Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Medieval Climate Anomaly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5311 KiB  
Article
Ancient Earth Births: Compelling Convergences of Geology, Orality, and Rock Art in California and the Great Basin
by Alex K. Ruuska
Arts 2025, 14(4), 82; https://doi.org/10.3390/arts14040082 - 22 Jul 2025
Viewed by 509
Abstract
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples [...] Read more.
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples with a wide range of data from (G)eology, (O)ral traditions, (A)rchaeology and (A)nthropology, and (T)raditional knowledge, the author analyzed 824 multigenerational ancestral teachings. These descriptions encode multigenerational memories of potential geological, climatic, and ecological observations and interpretations of multiple locations and earth processes throughout the Numic Aboriginal homelands within California and the Great Basin. Through this layered and comparative analysis, the author identified potential convergences of oral traditions, ethnography, ethnohistory, rock art, and geological processes in the regions of California, the Great Basin, and the Colorado Plateau, indicative of large-scale earth changes, cognized by Numic Indigenous communities as earth birthing events, occurring during the Late Pleistocene/Early Holocene to Middle and Late Holocene, including the Late Dry Period, Medieval Climatic Anomaly, and Little Ice Age. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

21 pages, 8114 KiB  
Article
Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium
by Ekaterina Ponomarenko, Tatiana Pugacheva and Liubov Kuleshova
Quaternary 2024, 7(4), 44; https://doi.org/10.3390/quat7040044 - 14 Oct 2024
Cited by 1 | Viewed by 1768
Abstract
We present the reconstruction of palaeoenvironmental conditions in the Gdansk, Bornholm, and Arkona Basins of the Baltic Sea over the last millennium. A multiproxy study (including geochemical, XRF, grain size, AMS, and micropalaeontological analyses) of five short sediment cores was performed. The relative [...] Read more.
We present the reconstruction of palaeoenvironmental conditions in the Gdansk, Bornholm, and Arkona Basins of the Baltic Sea over the last millennium. A multiproxy study (including geochemical, XRF, grain size, AMS, and micropalaeontological analyses) of five short sediment cores was performed. The relative age of the sediments was determined based on the Pb distribution along the sediment sequences, as radiocarbon dating has resulted in an excessively old age. The retrieved cores cover two comparable warm periods, the Medieval Climate Anomaly and the Modern Warm Period, for which the increase in surface water productivity was reconstructed. Notably, the production of diatoms was higher during the colder periods (the Dark Ages and Little Ice Age), but this was also the case within the Modern Warm Period. In the Gdansk Basin, the initial salinity increase during the Littorina transgression started after 7.7 cal. a BP. The increased inflow activity was reconstructed during the Medieval Climate Anomaly, even in the Gdansk Basin, despite, in general, very low foraminiferal amounts and diversity. The strongly positive North Atlantic Oscillation Index during this period led to the prevalence of westerly winds over the Baltic region and stronger saltwater intrusions. In the recent sediments, the reconstructed inflow frequency demonstrates a variability against the reduction trend, and a general decline compared to the Medieval Climate Anomaly is seen. Full article
Show Figures

Figure 1

16 pages, 3187 KiB  
Article
Regional Fluctuations in the Eastern Tropical North Pacific Oxygen Minimum Zone during the Late Holocene
by Caitlin E. Tems and Eric Tappa
Oceans 2024, 5(2), 352-367; https://doi.org/10.3390/oceans5020021 - 1 Jun 2024
Viewed by 1355
Abstract
This study presents a high-resolution record of δ15Nsed, which serves as a proxy for water column denitrification and oxygen minimum zone (OMZ) intensity, from the Soledad Basin in the Eastern Tropical North Pacific OMZ. The Soledad Basin δ15 [...] Read more.
This study presents a high-resolution record of δ15Nsed, which serves as a proxy for water column denitrification and oxygen minimum zone (OMZ) intensity, from the Soledad Basin in the Eastern Tropical North Pacific OMZ. The Soledad Basin δ15Nsed record is compared to the Pescadero Slope and Santa Barbara Basin (SBB) δ15Nsed records to gain insight into regional variations in the ETNP OMZ. During the Medieval Climate Anomaly (MCA; 950–1250 CE), Soledad Basin, Pescadero Slope, and SBB records exhibit coherent trends suggesting that there was general water column oxygenation stability. During the Little Ice Age (LIA; 1350–1850 CE), Soledad Basin and SBB showed a similar decreasing trend in δ15Nsed values while the Pescadero Slope δ15Nsed exhibited an increasing trend until values abruptly declined between 1740 and 1840 CE. We suggest that increased δ15Nsed variability and the different trends at the Pescadero Slope during the LIA are due to the influence of the North American monsoon (NAM), which can suppress upwelling when enhanced and result in OMZ contraction. The decoupling between the Soledad Basin, SBB, and the Pescadero Slope could also be due to the increased influence of enriched 15NO3 subarctic waters in the California Current System. Since each site is influenced by local productivity, basin morphology, and regional atmospheric and ocean circulation patterns, we suggest that assessing OMZ fluctuations from multiple sites provides a more comprehensive view of regional OMZ dynamics in response to climate variations. Full article
Show Figures

Figure 1

17 pages, 3523 KiB  
Article
A 900-Year Isotopic Proxy Rainfall Record from Northeastern Botswana
by Roxana T. Patrut, Adrian Patrut, Grant Hall, Christiaan W. Winterbach, Iain Robertson, Ileana Andreea Ratiu, Victor Bocos-Bintintan, Laszlo Rakosy and Stephan Woodborne
Forests 2023, 14(9), 1917; https://doi.org/10.3390/f14091917 - 20 Sep 2023
Cited by 3 | Viewed by 1959
Abstract
A high-resolution climate archive was reconstructed based on carbon isotope analysis and radiocarbon dating of the Chapman baobab in northeastern Botswana. The Chapman baobab, which exhibited an open ring-shaped structure composed of six stems, collapsed in January 2016 during an intense El Niño [...] Read more.
A high-resolution climate archive was reconstructed based on carbon isotope analysis and radiocarbon dating of the Chapman baobab in northeastern Botswana. The Chapman baobab, which exhibited an open ring-shaped structure composed of six stems, collapsed in January 2016 during an intense El Niño event. Two samples belonging to the oldest stems were investigated in order to obtain a proxy rainfall record, which provides insight into the precipitation regime over the last millennium, evincing centennial and decadal scale variability. The results indicate that the Medieval Warm Period was marked by relatively stable precipitation, whereas rainfall variability and drought frequency increased during the Little Ice Age. The investigated area has experienced both wetter and drier conditions in the past. The wettest conditions of the last millennium were registered before 1450 while the driest period occurred in 1835. For southern Africa, inter-annual rainfall variability is mainly associated with sea surface temperatures in the Agulhas Current core region, which determine the east–west displacement of tropical temperate troughs. Previous studies suggested that positive sea surface temperature anomalies in the Mozambique Channel led to an eastward movement of the troughs but the Chapman record demonstrates a westward displacement in the past, causing drought in northeastern South Africa and wetter conditions in the central part of southern Africa. The positive rainfall correlation with SST anomalies reversed after 1900, causing a gradual decrease in precipitation and confirming the current aridity trend for Botswana. The results contribute to a better understanding of the past climate of southern Africa for which paleoclimate reconstructions remain scarce. Full article
(This article belongs to the Special Issue Age and Growth Assessment of Trees by Radiocarbon Dating)
Show Figures

Figure 1

19 pages, 4493 KiB  
Article
Drivers of Last Millennium Antarctic Climate Evolution in an Ensemble of Community Earth System Model Simulations
by Olivia J. Truax, Bette L. Otto-Bliesner, Esther C. Brady, Craig L. Stevens, Gary S. Wilson and Christina R. Riesselman
Geosciences 2022, 12(8), 299; https://doi.org/10.3390/geosciences12080299 - 31 Jul 2022
Cited by 3 | Viewed by 3230
Abstract
Improved understanding of the drivers of climate variability, particularly over the last millennium, and its influence on Antarctic ice melt have important implications for projecting ice sheet resilience in a changing climate. Here, we investigated the variability in Antarctic climate and sea ice [...] Read more.
Improved understanding of the drivers of climate variability, particularly over the last millennium, and its influence on Antarctic ice melt have important implications for projecting ice sheet resilience in a changing climate. Here, we investigated the variability in Antarctic climate and sea ice extent during the last millennium (850–1850 CE) by comparing paleoenvironmental reconstructions with simulations from the Community Earth System Model Last Millennium Ensemble (CESM-LME). Atmospheric and oceanic response to external forcing in CESM-LME simulations typically take the form of an Antarctic dipole: cooling over most of Antarctica and warming east of the Antarctic Peninsula. This configuration is also observed in ice core records. Unforced variability and a dipole response to large volcanic eruptions contribute to weaker cooling in the Antarctic than the Arctic, consistent with the absence of a strong volcanic signal in Antarctic ice core records. The ensemble does not support a clear link between the dipole pattern and baseline shifts in the Southern Annular Mode and El Niño-Southern Oscillation proposed by some paleoclimate reconstructions. Our analysis provides a point of comparison for paleoclimate reconstructions and highlights the role of internal climate variability in driving modeled last millennium climate evolution in the Antarctic. Full article
Show Figures

Figure 1

21 pages, 3312 KiB  
Article
Three Millennia of Vegetation, Land-Use, and Climate Change in SE Sicily
by Fabrizio Michelangeli, Federico Di Rita, Alessandra Celant, Nadine Tisnérat-Laborde, Fabrizio Lirer and Donatella Magri
Forests 2022, 13(1), 102; https://doi.org/10.3390/f13010102 - 11 Jan 2022
Cited by 20 | Viewed by 3510
Abstract
This study presents the first Late Holocene marine pollen record (core ND2) from SE Sicily. It encompasses the last 3000 years and is one of the most detailed records of the south-central Mediterranean region in terms of time resolution. The combined approach of [...] Read more.
This study presents the first Late Holocene marine pollen record (core ND2) from SE Sicily. It encompasses the last 3000 years and is one of the most detailed records of the south-central Mediterranean region in terms of time resolution. The combined approach of marine palynology and historical ecology, supported by independent palaeoclimate proxies, provides an integrated regional reconstruction of past vegetational dynamics in relation to rapid climatic fluctuations, historical socio-economic processes, and past land-use practices, offering new insights into the vegetation history of SE Sicily. Short-term variations of sparse tree cover in persistently open landscapes reflect rapid hydroclimatic changes and historical land-use practices. Four main phases of forest reduction are found in relation to the 2.8 ka BP event, including the Late Antique Little Ice Age, the Medieval Climate Anomaly, and the Little Ice Age, respectively. Forest recovery is recorded during the Hellenistic and Roman Republican Periods, the Early Middle Ages, and the last century. Agricultural and silvicultural practices, as well as stock-breeding activities, had a primary role in shaping the current vegetational landscape of SE Sicily. Full article
Show Figures

Figure 1

19 pages, 3201 KiB  
Article
Elemental Enrichment in Shallow Subsurface Red Sea Coastal Sediments, Al-Shuaiba, Saudi Arabia: Natural vs. Anthropogenic Controls
by Ibrahim M. Ghandour and Mohammed H. Aljahdali
Minerals 2021, 11(8), 898; https://doi.org/10.3390/min11080898 - 19 Aug 2021
Cited by 5 | Viewed by 3074
Abstract
Geochemical analysis of the 23 sediment samples collected from a short (0.6 m long) core retrieved from the coastal creek that was previously connecting the northern and southern Al-Shuaiba Lagoons, Red Sea, Saudi Arabia, was accomplished to assess the elemental enrichment levels and [...] Read more.
Geochemical analysis of the 23 sediment samples collected from a short (0.6 m long) core retrieved from the coastal creek that was previously connecting the northern and southern Al-Shuaiba Lagoons, Red Sea, Saudi Arabia, was accomplished to assess the elemental enrichment levels and the natural and anthropogenic driving forces for this enrichment. Statistical analysis and upcore variation in elemental concentrations enabled subdivision of the core formally into three units, lower, middle, and upper. The enriched elements in the lower and middle units display poor to negative correlations with the enriched elements in the upper unit. The lower unit is enriched in elements (Mo, As, U, and Re) suggesting deposition under anoxic conditions, possibly related to the Medieval Climate Anomaly. The middle unit is enriched in the carbonate-related constituents (CaCO3, Ca, and Sr). The upper unit is enriched in elements that co-vary significantly with Al suggesting increased terrigenous supply associated with the construction of the road between the two lagoons. The enrichment of elements in the lower and middle units is naturally driven, whereas the enrichment of lithogenic elements in the upper unit, though of geogenic origin, is induced after the road construction. Full article
(This article belongs to the Special Issue Environment and Geochemistry of Sediments)
Show Figures

Figure 1

26 pages, 5861 KiB  
Article
Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records
by Sarah Waltgenbach, Dana F. C. Riechelmann, Christoph Spötl, Klaus P. Jochum, Jens Fohlmeister, Andrea Schröder-Ritzrau and Denis Scholz
Geosciences 2021, 11(4), 166; https://doi.org/10.3390/geosciences11040166 - 6 Apr 2021
Cited by 16 | Viewed by 3717
Abstract
The Late Holocene was characterized by several centennial-scale climate oscillations including the Roman Warm Period, the Dark Ages Cold Period, the Medieval Warm Period and the Little Ice Age. The detection and investigation of such climate anomalies requires paleoclimate archives with an accurate [...] Read more.
The Late Holocene was characterized by several centennial-scale climate oscillations including the Roman Warm Period, the Dark Ages Cold Period, the Medieval Warm Period and the Little Ice Age. The detection and investigation of such climate anomalies requires paleoclimate archives with an accurate chronology as well as a high temporal resolution. Here, we present 230Th/U-dated high-resolution multi-proxy records (δ13C, δ18O and trace elements) for the last 2500 years of four speleothems from Bunker Cave and the Herbstlabyrinth cave system in Germany. The multi-proxy data of all four speleothems show evidence of two warm and two cold phases during the last 2500 years, which coincide with the Roman Warm Period and the Medieval Warm Period, as well as the Dark Ages Cold Period and the Little Ice Age, respectively. During these four cold and warm periods, the δ18O and δ13C records of all four speleothems and the Mg concentration of the speleothems Bu4 (Bunker Cave) and TV1 (Herbstlabyrinth cave system) show common features and are thus interpreted to be related to past climate variability. Comparison with other paleoclimate records suggests a strong influence of the North Atlantic Oscillation at the two caves sites, which is reflected by warm and humid conditions during the Roman Warm Period and the Medieval Warm Period, and cold and dry climate during the Dark Ages Cold period and the Little Ice Age. The Mg records of speleothems Bu1 (Bunker Cave) and NG01 (Herbstlabyrinth) as well as the inconsistent patterns of Sr, Ba and P suggests that the processes controlling the abundance of these trace elements are dominated by site-specific effects rather than being related to supra-regional climate variability. Full article
Show Figures

Figure 1

17 pages, 1593 KiB  
Article
Warm Deep Water Variability During the Last Millennium in the CESM–LME: Pre-Industrial Scenario versus Late 20th Century Changes
by Marcos Tonelli, Fernanda Marcello, Bruno Ferrero and Ilana Wainer
Geosciences 2019, 9(8), 346; https://doi.org/10.3390/geosciences9080346 - 8 Aug 2019
Cited by 4 | Viewed by 4635
Abstract
Water transformation around Antarctica is recognized to significantly impact the climate. It is where the linkage between the upper and lower limbs of the Meridional Overturning Circulation (MOC) takes place by means of dense water formation, which may be affected by rapid climate [...] Read more.
Water transformation around Antarctica is recognized to significantly impact the climate. It is where the linkage between the upper and lower limbs of the Meridional Overturning Circulation (MOC) takes place by means of dense water formation, which may be affected by rapid climate change. Simulation results from the Community Earth System Model Last Millennium Ensemble (CESM–LME) are used to investigate the Weddell Sea Warm Deep Water (WDW) evolution during the Last Millennium (LM). The WDW is the primary heat source for the Weddell Sea (WS) and accounts for 71% of the Weddell Sea Bottom Water (WSBW), which is the regional variety of the Antarctic Bottom Water (AABW)—one of the densest water masses in the ocean bearing directly on the cold deep limb of the MOC. Earth System Models (ESMs) are known to misrepresent the deep layers of the ocean (below 2000 m), hence we aim at the upper component of the deep meridional overturning cell, i.e., the WDW. Salinity and temperature results from the CESM–LME from a transect crossing the WS are evaluated with the Optimum Multiparameter Analysis (OMP) water masses decomposition scheme. It is shown that, after a long–term cooling over the LM, a warming trend takes place at the surface waters in the WS during the 20th century, which is coherent with a global expression. The subsurface layers and. mainly. the WDW domain are subject to the same long–term cooling trend, which is decelerated after 1850 (instead of becoming warmer like the surface waters), probably due interactions with sea ice–insulated ambient waters. The evolution of this anomalous temperature pattern for the WS is clear throughout the three major LM climatic episodes: the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and late 20th century warming. Along with the continuous decline of WDW core temperatures, heat content in the water mass also decreases by 18.86%. OMP results indicate shoaling and shrinking of the WDW during the LM, with a ~6% decrease in its cross–sectional area. Although the AABW cannot be directly assessed from CESM–LME results, changes in the WDW structure and WS dynamics have the potential to influence the deep/bottom water formation processes and the global MOC. Full article
Show Figures

Figure 1

18 pages, 1884 KiB  
Article
South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age
by Fernanda Marcello, Ilana Wainer, Peter R. Gent, Bette L. Otto-Bliesner and Esther C. Brady
Geosciences 2019, 9(7), 299; https://doi.org/10.3390/geosciences9070299 - 9 Jul 2019
Cited by 6 | Viewed by 4175
Abstract
Interocean waters that are carried northward through South Atlantic surface boundary currents get meridionally split between two large-scale systems when meeting the South American coast at the western subtropical portion of the basin. This distribution of the zonal flow along the coast is [...] Read more.
Interocean waters that are carried northward through South Atlantic surface boundary currents get meridionally split between two large-scale systems when meeting the South American coast at the western subtropical portion of the basin. This distribution of the zonal flow along the coast is investigated during the Last Millennium, when natural forcing was key to establish climate variability. Of particular interest are the changes between the contrasting periods of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The investigation is conducted with the simulation results from the Community Earth System Model Last Millennium Ensemble (CESM-LME). It is found that the subtropical South Atlantic circulation pattern differs substantially between these natural climatic extremes, especially at the northern boundary of the subtropical gyre, where the westward-flowing southern branch of the South Equatorial Current (sSEC) bifurcates off the South American coast, originating the equatorward-flowing North Brazil Undercurrent (NBUC) and the poleward Brazil Current (BC). It is shown that during the MCA, a weaker anti-cyclonic subtropical gyre circulation took place (inferred from decreased southern sSEC and BC transports), while the equatorward transport of the Meridional Overturning Circulation return flow was increased (intensified northern sSEC and NBUC). The opposite scenario occurs during the LIA: a more vigorous subtropical gyre circulation with decreased northward transport. Full article
Show Figures

Figure 1

24 pages, 6042 KiB  
Article
Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing
by Yochanan Kushnir and Mordechai Stein
Atmosphere 2019, 10(1), 29; https://doi.org/10.3390/atmos10010029 - 13 Jan 2019
Cited by 22 | Viewed by 11689
Abstract
This paper examines the hydroclimate history of the Eastern Mediterranean (EM) region during the 10th to 14th centuries C.E., a period known as the Medieval Climate Anomaly (MCA), a time of significant historical turmoil and change in the region. The study assembles several [...] Read more.
This paper examines the hydroclimate history of the Eastern Mediterranean (EM) region during the 10th to 14th centuries C.E., a period known as the Medieval Climate Anomaly (MCA), a time of significant historical turmoil and change in the region. The study assembles several regional hydroclimatic archives, primarily the Dead Sea reconstructed lake level curve together with the recently extracted deep-lake sediment record, the Soreq Cave speleothem record and its counterpart, the EM marine sediment record and the Cairo Nilometer record of annual maximum summer flood levels in lower Egypt. The Dead Sea record is a primary indicator of the intensity of the EM cold-season storm activity while the Nilometer reflects the intensity of the late summer monsoon rains over Ethiopia. These two climate systems control the annual rainfall amounts and water availability in the two regional breadbaskets of old, in Mesopotamia and Egypt. The paleoclimate archives portray a variable MCA in both the Levant and the Ethiopian Highlands with an overall dry, early-medieval climate that turned wetter in the 12th century C.E. However, the paleoclimatic records are markedly punctuated by episodes of extreme aridity. In particular, the Dead Sea displays extreme low lake levels and significant salt deposits starting as early as the 9th century C.E. and ending in the late 11th century. The Nile summer flood levels were particularly low during the 10th and 11th centuries, as is also recorded in a large number of historical chronicles that described a large cluster of droughts that led to dire human strife associated with famine, pestilence and conflict. During that time droughts and cold spells also affected the northeastern Middle East, in Persia and Mesopotamia. Seeking an explanation for the pronounced aridity and human consequences across the entire EM, we note that the 10th–11th century events coincide with the medieval Oort Grand Solar Minimum, which came at the height of an interval of relatively high solar irradiance. Bringing together other tropical and Northern Hemisphere paleoclimatic evidence, we argue for the role of long-term variations in solar irradiance in shaping the early MCA in the EM and highlight their relevance to the present and near-term future. Full article
Show Figures

Figure 1

Back to TopTop