Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = MU Us Sandy Land

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2696 KiB  
Article
Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land
by Chunjun Shi, Yao Yao, Yuyi Gao and Jingpeng Guo
Diversity 2025, 17(8), 516; https://doi.org/10.3390/d17080516 - 26 Jul 2025
Viewed by 270
Abstract
Exploring the evolution of ecosystem services value (ESV) and its drivers is pivotal for optimizing the land-use structure and improving the value of ecosystem services. Using the 1980–2020 land-use/land-cover (LULC) dataset of the Mu Us Sandy Land, this study quantitatively evaluated ESV through [...] Read more.
Exploring the evolution of ecosystem services value (ESV) and its drivers is pivotal for optimizing the land-use structure and improving the value of ecosystem services. Using the 1980–2020 land-use/land-cover (LULC) dataset of the Mu Us Sandy Land, this study quantitatively evaluated ESV through LULC change, analyzing the spatiotemporal evolution characteristics of ESV and its driving forces. The results showed that (1) the LULC changes were stable from 1980 to 2020, and the ESV showed a slight downward trend in general. Grassland and water ecosystem services predominantly influenced ecosystem service function value fluctuations across the study area. (2) ESV demonstrated strong positive spatial autocorrelation, with high-value areas concentrated primarily in Red Alkali Nur, Dawa Nur, Batu Bay, and Ulanmulun Lake and low-value areas mainly distributed in unused land and certain agricultural zones. (3) The land-use degree and human activity intensity index were the main factors leading to the differentiation of ESV. The synergistic effects of human activities, landscape pattern changes, and natural factors led to the spatial differentiation of ESV in the study area. Beyond artificial ecological restoration projects, policies for ecosystem service management should pay more attention to the role of geodiversity in service provision. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

20 pages, 4860 KiB  
Article
Effects of Micro-Topography on Soil Nutrients and Plant Diversity of Artificial Shrub Forest in the Mu Us Sandy Land
by Kai Zhao, Long Hai, Fucang Qin, Lei Liu, Guangyu Hong, Zihao Li, Long Li, Yongjie Yue, Xiaoyu Dong, Rong He and Dongming Shi
Plants 2025, 14(14), 2163; https://doi.org/10.3390/plants14142163 - 14 Jul 2025
Viewed by 326
Abstract
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and [...] Read more.
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and vegetation degradation, demanding precise vegetation configuration for ecological rehabilitation. This study analyzed soil nutrients, plant diversity, and their correlations under various micro-topographic conditions across different types of artificial shrub plantations in the Mu Us Sandy Land. Employing one-way and two-way ANOVA, we compared the significant differences in soil nutrients and plant diversity indices among different micro-topographic conditions and shrub species. Additionally, redundancy analysis (RDA) was conducted to explore the direct and indirect relationships between micro-topography, shrub species, soil nutrients, and plant diversity. The results show the following: 1. The interdune depressions have the highest plant diversity and optimal soil nutrients, with relatively suitable pH values; the windward slopes and slope tops, due to severe wind erosion, have poor soil nutrients, high pH values, and the lowest plant diversity. Both micro-topography and vegetation can significantly affect soil nutrients and plant diversity (p < 0.05), and vegetation has a greater impact on soil nutrients. 2. The correlation between surface soil nutrients and plant diversity is the strongest, and the correlation weakens with increasing soil depth; under different micro-topographic conditions, the influence of soil nutrients on plant diversity varies. 3. In sandy land ecological restoration, a “vegetation type + terrain matching” strategy should be implemented, combining the characteristics of micro-topography and the ecological functions of shrubs for precise configuration, such as planting Corethrodendron fruticosum on windward slopes and slope tops to rapidly replenish nutrients, promoting Salix psammophila and mixed plantation in interdune depressions and leeward slopes to accumulate organic matter, and prioritizing Amorpha fruticosa in areas requiring soil pH adjustment. This study provides a scientific basis and management insights for the ecological restoration and vegetation configuration of the Mu Us Sandy Land. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

18 pages, 10178 KiB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 376
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

26 pages, 7751 KiB  
Article
Twenty-Year Variability in Water Use Efficiency over the Farming–Pastoral Ecotone of Northern China: Driving Force and Resilience to Drought
by Xiaonan Guo, Meng Wu, Zhijun Shen, Guofei Shang, Qingtao Ma, Hongyu Li, Lei He and Zhao-Liang Li
Agriculture 2025, 15(11), 1164; https://doi.org/10.3390/agriculture15111164 - 28 May 2025
Viewed by 462
Abstract
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water [...] Read more.
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water scarcity, has long been recognized as an ecologically fragile zone. The ecological restoration projects in China have mitigated land degradation and maintain the sustainability of dryland. However, the process of greening in drylands has the potential to impact water availability. A comprehensive analysis of the WUE in the FPENC can help to understand the carbon absorption and water consumption. Using gross primary production (GPP) and evapotranspiration (ET) data from a MODerate resolution Imaging Spectroradiometer (MODIS), alongside biophysical variables data and land cover information, the spatio-temporal variations in WUE from 2003 to 2022 were examined. Additionally, its driving force and the ecosystem resilience were also revealed. Results indicated that the annual mean of WUE fluctuated between 0.52 and 2.60 gC kgH2O−1, showing a non-significant decreasing trend across the FPENC. Notably, the annual averaged WUE underwent a significant decline before 2012 (p < 0.05), and then showed a slight increased trend (p = 0.14) during the year afterward (i.e., 2013–2022). In terms of climatic controls, temperature (Temp) and soil volumetric water content (VSWC) dominantly affected WUE from 2003 to 2012; VPD (vapor pressure deficit), VSWC, and Temp showed comprehensive controls from 2013 to 2022. The findings suggest that a wetter atmosphere and increased soil moisture contribute to the decline in WUE. In total, 59.2% of FPENC was shown to be non-resilient, as grassland occupy the majority of the area, located in Mu Us Sandy land and Horqin Sand Land. These results underscore the importance of climatic factors in the regulation WUE over FPENC and highlight the necessity for focused research on WUE responses to climate change, particularly extreme events like droughts, in the future. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 1749 KiB  
Article
Effects of Litter Input on Soil Enzyme Activities and Their Stoichiometric Ratios in Sandy Soil
by Haiyan Gao, Shengnan Zhang, Zhiguo Yang, Hongbin Xu, Haiguang Huang, Chunying Wang and Lei Zhang
Agronomy 2025, 15(5), 1152; https://doi.org/10.3390/agronomy15051152 - 8 May 2025
Viewed by 578
Abstract
Litter serves as a crucial source of soil nutrients in sandy land ecosystems. Soil enzyme activities and their stoichiometric ratios act as essential “bridges” linking microbial metabolism with nutrient cycling, thereby reflecting the availability of soil nutrients and the sensitivity to microbial substrate [...] Read more.
Litter serves as a crucial source of soil nutrients in sandy land ecosystems. Soil enzyme activities and their stoichiometric ratios act as essential “bridges” linking microbial metabolism with nutrient cycling, thereby reflecting the availability of soil nutrients and the sensitivity to microbial substrate limitations. To investigate the effects of litter quality changes on soil nutrients, enzyme activities, and stoichiometric ratios in sandy land, leaf litter and surface soil were collected from four sand-fixing forests in the Mu Us Sandy Land, including YC (Corethrodendron fruticosum), NT (Caragana korshinskii), ZSH (Amorpha fruticose), and SL (Salix cheilophila). These samples were then used for indoor cultivation. Experiments with these four leaf litter types were carried out; one treatment with no litter added served as the control. Our aim was to systematically study the changing characteristics of enzyme activities related to soil carbon, nitrogen, and phosphorus with different litter inputs. The results indicate the following: (1) Compared to the control treatment with no litter added (CK), the addition of all four types of litter significantly increased soil organic carbon, total nitrogen, and alkaline nitrogen contents. The addition of NT and YC litter significantly increased dissolved organic carbon, microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN). (2) The addition of the four types of litter had different effects on the soil enzyme activity, showing increasing trends overall. A chemical analysis of the enzyme activity revealed that the soil was limited in nitrogen and phosphorus. After the addition of the ZSH, NT, and YC litter, the enzymatic C/P acquisition ratio (EC/P) and enzymatic N/P acquisition ratio (EN/P) decreased significantly, alleviating the limitation of phosphorus. After the addition of the NT litter, the enzymatic C/N acquisition ratio (EC/N) increased significantly, alleviating the limitation of soil nitrogen. (3) A correlation analysis showed that the soil nutrients had varying degrees of correlation with enzyme activity and their stoichiometric ratio. The redundancy analysis results show that MBN, TN, MBC/MBN, organic carbon, and available nitrogen were key factors influencing soil enzyme activity and stoichiometric ratios. These results provide a reference for nutrient cycling during sandy soil restoration, and they provide essential data support for the development of fragile ecosystem models in the context of global change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 8099 KiB  
Article
Soil Microbial Communities and Their Relationship with Soil Nutrients in Different Density Pinus sylvestris var. mongolica Plantations in the Mu Us Sandy Land
by Long Hai, Mei Zhou, Kai Zhao, Guangyu Hong, Zihao Li, Lei Liu, Xiaowei Gao, Zhuofan Li and Fengzi Li
Forests 2025, 16(3), 547; https://doi.org/10.3390/f16030547 - 19 Mar 2025
Cited by 1 | Viewed by 482
Abstract
In the Mu Us Sandy Land, vegetation is closely related to soil microorganisms and nutrients. However, research on the relationship between soil microbial communities and nutrients in Pinus sylvestris var. mongolica plantations of different densities is still imperfect. This study selected Pinus sylvestris [...] Read more.
In the Mu Us Sandy Land, vegetation is closely related to soil microorganisms and nutrients. However, research on the relationship between soil microbial communities and nutrients in Pinus sylvestris var. mongolica plantations of different densities is still imperfect. This study selected Pinus sylvestris var. mongolica plantations with high, medium, and low densities, as well as bare sandy land, to analyze the relationship between vegetation density and soil nutrients, microbial community structure, and diversity indices. The results show that the following: (1) Medium-density plantations significantly increased soil organic matter, total nitrogen, and total potassium content, which were 4.3 times that of bare sandy land and 1.7 times that of high-density plantations; (2) In high-density plantations, the relative abundance of bacterial phyla Actinobacteriota and fungal phylum Ascomycota was higher; as plantation density decreased, the relative abundance of bacterial phyla Proteobacteria and Acidobacteriota and fungal phylum Basidiomycota increased, with different density plantations significantly affecting soil microbial community structure; (3) High-density plantations significantly increased the abundance of bacterial and fungal genera but also reduced bacterial diversity indices, while medium-density plantations were outstanding in enhancing fungal species richness and diversity, with the highest fungal Shannon index, indicating that medium density is conducive to fungal diversity enhancement; (4) Soil organic matter, total nitrogen, total phosphorus, total potassium, and pH value were the main environmental factors affecting soil microbial community structure. High-density plantations significantly affected soil microbial community structure by changing these soil nutrients and physicochemical properties, especially related to changes in total potassium and pH value. This study clarified the effects of Pinus sylvestris var. mongolica plantation density on soil nutrients and microbial community structure, revealing the intrinsic connection between soil nutrients and microbial communities, providing a theoretical basis for vegetation restoration in the Mu Us Sandy Land ecosystem, and helping to formulate scientific management strategies for Pinus sylvestris var. mongolica plantations to improve sandy land soil quality and promote the sustainable development of sandy land ecosystems. Full article
Show Figures

Figure 1

9 pages, 4576 KiB  
Proceeding Paper
Spatial–Temporal Evolution of Land Desertification Sensitivity in Mu Us Desert Ecological Function Reserve
by Yahao Wu, Xianglei Liu, Runjie Wang, Ming Huang and Liang Huo
Proceedings 2024, 110(1), 31; https://doi.org/10.3390/proceedings2024110031 - 13 Feb 2025
Viewed by 465
Abstract
Land desertification management in the Mu Us Desert has received widespread attention. Assessing land desertification sensitivity is crucial for desertification monitoring and management. This study constructed a comprehensive evaluation index system using four factors: dryness index, the number of windy and sandy days [...] Read more.
Land desertification management in the Mu Us Desert has received widespread attention. Assessing land desertification sensitivity is crucial for desertification monitoring and management. This study constructed a comprehensive evaluation index system using four factors: dryness index, the number of windy and sandy days in the winter and spring, soil texture, and vegetation cover. Land sand sensitivity was divided into five grades, and multi-source data from the Ecological Functional Reserve of the Mu Us Desert from 2002 to 2022 were used to study spatial distribution and dynamic changes. The results show the following: (1) the overall land desertification sensitivity in the Mu Us Desert Ecological Functional Reserve decreased from 2002 to 2022, with the proportion of highly sensitive land decreasing from 92.39% to 82.75%, and the proportion of medium-, medium–low-, and low-sensitivity areas increasing from 0.63% to 1.70%. (2) Low-sensitivity areas were concentrated in Jingbian County, Hengshan District, and southern Uxin Banner. Southeast Otog Banner and northern Jingbian County saw the most significant decreases in land desertification sensitivity since 2002. (3) The four selected factors interacted, with increased vegetation cover being the most crucial factor. This study provides a reference for future ecological restoration in the Mu Us Desert area. Full article
(This article belongs to the Proceedings of The 31st International Conference on Geoinformatics)
Show Figures

Figure 1

15 pages, 2630 KiB  
Article
Analysis of Soil Moisture Dynamics and Its Response to Rainfall in the Mu Us Sandy Land
by Bin Ran, Zhenguo Xing, Jie Fang, Yingming Yang, Yunlan He, Xuejia Li, Xiaoqing Liu and Gang Liu
Water 2025, 17(1), 105; https://doi.org/10.3390/w17010105 - 2 Jan 2025
Cited by 1 | Viewed by 1306
Abstract
Soil moisture is key in maintaining surface energy balance and the hydrological cycle. However, the patterns of soil moisture change at different altitudes and their response to rainfall are not fully understood. The aim of this study is to analyze the changes in [...] Read more.
Soil moisture is key in maintaining surface energy balance and the hydrological cycle. However, the patterns of soil moisture change at different altitudes and their response to rainfall are not fully understood. The aim of this study is to analyze the changes in soil moisture at different altitudes in the Mu Us Sandy Land, assess the soil moisture response to various rainfall events, and evaluate the factors affecting this response. To achieve this, we set up two soil moisture and precipitation monitoring systems in the Ejin Horo Banner, located at the northern edge of the Mu Us Sandy Land. Results show that the annual precipitation at the site was 342.6 mm, with most rain falling between July and September. The region experiences soil drought from June to October. At the lower X1 test site, the increase in soil moisture in the 0–90 cm layer during rainfall was greater than the amount of precipitation, suggesting that lateral water flow from higher areas influences soil moisture at lower positions. This study used Grey Relational Analysis to identify the key factors influencing soil moisture changes; the result showed that the initial soil moisture and total precipitation have the strongest correlation with changes in soil moisture, making them the main factors controlling soil moisture response at the site. These findings enhance our understanding of soil moisture dynamics and provide a foundation for vegetation restoration in semi-arid sandy areas and ecosystem rehabilitation. Full article
Show Figures

Figure 1

22 pages, 10303 KiB  
Article
Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land
by Qin Gao, Xiaohong Dang, Zhongju Meng, Yang Liu, Jiale Lou, Yu Yan and Xing Zhang
Plants 2024, 13(23), 3261; https://doi.org/10.3390/plants13233261 - 21 Nov 2024
Viewed by 1117
Abstract
Water resources are crucial factors that limit vegetation recovery, and rational planning of silvicultural patterns is essential for the efficient utilization of water in arid and semi-arid regions. This study examined the water utilization strategies of pure shrubs (pure stands of Artemisia ordosica [...] Read more.
Water resources are crucial factors that limit vegetation recovery, and rational planning of silvicultural patterns is essential for the efficient utilization of water in arid and semi-arid regions. This study examined the water utilization strategies of pure shrubs (pure stands of Artemisia ordosica and pure stands of Salix psammophila) and mixed shrubs (mixed stands of A. ordosica S. psammophila, and mixed stands of A. ordosica Caragana korshinskii) from the rainy to dry seasons using stable isotope techniques and MixSIAR modeling in the Mu Us Sandy Land in the semi-arid region of China. Mixed shrubs were significantly more effective than pure shrubs in utilizing the primary water sypply from the soil layer. During the rainy season in August, shallow soil water was used to a greater extent, contributing 33.78 ± 2.18%, with no significant difference in the contribution proportion. After a brief drought during the transition period in September, there was a significant increase in the use of the primary water-absorbing soil layer across all vegetation types, with a maximum increase of 39.53%. Conversely, during the dry season in October, after an extended drought, the contribution of the primary water supply layer to vegetation water absorption decreased compared with the transition period, with a maximum increase of only 17.88%. The results of this study revealed that variations in water conditions and vegetation configurations influence the water utilization patterns of the vegetation. This study offers a scientific basis and theoretical support for understanding ecological water use, the rationale behind vegetation establishment, and an assessment of plantation community stability in sandy regions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

27 pages, 28751 KiB  
Article
Assessment of Soil Moisture in Vegetation Regions of Mu Us Sandy Land Using Several Aridity Indicators
by Jie Ren, Hexiang Zheng, Jun Wang, Changfu Tong, Delong Tian, Haiyuan Lu and Dong Liang
Atmosphere 2024, 15(11), 1329; https://doi.org/10.3390/atmos15111329 - 5 Nov 2024
Viewed by 1244
Abstract
Drought, a significant calamity in the natural domain, has extensive worldwide repercussions. Drought, primarily characterized by reduced soil moisture (SM), presents a significant risk to both the world environment and human existence. Various drought indicators have been suggested to accurately represent the changing [...] Read more.
Drought, a significant calamity in the natural domain, has extensive worldwide repercussions. Drought, primarily characterized by reduced soil moisture (SM), presents a significant risk to both the world environment and human existence. Various drought indicators have been suggested to accurately represent the changing pattern of SM. The study examines various indices related to the Drought Severity Index (DSI), Evaporation Stress Index(ESI), Vegetation Supply Water Index(VSWI), Temperature-Vegetation Dryness Index(TVDI), Temperature Vegetation Precipitation Dryness Index(TVPDI), Vegetation Health Index(VHI), and Temperature Condition Index (TCI). An evaluation was conducted to assess the effectiveness of seven drought indicators, such as DSI, ESI, TVPDI, VSWI, etc., in capturing the changes in SM in Mu Us Sandy Land. The research results indicated that DSI and ESI had the highest accuracy, while TVDI and VSWI showed relatively lower accuracy. However, their smaller fluctuations in the time series demonstrated stronger adaptability to different regions. Additionally, the delayed impact of aridity indices on soil moisture, variable attributes, temperature, and vegetation coverage in sandy land and grassland areas with low, medium, and high coverage all contributed to the effectiveness of the four aridity indices (DSI, ESI, VSWI, and TVPDI) in capturing the dynamics of soil moisture. The primary element that affects the effectiveness of TVDI is the divergence of the relationship curve between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which is a kind of deterioration. This paper presents a very efficient approach for monitoring soil moisture dynamics in dry and semi-arid regions. It also analyzes the patterns of soil moisture changes, offering valuable scientific insights for environmental monitoring and ecological enhancement. Full article
(This article belongs to the Special Issue Drought Impacts on Agriculture and Mitigation Measures)
Show Figures

Figure 1

22 pages, 13791 KiB  
Article
A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm
by Changfu Tong, Hongfei Hou, Hexiang Zheng, Ying Wang and Jin Liu
Land 2024, 13(11), 1731; https://doi.org/10.3390/land13111731 - 22 Oct 2024
Cited by 1 | Viewed by 1004
Abstract
Vegetation plays a vital role in terrestrial ecosystems, and droughts driven by rising temperatures pose significant threats to vegetation health. This study investigates the evolution of vegetation drought from 2010 to 2024 and introduces a deep-learning-based forecasting model for analyzing regional spatial and [...] Read more.
Vegetation plays a vital role in terrestrial ecosystems, and droughts driven by rising temperatures pose significant threats to vegetation health. This study investigates the evolution of vegetation drought from 2010 to 2024 and introduces a deep-learning-based forecasting model for analyzing regional spatial and temporal variations in drought. Extensive time-series remote-sensing data were utilized, and we integrated the Temperature–Vegetation Dryness Index (TVDI), Drought Severity Index (DSI), Evaporation Stress Index (ESI), and the Temperature–Vegetation–Precipitation Dryness Index (TVPDI) to develop a comprehensive methodology for extracting regional vegetation drought characteristics. To mitigate the effects of regional drought non-stationarity on predictive accuracy, we propose a coupling-enhancement strategy that combines the Whale Optimization Algorithm (WOA) with the Informer model, enabling more precise forecasting of long-term regional drought variations. Unlike conventional deep-learning models, this approach introduces rapid convergence and global search capabilities, utilizing a sparse self-attention mechanism that improves performance while reducing model complexity. The results demonstrate that: (1) compared to the traditional Transformer model, test accuracy is improved by 43%; (2) the WOA–Informer model efficiently handles multi-objective forecasting for extended time series, achieving MAE (Mean Absolute Error) ≤ 0.05, MSE (Mean Squared Error) ≤ 0.001, MSPE (Mean Squared Percentage Error) ≤ 0.01, and MAPE (Mean Absolute Percentage Error) ≤ 5%. This research provides advanced predictive tools and precise model support for long-term vegetation restoration efforts. Full article
Show Figures

Figure 1

16 pages, 3114 KiB  
Article
Applicability of a Modified Gash Model for Artificial Forests in the Transitional Zone between the Loess Hilly Region and the Mu Us Sandy Land, China
by Xin Wang, Zhenqi Yang, Jianying Guo, Fucang Qin, Yabo Wang and Jiajun Ning
Sustainability 2024, 16(19), 8709; https://doi.org/10.3390/su16198709 - 9 Oct 2024
Viewed by 1052
Abstract
Afforestation in the transitional zone between the loess hilly area and the Mu Us Sandy Land of China has reshaped the landscape and greatly affected eco-hydrological processes. Plantations are crucial for regulating local net rainfall inputs, thus making it necessary to quantify the [...] Read more.
Afforestation in the transitional zone between the loess hilly area and the Mu Us Sandy Land of China has reshaped the landscape and greatly affected eco-hydrological processes. Plantations are crucial for regulating local net rainfall inputs, thus making it necessary to quantify the closure loss of plantation species in drought and semi-arid areas. To quantify and model the canopy interception of these plantations, we conducted rainfall redistribution measurement experiments. Based on this, we used the modified Gash model to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. Herein, Caragana korshinskii, Salix psammophila, and Pinus sylvestris plantations in the Kuye River mountain tract were chosen to measure the precipitation distribution from May to October (growing season). The applicability of a modified Gash model for different stands was then evaluated using the assessed data. The results showed that the canopy interception characteristics of each typical plantation were throughfall, interception, and stemflow. The relative error of canopy interception of C. korshinskii simulated by the modified Gash model was 8.79%. The relative error of simulated canopy interception of S. psammophila was 4.19%. The relative error of canopy interception simulation of P. sylvestris was 13.28%, and the modified Gash model had good applicability in the Kuye River Basin. The modified Gash model has the greatest sensitivity to rainfall intensity among the parameters of the C. korshinskii and S. psammophila forest. The sensitivity of P. sylvestris in the modified Gash model is that the canopy cover has the greatest influence, followed by the mean rainfall intensity. Our results provide a scientific basis for the rational use of water resources and vegetation restoration in the transitional zone between the loess hilly region and the Mu Us Sandy Land. This study is of import for the restoration and sustainability of fragile ecosystems in the region. Full article
Show Figures

Figure 1

37 pages, 76788 KiB  
Article
Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis
by Zichen Guo, Shulin Liu, Kun Feng, Wenping Kang and Xiang Chen
Remote Sens. 2024, 16(17), 3226; https://doi.org/10.3390/rs16173226 - 31 Aug 2024
Cited by 2 | Viewed by 1630
Abstract
Determining the responses of non-photosynthetic vegetation (NPV) and photosynthetic vegetation (PV) communities to climate change is crucial in illustrating the sensitivity and sustainability of these ecosystems. In this study, we evaluated the accuracy of inverting NPV and PV using Landsat imagery with random [...] Read more.
Determining the responses of non-photosynthetic vegetation (NPV) and photosynthetic vegetation (PV) communities to climate change is crucial in illustrating the sensitivity and sustainability of these ecosystems. In this study, we evaluated the accuracy of inverting NPV and PV using Landsat imagery with random forest (RF), backpropagation neural network (BPNN), and fully connected neural network (FCNN) models. Additionally, we inverted MODIS NPV and PV time-series data using spectral unmixing. Based on this, we analyzed the responses of NPV and PV to precipitation and drought across different ecological regions. The main conclusions are as follows: (1) In NPV remote sensing inversion, the softmax activation function demonstrates greater advantages over the ReLU activation function. Specifically, the use of the softmax function results in an approximate increase of 0.35 in the R2 value. (2) Compared with a five-layer FCNN with 128 neurons and a three-layer BPNN with 12 neurons, a random forest model with over 50 trees and 5 leaf nodes provides better inversion results for NPV and PV (R2_RF-NPV = 0.843, R2_RF-PV = 0.861). (3) Long-term drought or heavy rainfall events can affect the utilization of precipitation by NPV and PV. There is a high correlation between extreme precipitation events following prolonged drought and an increase in PV coverage. (4) Under long-term drought conditions, the vegetation in the study area responded to precipitation during the last winter and growing season. This study provides an illustration of the response of semi-arid ecosystems to drought and wetting events, thereby offering a data basis for the effect evaluation of afforestation projects. Full article
(This article belongs to the Special Issue Machine Learning for Spatiotemporal Remote Sensing Data (2nd Edition))
Show Figures

Figure 1

15 pages, 19863 KiB  
Article
Landscape Dynamics of the Mu Us Sandy Land Based on Multi-Source Remote Sensing Images
by Bingqiang Fei, Huirong Ma, Jie Yin, Lingguang Zhang, Jia Li, Xiaomin Xiu, Dezheng Zhou, Yingjun Pang, Yandong Zhang, Xiaohong Jia and Bo Wu
Land 2024, 13(7), 977; https://doi.org/10.3390/land13070977 - 2 Jul 2024
Cited by 3 | Viewed by 1425
Abstract
This study meticulously investigates landscape alterations within the Mu Us Sandy Land, a critical region for desertification control in China. The research dissects the dynamic characteristics and inter-conversion of landscape elements across eleven distinct periods by employing multi-source remote sensing imagery spanning 1963 [...] Read more.
This study meticulously investigates landscape alterations within the Mu Us Sandy Land, a critical region for desertification control in China. The research dissects the dynamic characteristics and inter-conversion of landscape elements across eleven distinct periods by employing multi-source remote sensing imagery spanning 1963 to 2020, alongside visual interpretation, random forest classification, and the desertification difference index (DDI). The analysis uncovers significant landscape transformations within the Mu Us Sandy Land over the past six decades, following a precise chronological sequence. A pivotal shift occurred around 1986, characterized by opposing trends within fixed and shifting sandy land. The earlier stage (pre-1986) witnessed a substantial decrease (66.9%) in the fixed sandy land area, accompanied by a corresponding rise (38.7%) in shifting sandy land. Conversely, the later stage (post-1986) era exhibited a remarkable increase (309.7%) in fixed sandy land, alongside a significant decline (78.9%) in shifting sand land coverage. This study identifies two stages of landscape transformation: a pre-1986 phase dominated by the conversion of fixed sandy land to semi-fixed sandy land and a post-1986 reversal toward shifting sand land into fixed sandy land. These sequential transformations have shaped the landscape pattern alterations observed in the Mu Us Sandy Land since 1963. The dramatic landscape improvements observed after 1986 can be primarily attributed to the implementation and continued investment in large-scale ecological restoration projects. This study’s findings, which reveal the intricate landscape dynamics and their implications for ecosystem management, provide a scientific foundation for refining and formulating comprehensive strategies to control desertification and manage the Mu Us Sandy Land’s unique ecosystem. Full article
(This article belongs to the Special Issue Geospatial Data for Landscape Change)
Show Figures

Figure 1

15 pages, 7674 KiB  
Article
Soil Carbon and Nitrogen Stocks and Their Influencing Factors in Different-Aged Stands of Sand-Fixing Caragana korshinskii in the Mu Us Desert of Northwest China
by Shuang Yu, Junlong Yang, Julian M. Norghauer, Jun Yang, Bo Yang, Hongmei Zhang and Xiaowei Li
Forests 2024, 15(6), 1018; https://doi.org/10.3390/f15061018 - 12 Jun 2024
Cited by 5 | Viewed by 1428
Abstract
Establishing artificial sand-fixing shrubs is a key measure to curb dune flow and drive changes in the soil stocks and cycling of carbon and nitrogen. But our understanding of these dynamics across years of sand-fixing afforestation and the factors influencing them remains inadequate, [...] Read more.
Establishing artificial sand-fixing shrubs is a key measure to curb dune flow and drive changes in the soil stocks and cycling of carbon and nitrogen. But our understanding of these dynamics across years of sand-fixing afforestation and the factors influencing them remains inadequate, making it hard to accurately assess its capacity to sequester carbon. To fill that knowledge gap, this study investigated soil organic carbon (SOC) and soil total nitrogen (STN) stocks in Mu Us Desert under artificial sand-fixing shrub stands of different ages (10, 30, 50, and 70 years old) vis-à-vis a mobile sand dune, to determine whether Caragana korshinskii afforestation improved stock characteristics and whether SOC and STN stocks were correlated during the restoration processes. The results showed that the pattern observed is consistent with an increase over time in the stocks of both SOC and STN. At 10, 30, 50, and 70 years, these stocks were found to be 1.8, 2.3, 3.2, and 5.5 times higher for SOC, and 1.3, 1.6, 2.1, and 2.7 times higher for STN, respectively, than those of the control (mobile sand) dune. Stocks of SOC and STN mainly increased significantly in the 0–10 cm soil layer. The SOC stock was correlated positively with the STN stock as well as the C:N ratio. The slope of the regression for the C:N ratio against stand age was positive, increasing slightly faster with afforestation age. Additionally, our findings suggest that during the establishment of artificial stands of shrubs, the size of the STN stock did not expand as fast as the SOC stock, resulting in an asynchronous N supply and demand that likely limits the accumulation of soil organic matter. This research provides important evidence for the sustainable development of desertified ecosystems. Full article
(This article belongs to the Special Issue Construction and Maintenance of Desert Forest Plantation)
Show Figures

Figure 1

Back to TopTop