducted by using 6061-T6 Al alloy and AZ31B-H24 Mg alloy sheets of thickness 2 mm. The suitable process parameters windows were obtained for the butt joining of Al/Mg sheets. The effect [...] Read more.
Friction stir welding (FSW) and ultrasonic vibration enhanced FSW (UVeFSW) experiments were conducted by using 6061-T6 Al alloy and AZ31B-H24 Mg alloy sheets of thickness 2 mm. The suitable process parameters windows were obtained for the butt joining of Al/Mg sheets. The effect of ultrasonic vibration on the macrostructure and mechanical properties of the dissimilar joints was studied. The results showed that the width of the weld nugget zone (WNZ) was enlarged to some extent and the hardness distribution in WNZ was more uniform in UVeFSW. In addition, the application of ultrasonic vibration effectively promoted the interpenetration degree of dissimilar materials in the WNZ so that the mechanical interlocking on the bonding interface of dissimilar Al/Mg materials was enhanced. The facture positions were changed from the bonding interface in FSW to the boundary between WNZ and the thermo-mechanical affected zone, and the ductile fracture zone was expanded. The highest ultimate tensile strength was 205 MPa at the process parameters set of 1200 rpm–50 mm/min in UVeFSW in this experiment. The average ultimate tensile strength of FSW/UVeFSW joints was 172.3 MPa and 184.4 MPa, respectively, and the average ultimate tensile strength was increased by 7.02% with the introduction of ultrasonic vibration. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

15 pages, 11307 KB  
Article
The Evolution of Grain Microstructure in Friction Stir Welding of Dissimilar Al/Mg Alloys with Ultrasonic Assistance
by Junjie Zhao, Bo Zhao, Chuansong Wu and Sachin Kumar
Materials 2024, 17(13), 3073; https://doi.org/10.3390/ma17133073 - 22 Jun 2024
Cited by 2 | Viewed by 1902
Abstract
The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To [...] Read more.
The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To capture the near “in situ” structure around the exit hole, an “emergency stop” followed by rapid cooling using liquid nitrogen was employed. Electron Backscatter Diffraction analysis was utilized to characterize and examine the evolution of grain microstructure within the aluminum matrix as the material flowed around the exit hole. The findings reveal that two mechanisms, continuous dynamic recrystallization (CDRX) and geometric dynamic recrystallization (GDRX), jointly or alternatively influence the grain evolution process. In conventional FSW, CDRX initially governs grain evolution, transitioning to GDRX as material deformation strain and temperature increase. Subsequently, as material deposition commences, CDRX reasserts dominance. Conversely, in acoustic addition, ultrasonic vibration accelerates GDRX, promoting its predominance by enhancing material flow and dislocation movements. Even during the material deposition, GDRX remains the dominant mechanism. Full article
Show Figures

Figure 1

16 pages, 19093 KB  
Article
Microstructure and Mechanical Properties of Mg-Li/Al Dissimilar Joints via Dynamic Support Friction Stir Lap Welding
by Yisong Gao, Yingying Zuo, Huijie Liu, Dongrui Li and Xuanmo Li
Materials 2024, 17(12), 2883; https://doi.org/10.3390/ma17122883 - 13 Jun 2024
Cited by 2 | Viewed by 1358
Abstract
In this study, two-mm-thick dual-phase LA103Z Mg-Li and 6061 Al alloys, known for their application in lightweight structural designs, were joined using dynamic support friction stir lap welding (DSFSLW). The microstructural evolution and mechanical properties of dissimilar joints were investigated at different welding [...] Read more.
In this study, two-mm-thick dual-phase LA103Z Mg-Li and 6061 Al alloys, known for their application in lightweight structural designs, were joined using dynamic support friction stir lap welding (DSFSLW). The microstructural evolution and mechanical properties of dissimilar joints were investigated at different welding speeds. The analysis revealed two distinct interfaces: the diffusion interface and the mixed interface. The diffusion interface, characterized by a pronounced diffusion zone, is formed under slower welding speeds. The diffusion zone height, the effective lap width, and the interface layer thickness decrease with increasing welding speed due to low plastic deformation capacity and weak interfacial reactions. Conversely, the mixed interface, associated with higher welding speeds, contained large Al fragments. The extremely high microhardness values (130.5 HV) can be ascribed to the formation of intermetallic compounds (IMCs) and strain-hardened Al fragments. Notably, the maximum shear strength achieved was 175 N/mm at a welding speed of 20 mm/min. The fracture behavior varied significantly with the interface type; the diffusion interface showed enhanced mechanical strength due to better intermetallic reactions and interlocking structures, while the mixed interface displayed more linear crack propagation due to weaker IMCs and the absence of hook structures. Fracture surface analysis indicates that fractures are more likely to propagate through the Al matrix and interface layers. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites)
Show Figures

Figure 1

20 pages, 14380 KB  
Article
Effect of Welding Parameters on Al/Mg Dissimilar Friction Stir Lap Welding with and without Ultrasonic Vibration
by Junjie Zhao, Bo Zhao, Chuansong Wu and Najib Ahmad Muhammad
Materials 2024, 17(9), 2109; https://doi.org/10.3390/ma17092109 - 29 Apr 2024
Cited by 5 | Viewed by 1779
Abstract
The amount of heat input during welding impacts the weld’s thermal and mechanical behavior and the joint’s properties. The current study involved conducting AA 6061 and AZ31B Mg dissimilar welding, using friction stir lap welding (FSLW) and ultrasonic vibration-enhanced FSLW (UVeFSLW). The comparison [...] Read more.
The amount of heat input during welding impacts the weld’s thermal and mechanical behavior and the joint’s properties. The current study involved conducting AA 6061 and AZ31B Mg dissimilar welding, using friction stir lap welding (FSLW) and ultrasonic vibration-enhanced FSLW (UVeFSLW). The comparison and analysis of the welding load, the weld’s macro-microstructure, intermetallic compounds (IMCs), and joint properties were conducted by adjusting the process parameters. The study also examined the effect of ultrasonic vibration (UV) variations on welding heat input. The study demonstrated that it is possible to reduce the welding load by employing UV. Moreover, this impact becomes more pronounced as the welding heat input decreases. Additionally, the material flow in the weld, the width of the weld nugget zone, and the continuous IMC layer are significantly influenced by ultrasonic vibration, irrespective of the heat input during welding. However, the impact on large areas of irregular IMCs or eutectic structures is relatively small. Furthermore, achieving better joint properties becomes more feasible when a higher welding speed is employed for the Al alloy placed on top. Specifically, the impact of UV becomes more evident at higher welding speeds (≥220 mm/min). Full article
(This article belongs to the Topic Development of Friction Stir Welding and Processing)
Show Figures

Figure 1

21 pages, 15977 KB  
Article
Hybrid Joining of Dissimilar Thin Metallic Sheets—Mechanical Joining and Adhesive Bonding
by Anna Guzanová, Dagmar Draganovská, Janette Brezinová, Miroslav Tomáš, Nikita Veligotskyi and Štefan Kender
Crystals 2024, 14(3), 220; https://doi.org/10.3390/cryst14030220 - 24 Feb 2024
Cited by 1 | Viewed by 1879
Abstract
This paper deals with joining dissimilar materials using thermal drilling technology as well as the combination of thermal drilling and adhesive bonding. The base materials for the experimental work were deep-drawn low-carbon steel DC04, HSLA steel TL 1550-220 + Z, and structural aluminum [...] Read more.
This paper deals with joining dissimilar materials using thermal drilling technology as well as the combination of thermal drilling and adhesive bonding. The base materials for the experimental work were deep-drawn low-carbon steel DC04, HSLA steel TL 1550-220 + Z, and structural aluminum alloy EN AW-6082 T6 (AlSi1MgMn). The geometry of the formed joints was tested metallographically as the load-bearing shear capacity under the tensile shear test of single-lapped joints and the resistance of the joints against corrosion-induced disbonding in a climate chamber. The energy dissipated by the joints up to fracture was calculated from the load–displacement curves. The hybrid joints were compared with the bonded joints with the same overlap area in terms of the load-bearing capacity and energy dissipated at joint failure. The hybrid joints formed by thermal drilling and adhesive bonding with a rubber-based adhesive confirmed the synergistic effect—the adhesive provides the high load-bearing capacity of the joint, and the bushing formed by thermal drilling increases the dissipated energy of the joint at failure. The exposure of the joints in the climatic chamber did not cause a relevant reduction in the characteristics of the joints. Full article
Show Figures

Figure 1

15 pages, 9617 KB  
Article
Improved Mechanical Properties of SUS304/AA5083 Dissimilar Joint by Laser Ablation Pretreatment in Vortex- Friction Stir Lap Welding
by Xiaochao Liu, Jingyue Luo, Wenhui Bao, Xianjun Pei, Qinghua Wang and Zhonghua Ni
Crystals 2023, 13(9), 1336; https://doi.org/10.3390/cryst13091336 - 31 Aug 2023
Cited by 11 | Viewed by 2104
Abstract
To obtain a high-quality Al/steel dissimilar joint, a micro-groove-assisted vortex-friction stir lap welding (MG-VFSLW) process was developed. Through prefabricating micro-grooves on the steel plate surface by laser ablation, high-quality mechanical interlock and metallurgical bonding were obtained simultaneously in the MG-VFSLW process. The weld [...] Read more.
To obtain a high-quality Al/steel dissimilar joint, a micro-groove-assisted vortex-friction stir lap welding (MG-VFSLW) process was developed. Through prefabricating micro-grooves on the steel plate surface by laser ablation, high-quality mechanical interlock and metallurgical bonding were obtained simultaneously in the MG-VFSLW process. The weld formation, interface microstructure, mechanical properties, and failure mode in MG-VFSLW were studied by comparing them with those in VFSLW. The results showed that a line load of the AA5083/SUS304 dissimilar joint up to 485.9 N/mm was obtained by MG-VFSLW, which is 40.1% higher than that in VFSLW. Remarkable intermetallic compound layers and cracks were found in VFSLW. The cracks were closely related to the oxides on the interface. However, in MG-VFSLW, cross-riveting aluminum rivets and steel rivets were formed on the interface due to the micro-grooves and flashes made by the laser ablation. Good metallurgical bonding was also formed between AA5083 and SUS304. No remarkable intermetallic compound layers and cracks occurred. During the tensile shear tests, the aluminum rivets were cut off and some dimples and tear ridges existed on the fracture surface. In short, the high strength of the Al/steel lap joint in MG-VFSLW was attributed to the high-quality mechanical interlock and metallurgical bonding. Full article
(This article belongs to the Special Issue Preparation and Characterization of Structural/High-Strength Steels)
Show Figures

Figure 1

23 pages, 5008 KB  
Review
Solid-State Welding of Aluminum to Magnesium Alloys: A Review
by Hao Chen, Zhengqiang Zhu, Yunming Zhu, Liang Sun and Yukun Guo
Metals 2023, 13(8), 1410; https://doi.org/10.3390/met13081410 - 7 Aug 2023
Cited by 20 | Viewed by 6250
Abstract
With the continuous improvement of lightweight requirements, the preparation of Mg/Al composite structures by welding is in urgent demand and has broad prospective applications in the industrial field. However, it is easy to form a large number of brittle intermetallic compounds when welding [...] Read more.
With the continuous improvement of lightweight requirements, the preparation of Mg/Al composite structures by welding is in urgent demand and has broad prospective applications in the industrial field. However, it is easy to form a large number of brittle intermetallic compounds when welding Mg/Al dissimilar alloys, and it is difficult to obtain high-quality welded joints. The solid-state welding method has the characteristics of low energy input and high efficiency, which can inhibit the formation of brittle intermetallic compounds and help to solve the problem of the poor strength of welded joints using Mg/Al dissimilar alloys in engineering applications. Based on the literature of ultrasonic welding, friction welding, diffusion welding, explosive welding, magnetic pulse welding, and resistance spot welding of Al/Mg in recent years, this paper summarized and prospected the research status of solid-state welding using Mg/Al dissimilar alloys from three aspects: the optimization of welding parameters, the addition of interlayers, and hybrid welding process. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies)
Show Figures

Figure 1

Back to TopTop