Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing
Abstract
:1. Introduction
2. Climatic Setting of the Southeastern EM
3. EM climate during the MCA
3.1. The Levant
3.2. The Nile Valley
3.3. The northeastern Middle East: Iraq and Iran
3.4. Summary of Evidence
4. Proposed Climate Mechanisms
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Issar, A.S.; Adar, E. Progressive development of water resources in the Middle East for sustainable water supply in a period of climate change. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2010, 368, 5339–5350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillel, D. Rivers of Eden. The Struggle for Water and the Quest for Peace in the Middle East; Oxford University Press: New York, NY, USA, 1994; 365p. [Google Scholar]
- Kaniewski, D.; Van Campo, E.; Paulissen, E.; Weiss, H.; Bakker, J.; Rossignol, I.; Van Lerberghe, K. The medieval climate anomaly and the little Ice Age in coastal Syria inferred from pollen-derived palaeoclimatic patterns. Glob. Planet. Change 2011, 78, 178–187. [Google Scholar] [CrossRef]
- Neugebauer, I.; Brauer, A.; Schwab, M.J.; Waldmann, N.D.; Enzel, Y.; Kitagawa, H.; Torfstein, A.; Frank, U.; Dulski, P.; Agnon, A.; et al. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quat. Sci. Rev. 2014, 102, 149–165. [Google Scholar] [CrossRef]
- Kiro, Y.; Goldstein, S.L.; Lazar, B.; Stein, M.J.B. Environmental implications of salt facies in the Dead Sea. GSA Bulletin 2016, 128, 824–841. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A. Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In Dev Paleoenviron Res; Battarbee, R.W., Gasse, F., Stickley, C.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 363–391. [Google Scholar]
- Schilman, B.; Ayalon, A.; Bar-Matthews, M.; Kagan, E.J.; Almogi-Labin, A. Sea-Land paleoclimate correlation in the Eastern Mediterranean region during the Late Holocene. Israel J Earth Sci 2002, 51, 181–190. [Google Scholar] [CrossRef]
- Popper, W. The Cairo nilometer: studies in Ibn Taghrî Birdî’s chronicles of Egypt: I; University of California Press: Berkeley, CA, USA, 1951; p. 269. [Google Scholar]
- De Putter, T.; Loutre, M.F.; Wansard, G. Decadal periodicities of Nile River historical discharge (AD 622-1470) and climatic implications. Geophys. Res. Lett. 1998, 25, 3193–3196. [Google Scholar] [CrossRef]
- Gasse, F.; Vidal, L.; Develle, A.L.; Van Campo, E. Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence. Clim. Past 2011, 7, 1261–1284. [Google Scholar] [CrossRef] [Green Version]
- Kaniewski, D.; Van Campo, E.; Weiss, H. Drought is a recurring challenge in the Middle East. Proc. Natl. Acad. Sci. USA 2012, 109, 3862–3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharraz, J.E.; El-Sadek, A.; Ghaffour, N.; Mino, E. Water scarcity and drought in WANA countries. Proc. Eng. 2012, 33, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.; Johns, T.; Krinner, G. Long-term Climate Change: Projections, Com-mitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Kelley, C.; Ting, M.F.; Seager, R.; Kushnir, Y. Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Kelley, C.; Ting, M.F.; Seager, R.; Kushnir, Y. The relative contributions of radiative forcing and internal climate variability to the late 20th Century winter drying of the Mediterranean region. Clim. Dyn. 2012, 38, 2001–2015. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 2060–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P. Water, Drought, Climate Change, and Conflict in Syria. Weather Clim. Soc. 2014. [Google Scholar] [CrossRef]
- Trigo, R.M.; Gouveia, C.M.; Barriopedro, D. The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. For. Meteorol. 2010, 150, 1245–1257. [Google Scholar] [CrossRef]
- Diaz, H.F.; Trigo, R.; Hughes, M.K.; Mann, M.E.; Xoplaki, E.; Barriopedro, D. Spatial and Temporal Characteristics of Climate in Medieval Times Revisited. Bull. Am. Meteorol. Soc. 2011, 92, 1487–1499. [Google Scholar] [CrossRef]
- Graham, N.E.; Ammann, C.M.; Fleitmann, D.; Cobb, K.M.; Luterbacher, J. Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim. Dyn. 2011, 37, 1217–1245. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate variability and change since 850 CE: An ensemble approach with the community earth system model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Ahmed, M.; Anchukaitis, K.J.; Asrat, A.; Borgaonkar, H.P.; Braida, M.; Buckley, B.M.; Büntgen, U.; Chase, B.M.; Christie, D.A.; Cook, E.R.; et al. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [Green Version]
- Xoplaki, E.; Luterbacher, J.; Wagner, S.; Zorita, E.; Fleitmann, D.; Preiser-Kapeller, J.; Sargent, A.M.; White, S.; Toreti, A.; Haldon, J.F. Modelling Climate and Societal Resilience in the Eastern Mediterranean in the Last Millennium. Hum. Ecol. 2018, 46, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.A. Extreme Nile floods and famines in Medieval Egypt (AD 930-1500) and their climatic implications. Quat. Int. 2007, 173, 101–112. [Google Scholar] [CrossRef]
- Migowski, C.; Stein, M.; Prasad, S.; Negendank, J.F.W.; Agnon, A. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat. Res. 2006, 66, 421–431. [Google Scholar] [CrossRef]
- Ellenblum, R. The Collapse of the Eastern Mediterranean Climate Change and the Decline of the East; Cambridge University Press: New York, NY, USA, 2012; p. 270. [Google Scholar]
- Bulliet, R.W. Cotton, Climate, and Camels in Early Islamic Iran: A Moment in World History; Columbia University Press: New York, NY, USA, 2011; p. 167. [Google Scholar]
- Preiser-Kapeller, J. A Collapse of the Eastern Mediterranean? New results and theories on the interplay between climate and societies in Byzantium and the Near East, ca. 1000-1200 AD. arXiv, 2017; arXiv:1705.04013. [Google Scholar]
- Enzel, Y.; Arnit, R.; Dayan, U.; Crouvi, O.; Kahana, R.; Ziv, B.; Sharon, D. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Glob. Planet Chang. 2008, 60, 165–192. [Google Scholar] [CrossRef]
- Kushnir, Y.; Dayan, U.; Ziv, B.; Morin, E.; Enzel, Y. Climate of the Levant: Phenomena and Mechanisms. In Quaternary of the Levant: Environments, Climate Change, and Humans; Enzel, Y., Bar-Yosef, O., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 31–44. [Google Scholar]
- Alpert, P.; Osetinsky, I.; Ziv, B.; Shafir, H. Semi-objective classification for daily synoptic systems: Application to the Eastern Mediterranean climate change. Int. J. Climatol. 2004, 24, 1001–1011. [Google Scholar] [CrossRef]
- Seager, R.; Liu, H.; Henderson, N.; Simpson, I.; Kelley, C.; Shaw, T.; Kushnir, Y.; Ting, M. Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Clim. 2014. [Google Scholar] [CrossRef]
- Ziv, B.; Dayan, U.; Kushnir, Y.; Roth, C.; Enzel, Y. Regional and global atmospheric patterns governing rainfall in the southern Levant. Int. J. Climatol. 2006, 26, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Eltahir, E.A.B. El Nino and the natural variability in the flow of the Nile river. Water Resour. Res. 1996, 32, 131–137. [Google Scholar] [CrossRef]
- Dünkeloh, A.; Jacobeit, J. Circulation dynamics of Mediterranean precipitation variability 1948-98. Int. J. Climatol. 2003, 23, 1843–1866. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union, Geophysical Monograph Series: Washington, DC, USA, 2003; Volume 134, pp. 1–35. [Google Scholar]
- Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030. [Google Scholar] [CrossRef]
- Pomposi, C.; Kushnir, Y.; Giannini, A. Moisture budget analysis of SST-driven decadal Sahel precipitation variability in the twentieth century. Clim. Dyn. 2015, 44, 3303–3321. [Google Scholar] [CrossRef]
- Biasutti, M.; Held, I.M.; Sobel, A.H.; Giannini, A. SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J. Clim. 2008, 21, 3471–3486. [Google Scholar] [CrossRef]
- Kushnir, Y.; Stein, M. North Atlantic influence on 19th-20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations. Quat. Sci. Rev. 2010, 29, 3843–3860. [Google Scholar] [CrossRef]
- Knight, J.R. The Atlantic Multidecadal Oscillation inferred from the forced climate response in coupled general circulation models. J. Clim. 2009, 22, 1610–1625. [Google Scholar] [CrossRef]
- Zhang, R.; Delworth, T.L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Denton, G.H.; Karlén, W. Holocene climatic variations—Their pattern and possible cause. Quat. Res. 1973, 3, 155–205. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Rohling, E.E.; Stager, J.C.; Karlen, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Bookman, R.; Enzel, Y.; Agnon, A.; Stein, M. Late Holocene lake levels of the Dead Sea. Geol. Soc. Am. Bull. 2004, 116, 555–571. [Google Scholar] [CrossRef]
- Enzel, Y.; Bookman, R.; Sharon, D.; Gvirtzman, H.; Dayan, U.; Ziv, B.; Stein, M. Late Holocene climates of the Near East deduced from Dead Sea level variations and modem regional winter rainfall. Quat. Res. 2003, 60, 263–273. [Google Scholar] [CrossRef]
- de Vries, A.; Tyrlis, E.; Edry, D.; Krichak, S.; Steil, B.; Lelieveld, J. Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. Atmos. 2013, 118, 7087–7108. [Google Scholar] [CrossRef] [Green Version]
- Kahana, R.; Ziv, B.; Enzel, Y.; Dayan, U. Synoptic climatology of major floods in the Negev Desert, Israel. Int. J. Climatol. 2002, 22, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Stern, O. Geochemistry, Hydrology and Paleo-Hydrology of Ein Qedem Spring System; Report GSI/17/2010; Geologocal Survey of Israel: Jerusalem, Israel, 2010; p. 91. (In Hebrew) [Google Scholar]
- Kiro, Y.; Goldstein, S.L.; Garcia-Veigas, J.; Levy, E.; Kushnir, Y.; Stein, M.; Lazar, B. Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean. Earth Planet. Sci. Lett. 2017, 464, 211–226. [Google Scholar] [CrossRef]
- Torfstein, A.; Goldstein, S.L.; Kushnir, Y.; Enzel, Y.; Haug, G.; Stein, M. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth Planet. Sci. Lett. 2015, 412, 235–244. [Google Scholar] [CrossRef]
- Kitagawa, H.; Stein, M.; Goldstein, S.L.; Nakamura, T.; Lazar, B.; Party, D.S. Radiocarbon Chronology of the Dsddp Core at the Deepest Floor of the Dead Sea. Radiocarbon 2017, 59, 383–394. [Google Scholar] [CrossRef]
- Schilman, B.; Almogi-Labin, A.; Bar-Matthews, M.; Labeyrie, L.; Paterne, M.; Luz, B. Long- and short-term carbon fluctuations in the Eastern Mediterranean during the late Holocene. Geology. 2001, 29, 1099–1102. [Google Scholar] [CrossRef]
- Schilman, B.; Bar-Matthews, M.; Almogi-Labin, A.; Luz, B. Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeogr. Palaeocl. 2001, 176, 157–176. [Google Scholar] [CrossRef]
- Kolodny, Y.; Stein, M.; Machlus, M. Sea-Rain-Lake relation in the Last Glacial East Mediterranean revealed by a delta O-18-delta C-13 in Lake Lisan aragonites. Geochim. Cosmochim. Ac. 2005, 69, 4045–4060. [Google Scholar] [CrossRef]
- Eltahir, E.A.B.; Wang, G. Nilometers, El Nino, and climate variability. Geophys. Res. Lett. 1999, 26, 489–492. [Google Scholar] [CrossRef]
- Hassan, F.A. Historical Nile floods and their implications for climatic change. Science 1981, 212, 1142–1145. [Google Scholar] [CrossRef]
- Kondrashov, D.; Feliks, Y.; Ghil, M. Oscillatory modes of extended Nile River records (AD 622–1922). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Toussoun, O. Mémoire sur l’histoire du Nil. Memoires de l’Institut d’Egypte 1925, 18, 366–404. [Google Scholar]
- Quinn, W.H. A study of Southern Oscillation-related climatic activity for AD 622–1900 incorporating Nile River flood data. In El Nino and the Southern Oscillation; Markgraf, H.F.D.a.V., Ed.; Cambridge University Press: Cambridge, UK, 1992; pp. 119–149. [Google Scholar]
- Steinhilber, F.; Beer, J.; Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 2009, 36, L19704. [Google Scholar] [CrossRef]
- Delaygue, G.; Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim. Dyn. 2011, 36, 2201–2218. [Google Scholar] [CrossRef]
- Vieira, L.E.A.; Solanki, S.K.; Krivova, N.A.; Usoskin, I.J.A. Evolution of the solar irradiance during the Holocene. Astron. Astrophys. 2011, 531, A6. [Google Scholar] [CrossRef]
- Cook, E.R.; Woodhouse, C.A.; Eakin, C.M.; Meko, D.M.; Stahle, D.W. Long-term aridity changes in the western United States. Science 2004, 306, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Castro, F.; Vaquero, J.M.; Marín, M.; Gallego, M.C.; García-Herrera, R. How useful could Arabic documentary sources be for reconstructing past climate? Weather 2012, 67, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Briffa, K.R.; Osborn, T.J.; Lough, J.M.; van Ommen, T.D.; Vinther, B.M.; Luterbacher, J.; Wahl, E.R.; Zwiers, F.W.; Mann, M.E.; et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene 2009, 19, 3–49. [Google Scholar] [CrossRef]
- Litt, T.; Ohlwein, C.; Neumann, F.H.; Hense, A.; Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quaternary Sci Rev 2012, 49, 95–105. [Google Scholar] [CrossRef]
- Sorrel, P.; Popescu, S.M.; Klotz, S.; Suc, J.P.; Oberhansli, H. Climate variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes. Quat. Res. 2007, 67, 357–370. [Google Scholar] [CrossRef]
- Xoplaki, E.; Fleitmann, D.; Luterbacher, J.; Wagner, S.; Haldon, J.F.; Zorita, E.; Telelis, I.; Toreti, A.; Izdebski, A. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change. Quat. Sci. Rev. 2016, 136, 229–252. [Google Scholar] [CrossRef]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar Influences on Climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Lean, J.L. Cycles and trends in solar irradiance and climate. WIREs Clim. Chang. 2010, 1, 111–122. [Google Scholar] [CrossRef]
- Waple, A.M.; Mann, M.E.; Bradley, R.S. Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions. Clim. Dyn. 2002, 18, 563–578. [Google Scholar] [CrossRef]
- Thiéblemont, R.; Matthes, K.; Omrani, N.-E.; Kodera, K.; Hansen, F. Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Commun. 2015, 6, 8268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitenmoser, P.; Beer, J.; Broennimann, S.; Frank, D.; Steinhilber, F.; Wanner, H. Solar and volcanic fingerprints in tree-ring chronologies over the past 2000years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 313, 127–139. [Google Scholar] [CrossRef]
- Solanki, S.K.; Usoskin, I.G.; Kromer, B.; Schüssler, M.; Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 2004, 431, 1084–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usoskin, I.; Solanki, S.; Kovaltsov, G. Grand minima and maxima of solar activity: New observational constraints. Astron. Astrophys. 2007, 471, 301–309. [Google Scholar] [CrossRef]
- Ruzmaikin, A.; Feynman, J.; Yung, Y.L. Is solar variability reflected in the Nile River? J. Geophys. Res.-Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Arblaster, J.M.; Branstator, G.; van Loon, H. A coupled air-sea response mechanism to solar forcing in the Pacific region. J. Clim. 2008, 21, 2883–2897. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Matthes, K.; Sassi, F.; van Loon, H. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 2009, 325, 1114–1118. [Google Scholar] [CrossRef]
- van Loon, H.; Meehl, G.A.; Shea, D.J. Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res. 2007, 112, D02108. [Google Scholar] [CrossRef]
- Mann, M.E.; Cane, M.A.; Zebiak, S.E.; Clement, A. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Clim. 2005, 18, 447–456. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Sobel, A.H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Clim. 2002, 15, 2616–2631. [Google Scholar] [CrossRef]
- Pomposi, C.; Giannini, A.; Kushnir, Y.; Lee, D.E. Understanding Pacific Ocean influence on interannual precipitation variability in the Sahel. Geophys. Res. Lett. 2016, 43, 9234–9242. [Google Scholar] [CrossRef]
- Giannini, A.; Biasutti, M.; Held, I.M.; Sobel, A.H. A global perspective on African climate. Clim. Chang. 2008, 90, 359–383. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.-P.; Cook, E.R.; Huang, G.; D’Arrigo, R.; Liu, F.; Ma, J.; Zheng, X.-T. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Chang. 2011, 1, 114. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth-Science Reviews 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Heim, R.R.; Vose, R.S.; Herweijer, C.; Woodhouse, C. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 2010, 25, 48–61. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Herweijer, C.; Naik, N.; Velez, J. Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856-2000. J. Clim. 2005, 18, 4065–4088. [Google Scholar] [CrossRef]
- Haug, G.H.; Hughen, K.A.; Sigman, D.M.; Peterson, L.C.; Rohl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 2001, 293, 1304–1308. [Google Scholar] [CrossRef]
- Haug, G.H.; Günther, D.; Peterson, L.C.; Sigman, D.M.; Hughen, K.A.; Aeschlimann, B. Climate and the Collapse of Maya Civilization. Science 2003, 299, 1731–1735. [Google Scholar] [CrossRef]
- Giannini, A.; Kushnir, Y.; Cane, M.A. Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Clim. 2000, 13, 297–311. [Google Scholar] [CrossRef]
- Kushnir, Y.; Seager, R.; Ting, M.; Naik, N.; Nakamura, J. Mechanisms of Tropical Atlantic SST Influence on North American Precipitation Variability. J. Clim. 2010, 23, 5610–5628. [Google Scholar] [CrossRef]
- Ineson, S.; Scaife, A.A.; Knight, J.R.; Manners, J.C.; Dunstone, N.J.; Gray, L.J.; Haigh, J.D. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci. 2011, 4, 753–757. [Google Scholar] [CrossRef] [Green Version]
- Woollings, T.; Lockwood, M.; Masato, G.; Bell, C.; Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on north Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef]
- Lockwood, M.; Rouillard, A.P.; Finch, I.D. The Rise and Fall of Open Solar Flux During the Current Grand Solar Maximum. Astrophys. J. 2009, 700, 937. [Google Scholar] [CrossRef]
- Lockwood, M. Reconstruction and Prediction of Variations in the Open Solar Magnetic Flux and Interplanetary Conditions. Living Rev. Sol. Phys. 2013, 10, 4. [Google Scholar] [CrossRef]
- Anet, J.G.; Rozanov, E.V.; Muthers, S.; Peter, T.; Brönnimann, S.; Arfeuille, F.; Beer, J.; Shapiro, A.I.; Raible, C.C.; Steinhilber, F.; et al. Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophys. Res. Lett. 2013, 40, 4420–4425. [Google Scholar] [CrossRef] [Green Version]
- Ineson, S.; Maycock, A.C.; Gray, L.J.; Scaife, A.A.; Dunstone, N.J.; Harder, J.W.; Knight, J.R.; Lockwood, M.; Manners, J.C.; Wood, R.A. Regional climate impacts of a possible future grand solar minimum. Nat. Commun. 2015, 6, 7535. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, M.; Harrison, R.G.; Owens, M.J.; Barnard, L.; Woollings, T.; Steinhilber, F. The solar influence on the probability of relatively cold UK winters in the future. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Martin-Puertas, C.; Matthes, K.; Brauer, A.; Muscheler, R.; Hansen, F.; Petrick, C.; Aldahan, A.; Possnert, G.; van Geel, B. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 2012, 5, 397–401. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Marsh, D.R. Could a future “solar minimum” like the Maunder minimum stop global warming? Geophys. Res. Lett. 2013, 40. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushnir, Y.; Stein, M. Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing. Atmosphere 2019, 10, 29. https://doi.org/10.3390/atmos10010029
Kushnir Y, Stein M. Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing. Atmosphere. 2019; 10(1):29. https://doi.org/10.3390/atmos10010029
Chicago/Turabian StyleKushnir, Yochanan, and Mordechai Stein. 2019. "Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing" Atmosphere 10, no. 1: 29. https://doi.org/10.3390/atmos10010029
APA StyleKushnir, Y., & Stein, M. (2019). Medieval Climate in the Eastern Mediterranean: Instability and Evidence of Solar Forcing. Atmosphere, 10(1), 29. https://doi.org/10.3390/atmos10010029