Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. NPV and PV Data Sources and Calculation Methods
2.3. Precipitation and SPEI Data
2.4. Temporal and Spatial Regression Analysis
3. Results
3.1. Machine Learning Model Construction for Estimating NPV/PV Cover
3.2. Inversion Results and Statistical Characteristics of NPV and PV across Different Periods
3.3. NPV and PV Response to Annual Precipitation and Temperature
3.4. Effects of Monthly Time Scale Precipitation on NPV and PV Spatial Distribution
3.5. Effects of Drought on NPV and PV Spatial Distribution at Different Time Scales
3.5.1. Occurrence of Drought in the Study Area
3.5.2. Impact of Drought and Rainfall Events on NPV and PV
4. Discussion
4.1. Uncertainty and Error Sources in the NPV and PV Products of This Study
4.1.1. Nonlinear Mixing Effects of NPV, PV, and Bare Land at 500 m Scale
4.1.2. Potential Effects of Soil Properties and Vegetation Types on NPV Machine Learning Models
4.2. Long Time Delay Effect of Precipitation on NPV
4.3. Response of PV to Short-Term Precipitation
4.4. Research Shortcomings and Prospects
5. Conclusions
- Spectral Variability and Machine Learning Models: In arid and semi-arid regions, the mixture of shrubs and herbaceous plants leads to significant spectral variability at different spatial scales for the same location. Consequently, machine learning models developed for NPV and PV using Landsat imagery cannot be directly transferred to MODIS imagery. Neural networks that only use the RELU activation function, even in deep learning models, perform poorly in NPV inversion tasks. In contrast, random forests, as an ensemble method, demonstrate superior inversion accuracy for both NPV and PV.
- PV, NPV, and Monthly Precipitation: The response of PV to monthly precipitation was greater than that of NPV, with a more obvious response observed in areas with higher degrees of desertification.
- PV, NPV, and Drought Accumulation: The accumulation time of drought significantly influenced NPV and the response of PV to climate. In areas with more severe desertification, the response of NPV to cumulative drought was more pronounced. Under conditions of cumulative drought, both NPV and PV were highly dependent on precipitation during the growing season and winter of the previous year. However, their dependence on precipitation decreased under cumulative wetting conditions.
- PV and Extreme Humid Events: After a long-term drought, extreme humid events can lead to an increase in the coverage of moderate and mild desertification PV, whereas the response of severe desertification PV to extreme humid events is less pronounced than its response to long-term drought.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Landsat 5 Ranks No. | Image Acquisition Time | Reference (R) or Adjust (A) | Landsat 5 Ranks No. | Image Acquisition Time | Reference or Adjust |
---|---|---|---|---|---|
128033 | 20000917 | R | 127034 | 20000926 | A |
128034 | 20000917 | A | 129033 | 20011017 | A |
127032 | 20000926 | A | 129034 | 20000924 | A |
127033 | 20000926 | A |
Landsat 5 Ranks No. | Image Acquisition Time | Reference (R) or Adjust (A) | Landsat 5 Ranks No. | Image Acquisition Time | Reference or Adjust |
---|---|---|---|---|---|
128033 | 20040928 | R | 127034 | 20040922 | A |
128034 | 20040928 | A | 129033 | 20050922 | A |
127032 | 20051007 | A | 129034 | 20051007 | A |
127033 | 20040922 | A |
Landsat 5 Ranks No. | Image Acquisition Time | Reference (R) or Adjust (A) | Landsat 5 Ranks No. | Image Acquisition Time | Reference or Adjust |
---|---|---|---|---|---|
128033 | 20100912 | R | 127034 | 20101007 | A |
128034 | 20100912 | A | 129033 | 20110922 | A |
127032 | 20101007 | A | 129034 | 20110922 | A |
127033 | 20101007 | A |
Landsat 5 Ranks No. | Image Acquisition Time | Reference (R) or Adjust (A) | Landsat 5 Ranks No. | Image Acquisition Time | Reference or Adjust |
---|---|---|---|---|---|
128033 | 20141007 | R | 127034 | 20151005 | A |
128034 | 20141007 | A | 129033 | 20150917 | A |
127032 | 20151005 | A | 129034 | 20150917 | A |
127033 | 20151005 | A |
References
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, J.; Zheng, Y.; Li, S.; Zhou, Y. Increased carbon uptake and water use efficiency in global semi-arid ecosystems. Environ. Res. Lett. 2020, 15, 034022. [Google Scholar] [CrossRef]
- Smith, W.K.; Reed, S.C.; Cleveland, C.C.; Ballantyne, A.P.; Anderegg, W.R.; Wieder, W.R.; Liu, Y.Y.; Running, S.W. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 2016, 6, 306–310. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Guo, Z.C.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Feng, K.; Zhi, Y. Comparison of the backpropagation network and the random forest algorithm based on sampling distribution effects consideration for estimating nonphotosynthetic vegetation cover. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102573. [Google Scholar]
- Guerschman, J.P.; Hill, M.J.; Leys, J.; Heidenreich, S. Vegetation cover dependence on accumulated antecedent precipitation in Australia: Relationships with photosynthetic and non-photosynthetic vegetation fractions. Remote Sens. Environ. 2020, 240, 111670. [Google Scholar] [CrossRef]
- Qu, H.; Zhao, X.; Lian, J.; Tang, X.; Wang, X.; Medina-Roldán, E. Increasing Precipitation Interval Has More Impacts on Litter Mass Loss Than Decreasing Precipitation Amount in Desert Steppe. Front. Environ. Sci. 2020, 8, 88. [Google Scholar] [CrossRef]
- Singh, K.; Trivedi, P.; Singh, G.; Singh, B.; Patra, D.D. Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degrad. Dev. 2016, 27, 1215–1226. [Google Scholar] [CrossRef]
- Jia, C.; Liu, Y.; He, H.; Miao, H.T.; Huang, Z.; Zheng, J.; Han, F.; Wu, G.L. Formation of litter crusts and its multifunctional ecological effects in a desert ecosystem. Ecosphere 2018, 9, e02196. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; Miao, H.T.; Wu, G.L. The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem. Hydrol. Earth Syst. Sci. 2019, 23, 2481–2490. [Google Scholar] [CrossRef]
- Liu, X.Z.; Liu, Y.; Zhang, L.; Yin, R.; Wu, G.L. Bacterial contributions of bio-crusts and litter crusts to nutrient cycling in the Mu Us Sandy Land. Catena 2021, 199, 105090. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 785–811. [Google Scholar]
- Zhang, X.T.; Bi, J.; Zhu, D.; Meng, Z. Seasonal variation of net ecosystem carbon exchange and gross primary production over a Loess Plateau semi-arid grassland of northwest China. Sci. Rep. 2024, 14, 2916. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Biederman, J.A.; Pierce, N.A.; Potts, D.L.; Devine, C.J.; Hao, Y.; Smith, W.K. Precipitation temporal repackaging into fewer, larger storms delayed seasonal timing of peak photosynthesis in a semi-arid grassland. Funct. Ecol. 2022, 36, 646–658. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Scarth, P.F.; McVicar, T.R.; Renzullo, L.J.; Malthus, T.J.; Stewart, J.B.; Rickards, J.E.; Trevithick, R. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [Google Scholar] [CrossRef]
- Rickards, J.; Stewart, J.; McPhee, R.; Randall, L. Australian ground cover reference sites database: User guide for PostGIS. Victoria 2012, 48, 20. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.; Deering, D. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Technical Report. 1973. Available online: https://ntrs.nasa.gov/citations/19740022555 (accessed on 23 May 2023).
- Liu, H.Q.; Huete, A. A feedback based modification of the ndvi to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 814. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area. Int. J. Remote Sens. 2010, 31, 1589–1604. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- McNairn, H.; Protz, R. Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using Thematic Mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Han, L.; Chai, G.; Wang, Z. Estimating fractional cover of non-photosynthetic vegetation using field spectral to simulate Landsat-8 OLI. Int. J. Geogr. Inf. Sci. 2018, 20, 1667–1678. [Google Scholar]
- Okin, G.S. Relative spectral mixture analysis—A multitemporal index of total vegetation cover. Remote Sens. Environ. 2007, 106, 467–479. [Google Scholar] [CrossRef]
- Okin, G.S.; Clarke, K.D.; Lewis, M.M. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data. Remote Sens. Environ. 2013, 130, 266–279. [Google Scholar] [CrossRef]
- Niu, F.R.; Duan, D.; Chen, J.; Xiong, P.; Zhang, H.; Wang, Z.; Xu, B. Eco-Physiological Responses of Dominant Species to Watering in a Natural Grassland Community on the Semi-Arid Loess Plateau of China. Front. Plant Sci. 2016, 7, 663. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Yang, M.; Chen, S.P.; Gao, Y.H.; Liu, R.; Hao, Y.; Xin, X.; Zhou, L.; Yu, G.R. Temporal and spatial variations of ecosystem photosynthetic parameters in arid and semi-arid areas of China and its influencing factors. Chin. J. Plant Ecol. 2022, 46, 1461. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Yan, D.; Guo, R.; Shuai, H.E.; Miao, L.; Li, X. Analysis of Climate Change and Drought Trend in Desert Steppe of Inner Mongolia. J. Irrig. Drain. 2020, 39, 5. [Google Scholar] [CrossRef]
- Zhao, D.S.; Gao, X.; Wu, S.H. Nonuniform variations of precipitation and temperature across China over the period 1960–2015. Int. J. Climatol. 2021, 41, 316–327. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Zhou, J.; Yue, X.F.; Ding, J.P. Effect of precipitation frequency on litter decomposition of three annual species (Setaria viridis, Artemisia sacrorum, and Chenopodium acuminatum) in a semi-arid sandy grassland of northeastern China. Arid Land Res. Manag. 2021, 35, 397–413. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, Z.T.; Li, R.J.; Wang, R.; Li, N.N.; Zhao, M.; Du, L.L.; Guo, S.L.; Jiang, J.S.; Wang, Z.Q. Litter production rates and soil moisture influences interannual variability in litter respiration in the semi-arid Loess Plateau, China. J. Arid Environ. 2016, 125, 43–51. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C. Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102418. [Google Scholar] [CrossRef]
- Gu, Q.; Wei, J.; Luo, S.C.; Ma, M.G.; Tang, X.G. Potential and environmental control of carbon sequestration in major ecosystems across arid and semi-arid regions in China. Sci. Total Environ. 2018, 645, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Nemoto, M.; Shinoda, M. Environmental controls on photosynthetic production and ecosystem respiration in semi-arid grasslands of Mongolia. Agric. For. Meteorol. 2008, 148, 1456–1466. [Google Scholar] [CrossRef]
- Yuanyuan, Z.; Guodong, D.; Guanglei, G.; Le, P.; Xiao, C. Regionalization for Aeolian Desertification Control in the Mu Us Sandy Land Region, China. J. Desert Res. 2017, 37, 635. [Google Scholar]
- Xu, C.; Ke, Y.G.; Zhou, W.; Luo, W.T.; Ma, W.; Song, L.; Smith, M.D.; Hoover, D.L.; Wilcox, K.R.; Fu, W.; et al. Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecol. Indic. 2021, 131, 108139. [Google Scholar] [CrossRef]
- Shumack, S.; Fisher, A.; Hesse, P.P. Refining medium resolution fractional cover for arid Australia to detect vegetation dynamics and wind erosion susceptibility on longitudinal dunes. Remote Sens. Environ. 2021, 265, 112647. [Google Scholar] [CrossRef]
- Zhang, C.; Filella, I.; Liu, D.J.; Ogaya, R.; Llusià, J.; Asensio, D.; Peñuelas, J. Photochemical Reflectance Index (PRI) for Detecting Responses of Diurnal and Seasonal Photosynthetic Activity to Experimental Drought and Warming in a Mediterranean Shrubland. Remote Sens. 2017, 9, 1189. [Google Scholar] [CrossRef]
- Mengoli, G.; Agustí-Panareda, A.; Boussetta, S.; Harrison, S.P.; Trotta, C.; Prentice, I.C. Ecosystem Photosynthesis in Land-Surface Models: A First-Principles Approach Incorporating Acclimation. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002767. [Google Scholar] [CrossRef]
- Cai, A.; Liang, G.; Yang, W.; Zhu, J.; Han, T.; Zhang, W.; Xu, M. Patterns and driving factors of litter decomposition across Chinese terrestrial ecosystems. J. Clean. Prod. 2021, 278, 123964. [Google Scholar] [CrossRef]
- Yue, K.; Peng, C.H.; Yang, W.Q.; Peng, Y.; Fang, J.M.; Wu, F.Z. Study type and plant litter identity modulating the response of litter decomposition to warming, elevated CO2, and elevated O3: A meta-analysis. J. Geophys. Res. Biogeosciences 2015, 120, 441–451. [Google Scholar] [CrossRef]
- Hong, C.; Zhen, Z.; Lang, X.; Yi, W.; Si, W.; Yi, H.; Zhen, X.; Chun, Y.; He, W. Flora of China; Science Press: Beijing, China, 1998. [Google Scholar]
- Zichen, G.; Shulin, L.; Wenping, K.; Xiang, C.; Xueqin, Z. Change trend of vegetation coverage in the Mu Us Sandy Region from 2000 to 2015. J. Desert Res. 2018, 38, 1099. [Google Scholar]
- Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and pen-urban land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [Google Scholar] [CrossRef]
- Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8. Remote Sens. Environ. 2016, 185, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Clark, R.N. Remote Sensing for the Earth Sciences: Manual of Remote Sensing. In Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy; Rencz, A.N., Ed.; John and Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Kokaly, R.F.; Couvillion, B.R.; Holloway, J.M.; Roberts, D.A.; Ustin, S.L.; Peterson, S.H.; Khanna, S.; Piazza, S.C. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes. Remote Sens. Environ. 2013, 129, 210–230. [Google Scholar] [CrossRef]
- Bannari, A.; PacheCo, A.; Staenz, K.; McNairn, H.; Omari, K. Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data. Remote Sens. Environ. 2006, 104, 447–459. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Shermeyer, J.; McCarty, G.W.; Quemada, M. Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sens. 2018, 10, 1657. [Google Scholar] [CrossRef]
- Henry, H.A.L.; Moise, E.R.D. Grass litter responses to warming and N addition: Temporal variation in the contributions of litter quality and environmental effects to decomposition. Plant Soil 2015, 389, 35–43. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, W.Q.; Yang, G.W.; Yang, X.; Liu, N.; Sun, X.; Chen, J.S.; Zhang, Y.J. Can litter addition mediate plant productivity responses to increased precipitation and nitrogen deposition in a typical steppe? Ecol. Res. 2016, 31, 579–587. [Google Scholar] [CrossRef]
- Xianghan, L. Soil Moisture Mechanism in Fixed Sand Dunes of Artemisia Ordosica Community in Mu Us Sandy Land. Environ. Resour. Ecol. J. 2024, 8, 114–127. [Google Scholar]
- Tang, Y.K.; Jiang, J.; Chen, C.; Chen, Y.M.; Wu, X. Rainfall pulse response of carbon fluxes in a temperate grass ecosystem in the semiarid Loess Plateau. Ecol. Evol. 2018, 8, 11179–11189. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Du, Z.; Wang, Y. Photosynthetic characteristics of a semi-arid sandy grassland community in inner mongolia. Chin. J. Plant Ecol. 2000, 24, 541. [Google Scholar]
Drought and Moisture Levels | Extreme Drought | Moderate Drought | Mild Drought | Normal | Mild Moist | Moderate Moist | Extreme Moist |
---|---|---|---|---|---|---|---|
SPEI value | ≤−2.0 | (−2.0, −1.0] | (−1.0, −0.5] | (−0.5, 0.5] | (0.5, 1.0] | (1.0, 2.0] | >2.0 |
Model Name | R2NPV | R2PV | RMSENPV | RMSEPV |
---|---|---|---|---|
RF | 0.843 | 0.861 | 1.11% | 1.67% |
BPNN | 0.828 | 0.851 | 1.29% | 0.62% |
FCNN | 0.471 | 0.780 | 16.7% | 14.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Liu, S.; Feng, K.; Kang, W.; Chen, X. Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis. Remote Sens. 2024, 16, 3226. https://doi.org/10.3390/rs16173226
Guo Z, Liu S, Feng K, Kang W, Chen X. Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis. Remote Sensing. 2024; 16(17):3226. https://doi.org/10.3390/rs16173226
Chicago/Turabian StyleGuo, Zichen, Shulin Liu, Kun Feng, Wenping Kang, and Xiang Chen. 2024. "Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis" Remote Sensing 16, no. 17: 3226. https://doi.org/10.3390/rs16173226
APA StyleGuo, Z., Liu, S., Feng, K., Kang, W., & Chen, X. (2024). Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis. Remote Sensing, 16(17), 3226. https://doi.org/10.3390/rs16173226