Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = MRP4 inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 15949 KiB  
Article
PD-1/PD-L1 Inhibitors and Chemotherapy Synergy: Impact on Drug Resistance and PD-L1 Expression in Breast Cancer-Immune Cell Co-Cultures
by Güneş Özen Eroğlu, Ayşe Erol Bozkurt, İlhan Yaylım and Dürdane Serap Kuruca
Int. J. Mol. Sci. 2025, 26(14), 6876; https://doi.org/10.3390/ijms26146876 - 17 Jul 2025
Viewed by 349
Abstract
Breast cancer is the most frequently diagnosed cancer among women. In recent years, immunotherapy, a key targeted treatment strategy, has gained prominence in the management of this disease. Immune cells within the tumor microenvironment can significantly affect treatment outcomes. Among immunotherapeutic approaches, or [...] Read more.
Breast cancer is the most frequently diagnosed cancer among women. In recent years, immunotherapy, a key targeted treatment strategy, has gained prominence in the management of this disease. Immune cells within the tumor microenvironment can significantly affect treatment outcomes. Among immunotherapeutic approaches, or programmed death protein 1(PD-1) and programmed death-ligand 1(PD-L1)-targeted therapies are increasingly recognized for their role in modulating cancer–immune system interactions. This study investigated the impact of PD-1/PD-L1 pathway inhibition on the expression of drug resistance-related proteins in an in vitro breast cancer model incorporating immune cells. MDA-MB-231 and MCF-7 cell lines were used as breast cancer cells, while THP-1 and Jurkat cells represented monocytes and lymphocytes, respectively. The effects of paclitaxel (PTX), doxorubicin (Dox), and PD-1/PD-L1 inhibitors (BMS-1166 and Human PD-L1 Inhibitor IV (PI4)) on cell viability were evaluated using an MTT assay, and the IC50 values were determined. Flow cytometry was used to analyze PD-1/PD-L1 expression and the drug resistance proteins ABCG2 (ATP-binding cassette sub-family G member 2, breast cancer resistance protein), MDR-1 (multidrug resistance protein 1), and MRP-1 (multidrug resistance-associated protein 1) across co-culture models. Based on the results, Dox reduced PD-L1 expression in all groups except for MDA-MB-231:THP-1, while generally lowering drug resistance protein levels, except in MDA-MB-231:Jurkat. BMS-1166 significantly decreased cell viability and enhanced chemotherapy-induced cytotoxicity. Interestingly, in the MDA-MB-231:Jurkat co-culture, both inhibitors reduced PD-L1 but increased drug resistance protein expression. Paclitaxel’s effect on PD-L1 varied depending on the immune context. These findings highlight that PD-1/PD-L1 inhibitors and chemotherapeutic agents differentially affect PD-L1 and drug resistance-related protein expression depending on the immune cell composition within the tumor microenvironment. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

17 pages, 2444 KiB  
Article
A Novel Modulator of Resistance for Oxaliplatin-Based Therapy for Colorectal Cancer: The ESCRT Family Member VPS4A
by Noha M. Abdelrazik, Anjana Patel, Andrew Conn, Christopher W. Sutton, Sriharsha Kantamneni and Steven D. Shnyder
Cells 2025, 14(12), 929; https://doi.org/10.3390/cells14120929 - 19 Jun 2025
Viewed by 582
Abstract
Drug resistance is still one of the main challenges for the treatment of colorectal cancer (CRC). Whilst some resistance mechanisms are well known, from the static therapy success rate, clearly, still much is undiscovered. Intracellular transport mechanisms have attracted attention as having a [...] Read more.
Drug resistance is still one of the main challenges for the treatment of colorectal cancer (CRC). Whilst some resistance mechanisms are well known, from the static therapy success rate, clearly, still much is undiscovered. Intracellular transport mechanisms have attracted attention as having a possible role in drug resistance, and here, the Endosomal Sorting Complex Required for Transport (ESCRT) protein family is studied as a source of drug resistance modulation using human CRC cell lines and clinical material. From an initial screening of ESCRT proteins in a panel of 10 CRC wild-type cell lines using immunoblotting, Vacuolar Protein Sorting-Associated Protein A4 (VPS4A) was identified as being consistently highly expressed, and it was selected for further investigation. Immunohistopathological evaluation in a small panel of CRC patient samples demonstrated high expression in the tumor epithelium compared to normal intestinal epithelium. The knockdown of VPS4A resulted in enhanced sensitivity of cells to oxaliplatin, and it was subsequently seen that oxaliplatin-resistant sublines had significantly higher VPS4A expression than their wild-type variants. In addition, it was demonstrated that a small molecule inhibitor of VPS4A, aloperine, could interact synergistically with oxaliplatin to enhance its sensitivity in an oxaliplatin-resistant cell line. We hypothesize from initial RNA sequencing analysis that the mechanism of action of VPS4A modulation is through depleting levels of the drug efflux transporter MRP2 in the cell, preventing oxaliplatin egress and increasing cell exposure to the drug. The evidence presented here thus indicates that ESCRT machinery, specifically VPS4A, may act as a modulator of oxaliplatin resistance in CRC. Full article
Show Figures

Graphical abstract

13 pages, 2870 KiB  
Article
Modulation of the Main Resistance-Associated ABC Transporter’s Expression by Plant Flavonol Isorhamnetin
by Milena Milutinović, Filip Ristanović, Nikola Radenković, Danijela Cvetković, Sandra Radenković, Milan Stanković and Danijela Nikodijević
Pharmaceuticals 2025, 18(4), 494; https://doi.org/10.3390/ph18040494 - 28 Mar 2025
Cited by 1 | Viewed by 666
Abstract
Background/Objectives: Multidrug resistance is one the leading problems in cancer treatment, where the overexpression of P-gp and other drug efflux pumps is regarded as the primary cause. With the intention to develop transporter inhibitors, natural products such as phenolics have shown great [...] Read more.
Background/Objectives: Multidrug resistance is one the leading problems in cancer treatment, where the overexpression of P-gp and other drug efflux pumps is regarded as the primary cause. With the intention to develop transporter inhibitors, natural products such as phenolics have shown great potential and diverse attention recently. Among these, isorhamnetin (ISO), an O-methylated flavonol, is predominantly found in the fruits and leaves of various plants. Thus, this study aimed to investigate the effects of ISO on the mRNA expression of membrane transporters P-gp, BCRP, MRP 1, 2, and 5, the protein expression of P-gp, as well as the GSTP1 and GSH content in DLD1 and HCT-116 colon cancer cells. Methods: The cytotoxic effect of isorhamnetin is assessed using an MTT test, while qPCR and immunocytochemistry methods were used to determine gene and protein expression levels. The concentration of reduced glutathione was determined using the colorimetric method. Results: Based on the results, ISO can modulate the expression of transporters responsible for the resistance development (all transporters on the transcriptional level were downregulated in DLD1 cells, while only MRP1 on HCT-116 cells, and reduced P-gp protein expression on both investigated cell lines). Increased glutathione content in treated cells and GSTP1 expression suggest metabolizing the ISO and potential ejection with GSH-dependent pumps. Conclusions: Thus, in future experiments, ISO as a natural medicinal compound could be used as a chemosensitizer to prevent or overcome membrane transporter-mediated drug resistance. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

22 pages, 3953 KiB  
Case Report
A New Histology-Based Prognostic Index for Acute Myeloid Leukemia: Preliminary Results for the “AML Urayasu Classification”
by Toru Mitsumori, Hideaki Nitta, Haruko Takizawa, Hiroko Iizuka-Honma, Chiho Furuya, Maki Fujishiro, Shigeki Tomita, Akane Hashizume, Tomohiro Sawada, Kazunori Miyake, Mitsuo Okubo, Yasunobu Sekiguchi, Miki Ando and Masaaki Noguchi
J. Clin. Med. 2025, 14(6), 1989; https://doi.org/10.3390/jcm14061989 - 15 Mar 2025
Viewed by 776
Abstract
Background: This study was aimed at elucidating the mechanisms underlying the development of treatment resistance in patients with acute myeloid leukemia (AML) other than M3 myeloid leukemia in order to devise ways to overcome treatment resistance and improve the treatment outcomes in these [...] Read more.
Background: This study was aimed at elucidating the mechanisms underlying the development of treatment resistance in patients with acute myeloid leukemia (AML) other than M3 myeloid leukemia in order to devise ways to overcome treatment resistance and improve the treatment outcomes in these patients. Methods: For this study, we randomly selected 35 patients with AML who had received combined cytarabine plus idarubicin treatment for new-onset AML at our hospital. We performed immunohistochemical analysis of biopsy specimens obtained from the patients to investigate the expressions of 23 treatment-resistance-related proteins, and retrospectively analyzed the correlations between the expression profiles of the resistance proteins and the patient survival. Results: The following four proteins were identified as being particularly significant in relation to treatment resistance and patient prognosis: (1) p53; (2) multidrug resistance-associated protein 1 (MRP1; idarubicin extracellular efflux pump); (3) aldo-keto reductase family 1 member B10 (AKR1B10; idarubicin-inactivating enzyme); and (4) AKR1B1 (competitive inhibitor of AKR1B10). Based on our findings, we propose the following Urayasu classification for AML, which we believe would be very useful for accurately stratifying patients with AML according to the predicted prognosis: Group 1 (n = 22, 63%): p53(-)/MRP1(-) associated with AKR1B10(+)/AKR1B1(+) or AKR1B10(-)/AKR1B1(-); 5-year overall survival (OS), 82%–100%; Group 2 (n = 9, 26%): p53(-)/MRP1(-) associated with AKR1B10(+)/AKR1B1(-); 5-year OS, 68%; Group 3 (n = 4, 11%): p53(+) or MRP1(+); median survival, 12–14 months; 2-year OS, 0%. Conclusions: The Urayasu classification for AML is useful for predicting the prognosis of patients with AML. Group 1 in this classification included twice as many patients as that included in the Favorable prognosis group in the AML prognostic classification proposed by the European Leukemia Net. As the Urayasu classification for AML is based on the mechanisms of resistance to chemotherapy, it is not only useful for prognostic stratification of the patients, but also provides insights for developing more effective treatments for AML. Full article
(This article belongs to the Section Hematology)
Show Figures

Graphical abstract

21 pages, 3293 KiB  
Article
X-Ray Irradiation Induces Oxidative Stress and Upregulates Intestinal Nrf2-Mrp2 Pathway, Leading to Decreased Intestinal Absorption of Valsartan
by Yunhua Teng, Jiaojiao Ma, Junxia Zhang, Bohan Liang, Aijie Zhang, Yanjie Li, Shiqi Dong and Huirong Fan
Pharmaceutics 2025, 17(2), 268; https://doi.org/10.3390/pharmaceutics17020268 - 17 Feb 2025
Viewed by 831
Abstract
Background: It has been documented that radiation can influence the pharmacokinetics of chemotherapy drugs, yet the underlying mechanisms remain poorly understood. In clinical practice, a considerable number of cancer patients undergo radiotherapy, and those with comorbid hypertension required antihypertensive drugs, including valsartan, an [...] Read more.
Background: It has been documented that radiation can influence the pharmacokinetics of chemotherapy drugs, yet the underlying mechanisms remain poorly understood. In clinical practice, a considerable number of cancer patients undergo radiotherapy, and those with comorbid hypertension required antihypertensive drugs, including valsartan, an angiotensin II receptor blocker. However, there is no research investigating whether radiotherapy poses a risk of altering the pharmacokinetics. Objective: The objective of this study is to investigate the impact of X-ray abdominal irradiation on the pharmacokinetics of valsartan and to preliminarily elucidate the underlying mechanism. Methods: The pharmacokinetics of valsartan after X-ray irradiation was investigated in rats and in vitro by detecting the concentration of valsartan in biological samples by LC-MS/MS. The oxidative stress in the intestine and the mRNA expression of partial transporters and Nrf2 in the liver and small intestine were detected by biochemical reagent kit or RT-qPCR. Results: In vivo studies showed that X-ray irradiation resulted in a significant decrease in the AUC and Cmax of valsartan, and the cumulative fractional excretion of valsartan in bile and urine, although there was no significant change in fecal excretion. In vitro studies showed that the uptake of valsartan by both intestine and Caco-2 cells decreased after irradiation, and the cellular uptake could be restored by Mrp2 inhibitor MK571. The levels of GSH, SOD, and CAT in the intestine decreased after irradiation. The mRNA expressions of Mrp2 and P-gp in the intestine or Caco-2 cells were significantly upregulated after irradiation while there was a downregulation of Mrp2 and oatp1b2 in liver. Nrf2 and HO-1 in the intestine were also significantly upregulated, which clarified the involvement of Mrp2 and the possible molecular mechanism. Conclusions: Abdominal X-ray irradiation can cause oxidative stress and upregulate intestinal Mrp2, which may be related to oxidative stress and upregulation of Nrf2, reducing intestinal absorption of valsartan and leading to a significant decrease in the blood concentration of valsartan. Full article
Show Figures

Figure 1

17 pages, 2681 KiB  
Article
Onvansertib and Navitoclax Combination as a New Therapeutic Option for Mucinous Ovarian Carcinoma
by Serena Petrella, Marika Colombo, Mirko Marabese, Chiara Grasselli, Andrea Panfili, Michela Chiappa, Valentina Sancisi, Ilaria Craparotta, Maria C. Barbera, Giada A. Cassanmagnago, Marco Bolis and Giovanna Damia
Int. J. Mol. Sci. 2025, 26(2), 472; https://doi.org/10.3390/ijms26020472 - 8 Jan 2025
Viewed by 1516
Abstract
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as [...] Read more.
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as a target in mEOC. In this study, we aimed to identify further therapeutic targets in mEOC using a CRISPR/Cas9 library targeting 3015 genes, with and without treatment with onvansertib, a PLK1 inhibitor. We identified twelve genes associated with cell survival (ZC2HC1C, RPA2, KIN17, TUBG1, SMC2, CDC26, CDC42, HOXA9, TAF10, SENP1, MRPS31, and COPS2) and three genes (JUND, CARD9, and BCL2L2) in synthetic lethality with onvansertib treatment. We validated that SENP1 downregulation is important for the growth of mEOC cells through esiRNA interference and the use of a pharmacological inhibitor Momordin Ic. The downregulation of CARD9 and BCL2L2 combined with subtoxic doses of onvansertib interfered with mEOC cell growth. Interestingly, the combination of navitoclax, an inhibitor of BcL2 family members including BCL2L2, was synergistic in all four of the mEOC cell lines tested and substantially induced cell death through apoptosis. These data support the use of a combination of navitoclax and onvansertib as a new therapeutic strategy for mEOC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 989 KiB  
Article
Molecular Interactions of the Plant Steroid Hormone Epibrassinolide on Human Drug-Sensitive and Drug-Resistant Small-Cell Lung Carcinoma Cells
by David Sadava and Shiuan Chen
Cancers 2024, 16(22), 3812; https://doi.org/10.3390/cancers16223812 - 13 Nov 2024
Cited by 2 | Viewed by 1270
Abstract
Background: Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a [...] Read more.
Background: Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a GSK-mediated signaling pathway, similar to Wnt-β-catenin signaling in animal cells that is elevated in cancer cells. Methods: This mechanistic parallel prompted investigations of the molecular interactions of EB on drug-sensitive (H69) and multi-drug-resistant (VPA) SCLC cells. Cellular and molecular investigations were performed. Results: Pharmacologic interactions between EB and the Wnt signaling inhibitors IGC-011 and PRI-724 were determined by the combination index method and showed antagonism, indicating that EB acts on the same pathway as these inhibitors. Following incubation of drug-sensitive and drug-resistant SCLC cells with EB, there was a reduction in β-catenin (e.g., 3.8 to 0.7 pg/µg protein), accompanied by a reduction in β-catenin promoter activity, measured by firefly luciferase-coupled promoter element transfection. Cellular β-catenin concentration is regulated by the active form of GSK3β. In Wnt signaling, active GSK3β is converted to inactive pGSK3β, thereby increasing the concentration of β-catenin. After incubation of SCLC cells with EB, there was a reduction in the inactive form (pGSK3β) and a relative increase in the active form (GSK3β). In vitro enzyme assays showed that EB did not inhibit purified GSK3β, but there was non-competitive inhibition when SCLC cell extracts were used as the source of enzyme. This indirect inhibition by EB indicates that it may act on the Wnt pathway by blocking the phosphorylation of GSK3β. The protein levels of three SCLC tumor markers, namely, NSE, CAV1, and MYCL1, were elevated in drug-resistant SCLC cells. EB incubation led to a significant reduction in the levels of the three markers. Two major effects of EB on SCLC cells are the promotion of apoptosis and the reversal of drug resistance. Transcriptional analyses showed that after exposure of SCLC cells to EB, there were increases in the expression of genes encoding apoptotic inducers (e.g., BAX and FAS) and effectors (e.g., CASP3) and reductions in the expression of genes encoding apoptosis inhibitors (e.g., survivin). PGP1 and MRP1, two membrane efflux pumps expressed in SCLC cells, were elevated in drug-resistant cells, but EB incubation did not affect these protein levels. Cellular assays of drug efflux by PGP1 showed an increase in drug-resistant cells, but EB did not alter efflux activity. Following exposure to human liver microsomes, EB was metabolized by NADPH-dependent oxidation and UDPG-dependent glucuronidation, as evidenced by the elimination of EB cytotoxicity against SCLC cells. Conclusions: Taken together, these data indicate that EB, a steroid hormone in plants consumed in the human diet, is pharmacologically active in drug-sensitive and drug-resistant SCLC cells in the Wnt signaling pathway, alters apoptotic gene expression, and is a substrate for microsomal modifications. Full article
Show Figures

Figure 1

22 pages, 3994 KiB  
Review
NRF2 Modulators of Plant Origin and Their Ability to Overcome Multidrug Resistance in Cancers
by Piotr Wadowski, Michał Juszczak and Katarzyna Woźniak
Int. J. Mol. Sci. 2024, 25(21), 11500; https://doi.org/10.3390/ijms252111500 - 26 Oct 2024
Cited by 4 | Viewed by 1630
Abstract
Cancer is one of the most common causes of death in the world. Despite the fact that there are many types of therapies available, cancer treatment remains a major challenge. The main reason for the ineffectiveness of chemotherapy is the acquisition of multidrug [...] Read more.
Cancer is one of the most common causes of death in the world. Despite the fact that there are many types of therapies available, cancer treatment remains a major challenge. The main reason for the ineffectiveness of chemotherapy is the acquisition of multidrug resistance (MDR) by cancer cells. One of the factors responsible for the acquisition of MDR is the NRF2 transcription factor, which regulates the expression of proteins such as HO-1, NQO1, MRP1, MRP2, and GST. In normal cells, NRF2 is the first line of defense against oxidative stress, thereby preventing carcinogenesis. Still, its hyperactivation in cancer cells causes them to acquire MDR, which significantly reduces or eliminates the effectiveness of chemotherapy. Considering the important role NRF2 plays in the acquisition of MDR, its modulators and, above all, inhibitors are being sought after, including among compounds of plant origin. NRF2 inhibition may prove to be a key element of anticancer therapy. This review summarizes the current state of knowledge about plant NRF2 inhibitors and presents the effects of their use in overcoming MDR in cancer. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

16 pages, 4980 KiB  
Communication
Short Communication: Novel Di- and Triselenoesters as Effective Therapeutic Agents Inhibiting Multidrug Resistance Proteins in Breast Cancer Cells
by Dominika Radomska, Robert Czarnomysy, Krzysztof Marciniec, Justyna Nowakowska, Enrique Domínguez-Álvarez and Krzysztof Bielawski
Int. J. Mol. Sci. 2024, 25(17), 9732; https://doi.org/10.3390/ijms25179732 - 8 Sep 2024
Cited by 3 | Viewed by 1987
Abstract
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this [...] Read more.
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds—novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy. Full article
Show Figures

Graphical abstract

21 pages, 5620 KiB  
Article
Study on the Effect of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Baicalin in Cells Based on MRP2, MRP3, and BCRP Efflux Transporters
by Dan Yang, Min Zhang, Mei Zhao, Chaoji Li, Leyuan Shang, Shuo Zhang, Pengjiao Wang and Xiuli Gao
Pharmaceutics 2024, 16(6), 731; https://doi.org/10.3390/pharmaceutics16060731 - 29 May 2024
Cited by 5 | Viewed by 1714
Abstract
Pharmaceutical excipient PEG400 is a common component of traditional Chinese medicine compound preparations. Studies have demonstrated that pharmaceutical excipients can directly or indirectly influence the disposition process of active drugs in vivo, thereby affecting the bioavailability of drugs. In order to reveal the [...] Read more.
Pharmaceutical excipient PEG400 is a common component of traditional Chinese medicine compound preparations. Studies have demonstrated that pharmaceutical excipients can directly or indirectly influence the disposition process of active drugs in vivo, thereby affecting the bioavailability of drugs. In order to reveal the pharmacokinetic effect of PEG400 on baicalin in hepatocytes and its mechanism, the present study first started with the effect of PEG400 on the metabolic disposition of baicalin at the hepatocyte level, and then the effect of PEG400 on the protein expression of baicalin-related transporters (BCRP, MRP2, and MRP3) was investigated by using western blot; the effect of MDCKII-BCRP, MDCKII-BCRP, MRP2, and MRP3 was investigated by using MDCKII-BCRP, MDCKII-MRP2, and MDCKII-MRP3 cell monolayer models, and membrane vesicles overexpressing specific transporter proteins (BCRP, MRP2, and MRP3), combined with the exocytosis of transporter-specific inhibitors, were used to study the effects of PEG400 on the transporters in order to explore the possible mechanisms of its action. The results demonstrated that PEG400 significantly influenced the concentration of baicalin in hepatocytes, and the AUC0–t of baicalin increased from 75.96 ± 2.57 μg·h/mL to 106.94 ± 2.22 μg·h/mL, 111.97 ± 3.98 μg·h/mL, and 130.42 ± 5.26 μg·h/mL (p ˂ 0.05). Furthermore, the efflux rate of baicalin was significantly reduced in the vesicular transport assay and the MDCKII cell model transport assay, which indicated that PEG400 had a significant inhibitory effect on the corresponding transporters. In conclusion, PEG400 can improve the bioavailability of baicalin to some extent by affecting the efflux transporters and thus the metabolic disposition of baicalin in the liver. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Figure 1

14 pages, 4551 KiB  
Article
Human ABC and SLC Transporters: The Culprit Responsible for Unspecific PSMA-617 Uptake?
by Harun Taş, Gábor Bakos, Ulrike Bauder-Wüst, Martin Schäfer, Yvonne Remde, Mareike Roscher and Martina Benešová-Schäfer
Pharmaceuticals 2024, 17(4), 513; https://doi.org/10.3390/ph17040513 - 16 Apr 2024
Viewed by 2880
Abstract
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still [...] Read more.
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,β-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities. Full article
Show Figures

Figure 1

23 pages, 8398 KiB  
Article
Cellular Uptake and Transport Mechanism Investigations of PEGylated Niosomes for Improving the Oral Delivery of Thymopentin
by Mengyang Liu, Darren Svirskis, Thomas Proft, Jacelyn Loh, Yuan Huang and Jingyuan Wen
Pharmaceutics 2024, 16(3), 397; https://doi.org/10.3390/pharmaceutics16030397 - 14 Mar 2024
Cited by 7 | Viewed by 2354
Abstract
Background: Although its immunomodulatory properties make thymopentin (TP5) appealing, its rapid metabolism and inactivation in the digestive system pose significant challenges for global scientists. PEGylated niosomal nanocarriers are hypothesized to improve the physicochemical stability of TP5, and to enhance its intestinal permeability for [...] Read more.
Background: Although its immunomodulatory properties make thymopentin (TP5) appealing, its rapid metabolism and inactivation in the digestive system pose significant challenges for global scientists. PEGylated niosomal nanocarriers are hypothesized to improve the physicochemical stability of TP5, and to enhance its intestinal permeability for oral administration. Methods: TP5-loaded PEGylated niosomes were fabricated using the thin film hydration method. Co-cultured Caco-2 and HT29 cells with different ratios were screened as in vitro intestinal models. The cytotoxicity of TP5 and its formulations were evaluated using an MTT assay. The cellular uptake and transport studies were investigated in the absence or presence of variable inhibitors or enhancers, and their mechanisms were explored. Results and Discussion: All TP5 solutions and their niosomal formulations were nontoxic to Caco-2 and HT-29 cells. The uptake of TP5-PEG-niosomes by cells relied on active endocytosis, exhibiting dependence on time, energy, and concentration, which has the potential to significantly enhance its cellular uptake compared to TP5 in solution. Nevertheless, cellular transport rates were similar between TP5 in solution and its niosomal groups. The cellular transport of TP5 in solution was carried out mainly through MRP5 endocytosis and a passive pathway and effluxed by MRP5 transporters, while that of TP5-niosomes and TP5-PEG-niosomes was carried out through adsorptive- and clathrin-mediated endocytosis requiring energy. The permeability and transport rate was further enhanced when EDTA and sodium taurocholate were used as the penetration enhancers. Conclusions: This research has illustrated that PEG-niosomes were able to enhance the cellular uptake and maintain the cellular transport of TP5. This study also shows this formulation’s potential to serve as an effective carrier for improving the oral delivery of peptides. Full article
(This article belongs to the Special Issue Advances in Oral Administration)
Show Figures

Figure 1

12 pages, 2161 KiB  
Article
MicroRNA750-3p Targets Processing of Precursor 7 to Suppress Rice Black-Streaked Dwarf Virus Propagation in Vector Laodelphax striatellus
by Haitao Wang, Yan Dong, Qiufang Xu, Man Wang, Shuo Li and Yinghua Ji
Viruses 2024, 16(1), 97; https://doi.org/10.3390/v16010097 - 8 Jan 2024
Cited by 2 | Viewed by 1688
Abstract
MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors [...] Read more.
MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors with plant viruses. Here, we took rice black-streaked dwarf virus (RBSDV), a devastating virus to rice production in eastern Asia, and the small brown planthopper, (SBPH, Laodelphax striatellus) as a model to investigate the role of microRNA750-3p (miR750-3p) in regulating viral transmission. Our results showed that Ls-miR750-3p was downregulated in RBSDV-infected SBPH and predominately expressed in the midgut of SBPH. Injection with miR750-3p agomir significantly reduced viral accumulation, and the injection with the miR750-3p inhibitor, antagomir-750-3p, dramatically promoted the viral accumulation in SBPH, as detected using RT-qPCR and Western blotting. The processing of precursor 7 (POP7), a subunit of RNase P and RNase MRP, was screened, identified, and verified using a dual luciferase reporter assay as one target of miR750-3p. Knockdown of POP7 notably increased RBSDV viral propagation in SBPH and then increased the viral transmission rate by SBPH. Taken together, our data indicate that miR750-3p targets POP7 to suppress RBSDV infection in its insect vector. These results enriched the role of POP7 in modulating virus infection in host insects and shared new insight into the function of miRNAs in plant virus and insect vector interaction. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

21 pages, 7244 KiB  
Article
In Doxorubicin-Adapted Hodgkin Lymphoma Cells, Acquiring Multidrug Resistance and Improved Immunosuppressive Abilities, Doxorubicin Activity Was Enhanced by Chloroquine and GW4869
by Naike Casagrande, Cinzia Borghese, Michele Avanzo and Donatella Aldinucci
Cells 2023, 12(23), 2732; https://doi.org/10.3390/cells12232732 - 29 Nov 2023
Cited by 3 | Viewed by 2450
Abstract
Classical Hodgkin lymphoma (cHL) is a highly curable disease (70–80%), even though long-term toxicities, drug resistance, and predicting clinical responses to therapy are major challenges in cHL treatment. To solve these problems, we characterized two cHL cell lines with acquired resistance to doxorubicin, [...] Read more.
Classical Hodgkin lymphoma (cHL) is a highly curable disease (70–80%), even though long-term toxicities, drug resistance, and predicting clinical responses to therapy are major challenges in cHL treatment. To solve these problems, we characterized two cHL cell lines with acquired resistance to doxorubicin, KM-H2dx and HDLM-2dx (HRSdx), generated from KM-H2 and HDLM-2 cells, respectively. HRSdx cells developed cross-resistance to vinblastine, bendamustin, cisplatin, dacarbazine, gemcitabine, brentuximab vedotin (BV), and γ-radiation. Both HDLM-2 and HDLM-2dx cells had intrinsic resistance to BV but not to the drug MMAE. HDLM-2dx acquired cross-resistance to caelyx. HRSdx cells had in common decreased CD71, CD80, CD54, cyt-ROS, HLA-DR, DDR1, and CD44; increased Bcl-2, CD58, COX2, CD26, CCR5, and invasive capability; increased CCL5, TARC, PGE2, and TGF-β; and the capability of hijacking monocytes. In HRSdx cells less sensitive to DNA damage and oxidative stress, the efflux drug transporters MDR1 and MRP1 were not up-regulated, and doxorubicin accumulated in the cytoplasm rather than in the nucleus. Both the autophagy inhibitor chloroquine and extracellular vesicle (EV) release inhibitor GW4869 enhanced doxorubicin activity and counteracted doxorubicin resistance. In conclusion, this study identifies common modulated antigens in HRSdx cells, the associated cross-resistance patterns, and new potential therapeutic options to enhance doxorubicin activity and overcome resistance. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lymphomas)
Show Figures

Figure 1

16 pages, 3902 KiB  
Article
Establishment and Characterization of Multi-Drug Resistant p53-Negative Osteosarcoma SaOS-2 Subline
by Sergei Boichuk, Firyuza Bikinieva, Elena Valeeva, Pavel Dunaev, Maria Vasileva, Pavel Kopnin, Ekaterina Mikheeva, Tatyana Ivoilova, Ilshat Mustafin and Aigul Galembikova
Diagnostics 2023, 13(16), 2646; https://doi.org/10.3390/diagnostics13162646 - 11 Aug 2023
Cited by 3 | Viewed by 2656
Abstract
Aim: To establish a p53-negative osteosarcoma (OS) SaOS-2 cellular subline exhibiting resistance to specific chemotherapeutic agents, including topoisomerase II inhibitors, taxanes, and vinca alkaloids. Methods: The OS subline exhibiting resistance to the chemotherapeutic agents indicated above was generated by the stepwise treatment of [...] Read more.
Aim: To establish a p53-negative osteosarcoma (OS) SaOS-2 cellular subline exhibiting resistance to specific chemotherapeutic agents, including topoisomerase II inhibitors, taxanes, and vinca alkaloids. Methods: The OS subline exhibiting resistance to the chemotherapeutic agents indicated above was generated by the stepwise treatment of the parental SaOS-2 cell line with increasing concentrations of doxorubicin (Dox) for 5 months. Half-inhibitory concentrations (IC50) for Dox, vinblastine (Vin), and paclitaxel (PTX) were calculated by a colorimetric MTS-based assay. Crystal violet staining was used to assess cellular viability, whereas the proliferation capacities of cancer cells were monitored in real-time by the i-Celligence system. Expression of apoptotic markers (e.g., cleaved PARP and caspase-3), DNA repair proteins (e.g., ATM, DNA-PK, Nbs1, Rad51, MSH2, etc.), and certain ABC transporters (P-glycoprotein, MRP1, ABCG2, etc.) was assessed by western blotting and real-time PCR. Flow cytometry was used to examine the fluorescence intensity of Dox and ABC-transporter substrates (e.g., Calcein AM and CMFDA) and to assess their excretion to define the activity of specific ABC-transporters. To confirm OS resistance to Dox in vivo, xenograft experiments were performed. Results: An OS subline generated by a stepwise treatment of the parental SaOS-2 cell line with increasing concentrations of Dox resulted in an increase in the IC50 for Dox, Vin, and PTX (~6-, 4-, and 30-fold, respectively). The acquisition of chemoresistance in vitro was also evidenced by the lack of apoptotic markers (e.g., cleaved PARP and caspase-3) in resistant OS cells treated with the chemotherapeutic agents indicated above. The development of the multidrug resistance (MDR) phenotype in this OS subline was due to the overexpression of ABCB1 (i.e., P-glycoprotein) and ABCC1 (i.e., multidrug resistance protein-1, MRP-1), which was evidenced on both mRNA and protein levels. Due to increased expression of MDR-related proteins, resistant OS exhibited an excessive efflux of Dox. Moreover, decreased accumulation of calcein AM, a well-known fluorescent substrate for both ABCB1 and ABCC1, was observed for resistant OS cells compared to their parental SaOS-2 cell line. Importantly, tariquidar and cyclosporin, well-known ABC inhibitors, retained the intensity of Dox-induced fluorescence in resistant SAOS-2 cells. Furthermore, in addition to the increased efflux of the chemotherapeutic agents from Dox-resistant OS cells, we found higher expression of several DNA repair proteins (e.g., Rad51 recombinase, Mre11, and Nbs1, activated forms of ATM, DNA-PK, Chk1, and Chk2, etc.), contributing to the chemoresistance due to the excessive DNA repair. Lastly, the in vivo study indicated that Dox has no impact on the SaOS-2 Dox-R xenograft tumor growth in a nude mouse model. Conclusions: An acquired resistance of OS to the chemotherapeutic agents might be due to the several mechanisms undergoing simultaneously on the single-cell level. This reveals the complexity of the mechanisms involved in the secondary resistance of OS to chemotherapies. Full article
Show Figures

Figure 1

Back to TopTop