South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age
Abstract
:1. Introduction
A Note on MCA and LIA Conventions and Origins
2. Data and Methods
3. Results
3.1. Sea Surface Temperature Field
3.2. Horizontal Velocity Field and Volume Transports
3.2.1. LM-Mean Circulation Field
3.2.2. MCA and LIA Anomalous Circulation Field
3.3. Wind Stress Curl Field
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LM | Last Millennium |
MCA | Medieval Climate Anomaly |
LIA | Little Ice Age |
CESM-LME | Community Earth System Model Last Millennium Ensemble (experiment) |
SAO | South Atlantic Ocean |
SA | South America (coast) |
SASG | South Atlantic Subtropical Gyre |
SEC | South Equatorial Current |
cSEC | central branch of the SEC |
eSEC | equatorial branch of the SEC |
sSEC | southern branch of the SEC |
SBL | sSEC bifurcation latitude |
NBUC | North Brazil Undercurrent |
NBC | North Brazil Current |
BC | Brazil Current |
SAC | South Atlantic Current |
EUC | Equatorial Undercurrent |
SEUC | South Equatorial Undercurrent |
SECC | South Equatorial Countercurrent |
MOC | Meridional Overturning Circulation |
AMOC | Atlantic MOC |
SST | sea surface temperature |
VVEL | meridional velocities |
UVEL | zonal velocities |
WBC | western boundary current |
WSC | wind stress curl |
ITCZ | Intertropical Convergence Zone |
Sv | Sverdrups |
References
- Garzoli, S.; Matano, R. The South Atlantic and the Atlantic meridional overturning circulation. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1837–1847. [Google Scholar] [CrossRef]
- Rintoul, S.R. South Atlantic interbasin exchange. J. Geophys. Res. Oceans 1991, 96, 2675–2692. [Google Scholar] [CrossRef]
- Gordon, A.L. Indian-Atlantic transfer of thermocline water at the Agulhas retroflection. Science 1985, 227, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Talley, L.D. Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget. J. Phys. Oceanogr. 2003, 33, 530–560. [Google Scholar] [CrossRef]
- Ganachaud, A. Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Lumpkin, R.; Speer, K. Large-Scale Vertical and Horizontal Circulation in the North Atlantic Ocean. J. Phys. Oceanogr. 2003, 33, 1902–1920. [Google Scholar] [CrossRef]
- McCreary, J.P.; Lu, P. Interaction between the Subtropical and Equatorial Ocean Circulations: The Subtropical Cell. J. Phys. Oceanogr. 1994, 24, 466–497. [Google Scholar] [CrossRef]
- Malanotte-Rizzoli, P.; Hedstromb, K.; Arango, H.; Haidvogel, D.B. Water mass pathways between the subtropical and tropical ocean in a climatological simulation of the North Atlantic ocean circulation. Dyn. Atmos. Oceans 2000, 32, 331–371. [Google Scholar] [CrossRef]
- Zhang, D.; McPhaden, M.J.; Johns, W.E. Observational Evidence for Flow between the Subtropical and Tropical Atlantic: The Atlantic Subtropical Cells. J. Phys. Oceanogr. 2003, 33, 1783–1797. [Google Scholar] [CrossRef]
- Stramma, L.; England, M.H. On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res. Ocean. 1999, 104, 20863–20883. [Google Scholar] [CrossRef]
- Wienders, N.; Arhan, M.; Mercier, H. Circulation at the western boundary of the South and Equatorial Atlantic: Exchanges with the ocean interior. J. Mar. Res. 2000, 58, 1007–1039. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Rothstein, L.M.; Wimbush, M. Seasonal Variability of the South Equatorial Current Bifurcation in the Atlantic Ocean: A Numerical Study. J. Phys. Oceanogr. 2007, 37, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Marcello, F.; Wainer, I.; Rodrigues, R.R. South Atlantic Subtropical Gyre late twentieth century changes. J. Geophys. Res. Oceans 2018, 123. [Google Scholar] [CrossRef]
- Smeed, D.; Josey, S.; Beaulieu, C.; Johns, W.; Moat, B.; Frajka-Williams, E.; Rayner, D.; Meinen, C.; Baringer, M.; Bryden, H.; et al. The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett. 2018, 45, 1527–1533. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Schulz, M.; Abe-Ouchi, A.; Beer, J.; Ganopolski, A.; González Rouco, J.; Jansen, E.; Lambeck, K.; Luterbacher, J.; Naish, T.; et al. Information from paleoclimate archives. Clim. Chang. 2013. [Google Scholar] [CrossRef]
- Schmidt, G.A.; Shindell, D.T.; Tsigaridis, K. Reconciling warming trends. Nat. Geosci. 2014, 7, 158. [Google Scholar] [CrossRef]
- Atwood, A.; Wu, E.; Frierson, D.; Battisti, D.; Sachs, J. Quantifying climate forcings and feedbacks over the last millennium in the CMIP5–PMIP3 models. J. Clim. 2016, 29, 1161–1178. [Google Scholar] [CrossRef]
- Barnett, T.; Zwiers, F.; Hengerl, G.; Allen, M.; Crowly, T.; Gillett, N.; Hasselmann, K.; Jones, P.; Santer, B.; Schnur, R.; et al. Detecting and attributing external influences on the climate system: A review of recent advances. J. Clim. 2005, 18, 1291–1314. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256. [Google Scholar] [CrossRef]
- Jones, P.D.; Mann, M.E. Climate over past millennia. Rev. Geophys. 2004, 42, RG2002. [Google Scholar] [CrossRef]
- Bradley, R.S.; Briffa, K.R.; Cole, J.; Hughes, M.K.; Osborn, T.J. The climate of the last millennium. In Paleoclimate, Global Change and the Future; Springer: Cham, Switzerland, 2003; pp. 105–141. [Google Scholar]
- Diaz, H.F.; Trigo, R.; Hughes, M.K.; Mann, M.E.; Xoplaki, E.; Barriopedro, D. Spatial and temporal characteristics of climate in medieval times revisited. Bull. Am. Meteorol. Soc. 2011, 92, 1487–1500. [Google Scholar] [CrossRef]
- PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339. [Google Scholar] [CrossRef]
- IPCC Climate Change: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007.
- Fernández-Donado, J.; Raible, C.; Ammann, C.; Barriopedro, D.; Garcia-Bustamante, E.; Jungclaus, J.; Lorenz, S.; Luterbacher, J.; Phipps, S.; Servonnat, J.; et al. Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim. Past 2013, 9, 393–421. [Google Scholar] [CrossRef] [Green Version]
- Neukom, R.; Gergis, J.; Karoly, D.J.; Wanner, H.; Curran, M.; Elbert, J.; González-Rouco, F.; Linsley, B.K.; Moy, A.D.; Mundo, I.; et al. Inter-hemispheric temperature variability over the past millennium. Nat. Clim. Chang. 2014, 4, 362. [Google Scholar] [CrossRef]
- Le, T.; Sjolte, J.; Muscheler, R. The influence of external forcing on subdecadal variability of regional surface temperature in CMIP5 simulations of the last millennium. J. Geophys. Res. Atmos. 2016, 121, 1671–1682. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.H.; Mann, M.E.; Steinman, B.A.; Frankcombe, L.M.; England, M.H.; Miller, S.K. Comparison of low-frequency internal climate variability in CMIP5 models and observations. J. Clim. 2017, 30, 4763–4776. [Google Scholar] [CrossRef]
- Coats, S.; Smerdon, J.E. Climate variability: The Atlantic’s internal drum beat. Nat. Geosci. 2017, 10, 470. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Ljungqvist, F.C.; Luterbacher, J.; Osborn, T.J.; Briffa, K.R.; Zorita, E. Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years. Nat. Geosci. 2017, 10, 512. [Google Scholar] [CrossRef]
- Ljungqvist, F.C.; Zhang, Q.; Brattström, G.; Krusic, P.J.; Seim, A.; Li, Q.; Zhang, Q.; Moberg, A. Centennial-scale temperature change in last millennium simulations and proxy-based reconstructions. J. Clim. 2019, 32, 2441–2482. [Google Scholar] [CrossRef]
- Graham, N.; Ammann, C.; Fleitmann, D.; Cobb, K.; Luterbacher, J. Support for global climate reorganization during the Medieval Climate Anomaly. Clim. Dyn. 2011, 37, 1217–1245. [Google Scholar] [CrossRef]
- Crowley, T.J. Causes of climate change over the past 1000 years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influences on climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Branstator, G.; Van Loon, H. A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Clim. 2008, 21, 2883–2897. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Matthes, K.; Sassi, F.; van Loon, H. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 2009, 325, 1114–1118. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Schneider, D.P.; McKay, N.P.; Ammann, C.M.; Bradley, R.S.; Briffa, K.R.; Miller, G.H.; Otto-Bliesner, B.L.; Overpeck, J.T.; Vinther, B.M.; et al. Recent warming reverses long-term Arctic cooling. Science 2009, 325, 1236–1239. [Google Scholar] [CrossRef]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Chamarro, E.; Zanchettin, D.; Lohmann, K.; Luterbacher, J.; Jungclaus, J.H. Winter amplification of the European Little Ice Age cooling by the subpolar gyre. Sci. Rep. 2017, 7, 9981. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.A.; Jungclaus, J.; Ammann, C.; Bard, E.; Braconnot, P.; Crowley, T.; Delaygue, G.; Joos, F.; Krivova, N.; Muscheler, R.; et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1. 0). Geosci. Model Dev. 2011, 4, 33–45. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate variability and change since 850 C.E.: An ensemble approach with the Community Earth System Model (CESM). Bull. Am. Meteorol. Soc. 2015, 97, 787–801. [Google Scholar] [CrossRef]
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef]
- Trouet, V.; Scourse, J.; Raible, C. North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Glob. Planet. Chang. 2012, 84, 48–55. [Google Scholar] [CrossRef]
- Lund, D.C.; Lynch-Stieglitz, J.; Curry, W.B. Gulf Stream density structure and transport during the past millennium. Nature 2006, 444, 601. [Google Scholar] [CrossRef]
- Neukom, R.; Luterbacher, J.; Villalba, R.; Küttel, M.; Frank, D.; Jones, P.; Grosjean, M.; Wanner, H.; Aravena, J.C.; Black, D.; et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim. Dyn. 2011, 37, 35–51. [Google Scholar] [CrossRef]
- Landrum, L.; Otto-Bliesner, B.L.; Wahl, E.R.; Conley, A.; Lawrence, P.J.; Rosenbloom, N.; Teng, H. Last millennium climate and its variability in CCSM4. J. Clim. 2013, 26, 1085–1111. [Google Scholar] [CrossRef]
- Kay, J.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.; Bates, S.; Danabasoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Bates, S.C.; Briegleb, B.P.; Jayne, S.R.; Jochum, M.; Large, W.G.; Peacock, S.; Yeager, S.G. The CCSM4 ocean component. J. Clim. 2012, 25, 1361–1389. [Google Scholar] [CrossRef]
- Wainer, I.; Gent, P.R. Changes in the Atlantic Sector of the Southern Ocean estimated from the CESM Last Millennium Ensemble. Antarct. Sci. 2019, 31, 37–51. [Google Scholar] [CrossRef]
- Figueiredo Prado, L.; Wainer, I.; Leite da Silva Dias, P. Tropical Atlantic Response to Last Millennium Volcanic Forcing. Atmosphere 2018, 9, 421. [Google Scholar] [CrossRef]
- Abram, N.J.; McGregor, H.V.; Tierney, J.E.; Evans, M.N.; McKay, N.P.; Kaufman, D.S.; Thirumalai, K.; Martrat, B.; Goosse, H.; Phipps, S.J.; et al. Early onset of industrial-era warming across the oceans and continents. Nature 2016, 536, 411. [Google Scholar] [CrossRef]
- Huang, W.; Feng, S.; Liu, C.; Chen, J.; Chen, J.; Chen, F. Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model. Quat. Sci. Rev. 2018, 180, 42–56. [Google Scholar] [CrossRef]
- Stevenson, S.; Otto-Bliesner, B.; Fasullo, J.; Brady, E. “El Niño like” hydroclimate responses to last millennium volcanic eruptions. J. Clim. 2016, 29, 2907–2921. [Google Scholar] [CrossRef]
- Stevenson, S.; Overpeck, J.T.; Fasullo, J.; Coats, S.; Parsons, L.; Otto-Bliesner, B.; Ault, T.; Loope, G.; Cole, J. Climate variability, volcanic forcing, and last Millennium hydroclimate extremes. J. Clim. 2018, 31, 4309–4327. [Google Scholar] [CrossRef]
- Zambri, B.; LeGrande, A.N.; Robock, A.; Slawinska, J. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J. Geophys. Res. Atmos. 2017, 122, 7971–7989. [Google Scholar] [CrossRef]
- CESM–LME. Last Millennium Ensemble Publications. Available online: http://www.cesm.ucar.edu/projects/community-projects/LME/publications.html (accessed on 26 June 2019).
- Zhang, X.; Peng, S.; Ciais, P.; Wang, Y.P.; Silver, J.D.; Piao, S.; Rayner, P.J. Greenhouse gas concentration and volcanic eruptions controlled the variability of terrestrial carbon uptake over the last millennium. J. Adv. Model. Earth Syst. 2019. [Google Scholar] [CrossRef]
- Munoz, S.E.; Dee, S.G. El Niño increases the risk of lower Mississippi River flooding. Sci. Rep. 2017, 7, 1772. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.S.; Tomas, R.A.; Okumura, Y.M.; Alexander, M.A.; Capotondi, A.; Scott, J.D.; Kwon, Y.O.; Ohba, M. ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Clim. 2012, 25, 2622–2651. [Google Scholar] [CrossRef]
- Ault, T.; Deser, C.; Newman, M.; Emile-Geay, J. Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys. Res. Lett. 2013, 40, 3450–3456. [Google Scholar] [CrossRef]
- Cai, W. Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Peterson, R.G.; Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 1991, 26, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Stramma, L. Geostrophic transport of the South Equatorial Current in the Atlantic. J. Mar. Res. 1991, 49, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Stramma, L.; Schott, F. The mean flow field of the tropical Atlantic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 279–303. [Google Scholar] [CrossRef]
- Molinari, R.L. Observations of eastward currents in the tropical South Atlantic Ocean: 1978–1980. J. Geophys. Res. Oceans 1982, 87, 9707–9714. [Google Scholar] [CrossRef]
- Stommel, H. The westward intensification of wind-driven ocean currents. EOS Trans. Am. Geophys. Union 1948, 29, 202–206. [Google Scholar] [CrossRef]
- Schott, F.A.; Stramma, L.; Fischer, J. The warm water inflow into the western tropical Atlantic boundary regime, spring 1994. J. Geophys. Res. Oceans 1995, 100, 24745–24760. [Google Scholar] [CrossRef]
- Stramma, L.; Schott, F. Western Equatorial Circulation and Interhemispheric Exchange. In The Warmwatersphere of the North Atlantic Ocean; Krauss, W., Ed.; Gebrüder Borntraeger: Berlin, Stuttgart, 1996; pp. 195–227. [Google Scholar]
- Schott, F.A.; Fischer, J.; Stramma, L. Transports and pathways of the upper-layer circulation in the western tropical Atlantic. J. Phys. Oceanogr. 1998, 28, 1904–1928. [Google Scholar] [CrossRef]
- Goni, G.J.; Wainer, I. Investigation of the Brazil Current front variability from altimeter data. J. Geophys. Res. Oceans 2001, 106, 31117–31128. [Google Scholar] [CrossRef]
- Haug, G.H.; Hughen, K.A.; Sigman, D.M.; Peterson, L.C.; Röhl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 2001, 293, 1304–1308. [Google Scholar] [CrossRef]
- Lund, D.C.; Curry, W. Florida Current surface temperature and salinity variability during the last millennium. Paleoceanogr. Paleoclimatol. 2006, 21. [Google Scholar] [CrossRef]
- Vellinga, M.; Wood, R.A.; Gregory, J.M. Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J. Clim. 2002, 15, 764–780. [Google Scholar] [CrossRef]
- Vellinga, M.; Wu, P. Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J. Clim. 2004, 17, 4498–4511. [Google Scholar] [CrossRef]
- Keigwin, L.; Boyle, E. Detecting Holocene changes in thermohaline circulation. Proc. Natl. Acad. Sci. USA 2000, 97, 1343–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.M.; Held, I.M.; Frierson, D.M.; Zhao, M. The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Clim. 2008, 21, 3521–3532. [Google Scholar] [CrossRef]
- Hastenrath, S.; Greischar, L. Circulation mechanisms related to northeast Brazil rainfall anomalies. J. Geophys. Res. Atmos. 1993, 98, 5093–5102. [Google Scholar] [CrossRef]
- Srokosz, M.; Bryden, H. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 2015, 348, 1255575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 2015, 5, 475. [Google Scholar] [CrossRef]
- Thornalley, D.J.; Oppo, D.W.; Ortega, P.; Robson, J.I.; Brierley, C.M.; Davis, R.; Hall, I.R.; Moffa-Sanchez, P.; Rose, N.L.; Spooner, P.T.; et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 2018, 556, 227. [Google Scholar] [CrossRef] [PubMed]
- Juckes, M.N.; Allen, M.R.; Briffa, K.R.; Esper, J.; Hegerl, G.; Moberg, A.; Osborn, T.; Weber, S. Millennial temperature reconstruction intercomparison and evaluation. Clim. Past 2007, 3, 591–609. [Google Scholar] [CrossRef] [Green Version]
- Ljungqvist, F. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann. A 2010, 92, 339–351. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.; Hughes, M.K.; Bradley, R.S.; Miller, S.K.; Rutherford, S.; Ni, F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA 2008, 105, 13252–13257. [Google Scholar] [CrossRef] [Green Version]
- PAGES 2k-PMIP3 Group. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim. Past 2015, 11, 1673–1699. [Google Scholar] [CrossRef] [Green Version]
- Smerdon, J.; Pollack, H. Reconstructing Earth’s surface temperature over the past 2000 years: The science behind the headlines. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 746–771. [Google Scholar] [CrossRef]
- Buckley, M.W.; Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev. Geophys. 2016, 54, 5–63. [Google Scholar] [CrossRef] [Green Version]
Time Series | LM-Mean ± std | MCA-Anom. ± std | LIA-Anom. ± std |
---|---|---|---|
SBL at 25 m | 17.07 ± 0.09 S | +0.07 ± 0.04 S | −0.07± 0.05 S |
SBL at 100 m | 20.46 ± 0.04 S | +0.02 ± 0.02 S | −0.03± 0.03 S |
total sSEC (9.5–24.5 S) | 15.94 ± 0.06 Sv | +0.02 ± 0.05 Sv | −0.02 ± 0.05 Sv |
cSEC/eSEC (3.5–8.5 S) | 6.71 ± 0.09 Sv | −0.06 ± 0.05 Sv | +0.06 ± 0.07 Sv |
NBC across 1.5 S | 13.97 ± 0.05 Sv | −0.03 ± 0.02 Sv | +0.03 ± 0.04 Sv |
northern sSEC (9.5–15.5 S) | 8.76 ± 0.06 Sv | +0.03 ± 0.04 Sv | −0.03 ± 0.04 Sv |
NBUC across 6.5 S | 20.48 ± 0.07 Sv | +0.03 ± 0.06 Sv | −0.04 ± 0.05 Sv |
southern sSEC (16.5–19.5 S) | 3.94 ± 0.02 Sv | −0.01 ± 0.02 Sv | +0.01 ± 0.01 Sv |
BC across 22.5 S | 2.88 ± 0.04 Sv | −0.02 ± 0.02 Sv | +0.02 ± 0.02 Sv |
BC across 28.5 S | 5.12 ± 0.04 Sv | −0.01 ± 0.02 Sv | +0.02 ± 0.03 Sv |
Time Series | MCA-LM p-Value | LIA-LM p-Value |
---|---|---|
SBL at 25 m | 1.06 | 1.19 |
SBL at 100 m | 2.18 | 2.04 |
total sSEC (9.5–24.5 S) | 0.0992 | 0.0244 |
cSEC/eSEC (3.5–8.5 S) | 8.07 | 2.68 |
NBC across 1.5 S | 6.63 | 8.84 |
northern sSEC (9.5–15.5 S) | 0.0150 | 0.0043 |
NBUC across 6.5 S | 0.0076 | 1.63 |
southern sSEC (16.5–19.5 S) | 0.0448 | 0.0860 |
BC across 22.5 S | 0.0011 | 2.11 |
BC across 28.5 S | 0.0091 | 0.0014 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcello, F.; Wainer, I.; Gent, P.R.; Otto-Bliesner, B.L.; Brady, E.C. South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age. Geosciences 2019, 9, 299. https://doi.org/10.3390/geosciences9070299
Marcello F, Wainer I, Gent PR, Otto-Bliesner BL, Brady EC. South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age. Geosciences. 2019; 9(7):299. https://doi.org/10.3390/geosciences9070299
Chicago/Turabian StyleMarcello, Fernanda, Ilana Wainer, Peter R. Gent, Bette L. Otto-Bliesner, and Esther C. Brady. 2019. "South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age" Geosciences 9, no. 7: 299. https://doi.org/10.3390/geosciences9070299
APA StyleMarcello, F., Wainer, I., Gent, P. R., Otto-Bliesner, B. L., & Brady, E. C. (2019). South Atlantic Surface Boundary Current System during the Last Millennium in the CESM-LME: The Medieval Climate Anomaly and Little Ice Age. Geosciences, 9(7), 299. https://doi.org/10.3390/geosciences9070299