Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = MLO-Y4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2561 KiB  
Article
Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation
by Jiayi Ren, Aseel Marahleh, Jinghan Ma, Fumitoshi Ohori, Takahiro Noguchi, Ziqiu Fan, Jin Hu, Kohei Narita, Angyi Lin and Hideki Kitaura
Biomedicines 2025, 13(2), 426; https://doi.org/10.3390/biomedicines13020426 - 10 Feb 2025
Viewed by 893
Abstract
Background/Objective: Osteocytes are the most abundant cell type in the skeleton, with key endocrine functions, particularly in regulating osteoblast and osteoclast activity to maintain bone quality. Angiotensin II (Ang II), a critical component of the renin–angiotensin–aldosterone system, is well-known for its role in [...] Read more.
Background/Objective: Osteocytes are the most abundant cell type in the skeleton, with key endocrine functions, particularly in regulating osteoblast and osteoclast activity to maintain bone quality. Angiotensin II (Ang II), a critical component of the renin–angiotensin–aldosterone system, is well-known for its role in vasoconstriction during hypertension. Beyond its cardiovascular functions, Ang II participates in various biological processes, including bone metabolism. While its influence on osteoblast proliferation, differentiation, and osteoclastogenesis has been documented, its effects on osteocytes remain unexplored. This study hypothesized that Ang II enhances the osteoclastogenic activity of osteocytes. Methods: Mouse calvariae were cultured ex vivo in an Ang II-containing medium, analyzed via immunohistochemistry, and evaluated for osteoclastogenic gene expression through real-time PCR. Western blotting was employed to assess protein levels and signaling pathway activation in the MLO-Y4 osteocytic cell line in vitro. Results: Ang II significantly increased the expression of receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). These effects were abrogated by azilsartan, a blocker targeting Ang II type 1 receptors (AT1R). p38 and ERK1/2 in the MAPK pathway were also activated by Ang II. Conclusions: Ang II enhances osteocyte-mediated osteoclastogenesis via AT1R activation, highlighting its potential as a therapeutic target for bone diseases. Full article
(This article belongs to the Topic Osteoimmunology and Bone Biology)
Show Figures

Figure 1

17 pages, 3441 KiB  
Article
Functional Insights in PLS3-Mediated Osteogenic Regulation
by Wenchao Zhong, Janine Neugebauer, Janak L. Pathak, Xingyang Li, Gerard Pals, M. Carola Zillikens, Elisabeth M. W. Eekhoff, Nathalie Bravenboer, Qingbin Zhang, Matthias Hammerschmidt, Brunhilde Wirth and Dimitra Micha
Cells 2024, 13(17), 1507; https://doi.org/10.3390/cells13171507 - 9 Sep 2024
Viewed by 1764
Abstract
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional [...] Read more.
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional compensation by actin-bundling proteins ACTN1, ACTN4, and FSCN1 was investigated in zebrafish following morpholino-mediated pls3 knockdown. Primary dermal fibroblasts from six patients with a PLS3 variant were also used to examine expression of these proteins during osteogenic differentiation. In addition, Pls3 knockdown in the murine MLO-Y4 cell line was employed to provide insights in global gene expression. Our results showed that ACTN1 and ACTN4 can rescue the skeletal deformities in zebrafish after pls3 knockdown, but this was inadequate for FSCN1. Patients’ fibroblasts showed the same osteogenic transdifferentiation ability as healthy donors. RNA-seq results showed differential expression in Wnt1, Nos1ap, and Myh3 after Pls3 knockdown in MLO-Y4 cells, which were also associated with the Wnt and Th17 cell differentiation pathways. Moreover, WNT2 was significantly increased in patient osteoblast-like cells compared to healthy donors. Altogether, our findings in different bone cell types indicate that the mechanism of PLS3-related pathology extends beyond actin-bundling proteins, implicating broader pathways of bone metabolism. Full article
Show Figures

Figure 1

17 pages, 3016 KiB  
Review
Loss of the Y Chromosome: A Review of Molecular Mechanisms, Age Inference, and Implications for Men’s Health
by Itzae Adonai Gutiérrez-Hurtado, Astrid Desireé Sánchez-Méndez, Denisse Stephania Becerra-Loaiza, Héctor Rangel-Villalobos, Norma Torres-Carrillo, Martha Patricia Gallegos-Arreola and José Alonso Aguilar-Velázquez
Int. J. Mol. Sci. 2024, 25(8), 4230; https://doi.org/10.3390/ijms25084230 - 11 Apr 2024
Cited by 9 | Viewed by 5958
Abstract
Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular [...] Read more.
Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular diseases, neurodegenerative disorders, and many types of cancer. Nevertheless, the mechanisms that generate mLOY in men have not been studied so far. This task is of great importance because it will allow focusing on possible methods of prophylaxis or therapy for diseases associated with mLOY. On the other hand, it would allow better understanding of mLOY as a possible marker for inferring the age of male samples in cases of human identification. Due to the above, in this work, a comprehensive review of the literature was conducted, presenting the most relevant information on the possible molecular mechanisms by which mLOY is generated, as well as its implications for men’s health and its possible use as a marker to infer age. Full article
(This article belongs to the Special Issue Genetic and Molecular Susceptibility in Human Diseases: 2nd Edition)
Show Figures

Figure 1

12 pages, 1977 KiB  
Article
Verbascoside Inhibits/Repairs the Damage of LPS-Induced Inflammation by Regulating Apoptosis, Oxidative Stress, and Bone Remodeling
by Sahika Pinar Akyer, Ege Rıza Karagur, Melek Tunc Ata, Emine Kilic Toprak, Aysegul Cort Donmez and Baris Ozgur Donmez
Curr. Issues Mol. Biol. 2023, 45(11), 8755-8766; https://doi.org/10.3390/cimb45110550 - 31 Oct 2023
Cited by 6 | Viewed by 1996
Abstract
Osteocytes play an important role as regulators of both osteoclasts and osteoblasts, and some proteins that are secreted from them play a role in bone remodeling and modeling. LPS affects bone structure because it is an inflammatory factor, despite verbascoside’s potential for bone [...] Read more.
Osteocytes play an important role as regulators of both osteoclasts and osteoblasts, and some proteins that are secreted from them play a role in bone remodeling and modeling. LPS affects bone structure because it is an inflammatory factor, despite verbascoside’s potential for bone preservation and healing. Osteocytes may also be involved in the control of the bone’s response to immunological changes in inflammatory situations. MLO-Y4 cells were cultured in either supplemented -MEM alone with a low serum to inhibit cell growth or media with LPS (10 ng/mL) and/or verbascoside (50 g/mL) to show the LPS effect. In our research, LPS treatment increased RANKL levels while decreasing OPG and RUNX2 expression. Treatment with verbascoside reduced RANKL expression. In our work, verbascoside increased the expression of OPG and RUNX2. In MLO-Y4 cells exposed to verbascoside, SOD, CAT, and GSH activities as well as the expression levels of bone mineralization proteins like PHEX, RUNX2, and OPG were all elevated. Full article
Show Figures

Figure 1

15 pages, 1622 KiB  
Article
The Mechanism of Interleukin 33-Induced Stimulation of Interleukin 6 in MLO-Y4 Cells
by Sae Noguchi, Ryota Yamasaki, Yoshie Nagai-Yoshioka, Tsuyoshi Sato, Kayoko Kuroishi, Kaori Gunjigake, Wataru Ariyoshi and Tatsuo Kawamoto
Int. J. Mol. Sci. 2023, 24(19), 14842; https://doi.org/10.3390/ijms241914842 - 2 Oct 2023
Cited by 3 | Viewed by 2268
Abstract
The differentiation and function of osteocytes are controlled by surrounding cells and mechanical stress; however, the detailed mechanisms are unknown. Recent findings suggest that IL-33 is highly expressed in periodontal tissues in orthodontic tooth movement. The present study aimed to elucidate the effect [...] Read more.
The differentiation and function of osteocytes are controlled by surrounding cells and mechanical stress; however, the detailed mechanisms are unknown. Recent findings suggest that IL-33 is highly expressed in periodontal tissues in orthodontic tooth movement. The present study aimed to elucidate the effect of IL-33 on the expression of regulatory factors for bone remodeling and their molecular mechanisms in the osteocyte-like cell line MLO-Y4. MLO-Y4 cells were treated with IL-33, and the activation of intracellular signaling molecules and transcriptional factors was determined using Western blot analysis and chromatin immunoprecipitation assay. IL-33 treatment enhanced the expression of IL-6 in MLO-Y4 cells, which was suppressed by the knockdown of the IL-33 receptor ST2L. Additionally, IL-33 treatment induced activation of NF-κB, JNK/AP-1, and p38 MAPK signaling pathways in MLO-Y4 cells. Moreover, pretreatment with specific inhibitors of NF-κB, p38 MAPK, and JNK/AP-1 attenuated the IL-33-induced expression of IL-6. Furthermore, chromatin immunoprecipitation indicated that IL-33 increased c-Jun recruitment to the IL-6 promoter. Overall, these results suggest that IL-33 induces IL-6 expression and regulates osteocyte function via activation of the NF-κB, JNK/AP-1, and p38 MAPK pathways through interaction with ST2L receptors on the plasma membrane. Full article
(This article belongs to the Topic Osteoimmunology and Bone Biology)
Show Figures

Figure 1

27 pages, 9856 KiB  
Article
Radiation Induces Bone Microenvironment Disruption by Activating the STING-TBK1 Pathway
by Yuyang Wang, Li Ren, Linshan Xu, Jianping Wang, Jianglong Zhai and Guoying Zhu
Medicina 2023, 59(7), 1316; https://doi.org/10.3390/medicina59071316 - 16 Jul 2023
Cited by 4 | Viewed by 2499
Abstract
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to [...] Read more.
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

24 pages, 8272 KiB  
Article
Osteocytes Exposed to Titanium Particles Inhibit Osteoblastic Cell Differentiation via Connexin 43
by Hao Chai, Qun Huang, Zixue Jiao, Shendong Wang, Chunguang Sun, Dechun Geng and Wei Xu
Int. J. Mol. Sci. 2023, 24(13), 10864; https://doi.org/10.3390/ijms241310864 - 29 Jun 2023
Cited by 4 | Viewed by 1814
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study, we investigated the effects of [...] Read more.
Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study, we investigated the effects of connexin 43 (Cx43) on the regulation of osteocyte-to-osteoblast differentiation. We established an in vivo murine model of calvarial osteolysis induced by titanium (Ti) particles. The osteolysis characteristic and osteogenesis markers in the osteocyte-selective Cx43 (CKO)-deficient and wild-type (WT) mice were observed. The calvarial osteolysis induced by Ti particles was partially attenuated in CKO mice. The expression of β-catenin and osteogenesis markers increased significantly in CKO mice. In vitro, the osteocytic cell line MLO-Y4 was treated with Ti particles. The co-culturing of MLO-Y4 cells with MC3T3-E1 osteoblastic cells was used to observe the effects of Ti-treated osteocytes on osteoblast differentiation. When Cx43 of MLO-Y4 cells was silenced or overexpressed, β-catenin was detected. Additionally, co-immunoprecipitation detection of Cx43 and β-catenin binding in MLO-Y4 cells and MC3T3-E1 cells was performed. Finally, β-catenin expression in MC3T3-E1 cells and osteoblast differentiation were evaluated after 18α-glycyrrhetinic acid (18α-GA) was used to block the intercellular communication of Cx43 between MLO-Y4 and MC3T3-E1 cells. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells. The silencing of Cx43 increased the β-catenin expression, and the over-expression of Cx43 decreased the β-catenin expression. In the co-culture model, Ti treatment of MLO-Y4 cells inhibited the osteoblastic differentiation of MC3T3-E1 cells and Cx43 silencing in MLO-Y4 cells attenuated the inhibitory effects on osteoblastic differentiation. With Cx43 silencing in the MLO-Y4 cells, the MC3T3-E1 cells, co-cultured alongside MLO-Y4, displayed decreased Cx43 expression, increased β-catenin expression, activation of Runx2, and promotion of osteoblastic differentiation in vitro co-culture. Finally, Cx43 expression was found to be negatively correlated to the activity of the Wnt signaling pathway, mostly through the Cx43 binding of β-catenin from its translocation to the nucleus. The results of our study suggest that Ti particles increased Cx43 expression in osteocytes and that osteocytes may participate in the regulation of osteoblast function via the Cx43 during PPO. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3213 KiB  
Article
Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4
by Yue Li, Zhijun Huang, Shuaifei Pan, Yuhui Feng, Haokun He, Shuguang Cheng, Lijing Wang, Liping Wang and Janak Lal Pathak
Nutrients 2023, 15(9), 2115; https://doi.org/10.3390/nu15092115 - 28 Apr 2023
Cited by 49 | Viewed by 5241
Abstract
The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male [...] Read more.
The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male mice and treated with or without resveratrol. Periodontitis pathogenicity was analyzed by micro-CT and histology, and alveolar-osteocyte ferroptosis was analyzed by immunohistochemistry. MLOY4 osteocytes were treated with P. gingivalis-derived lipopolysaccharide (LPS)+advanced glycosylated end products (AGEs) mimicking diabetic periodontitis condition in vitro, with or without resveratrol or ferrostatin-1 (ferroptosis inhibitor). Osteocyte ferroptosis and expression of inflammatory mediators were analyzed. Diabetic periodontitis aggravated periodontitis pathogenicity and inhibited the expression of GPX4 and SLC7A11 in alveolar osteocytes and resveratrol alleviated these effects. LPS+AGEs triggered osteocyte ferroptosis in vitro as indicated by the downregulated GPX4 and SLC7A11, upregulated malondialdehyde, disrupted mitochondrial morphology, and overexpressed pro-inflammatory mediators IL-1β, TNF-α, SOST, RANKL, and IL-6, and ferrostatin-1 or resveratrol treatment reversed these effects. LPS+AGEs upregulated pIKBα and pNF-κB p65 expression in osteocytes, and resveratrol or ferrostatin-1 reversed this effect. In conclusion, diabetic periodontitis triggers alveolar osteocyte ferroptosis possibly via disruption of the SLC7A11/GPX4 axis, and resveratrol has therapeutic potential to correct this biological event. Full article
(This article belongs to the Special Issue Iron Dysregulation and the Role of Iron in Disease Pathogenesis)
Show Figures

Figure 1

20 pages, 7330 KiB  
Article
CHIR99021-Treated Osteocytes with Wnt Activation in 3D-Printed Module Form an Osteogenic Microenvironment for Enhanced Osteogenesis and Vasculogenesis
by Yisheng Luo, Yangxi Liu, Bo Wang and Xiaolin Tu
Int. J. Mol. Sci. 2023, 24(6), 6008; https://doi.org/10.3390/ijms24066008 - 22 Mar 2023
Cited by 7 | Viewed by 2983
Abstract
Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation [...] Read more.
Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation by regulating bone anabolism, which may improve the biological activity of bone implants. To achieve a safe application, we used the Wnt agonist CHIR99021 (C91) to treat MLO-Y4 for 24 h, in a co-culture with ST2 for 3 days after withdrawal. We found that the expression of Runx2 and Osx increased, promoted osteogenic differentiation, and inhibited adipogenic differentiation in the ST2 cells, and these effects were eliminated by the triptonide. Therefore, we hypothesized that C91-treated osteocytes form an osteogenic microenvironment (COOME). Subsequently, we constructed a bio-instructive 3D printing system to verify the function of COOME in 3D modules that mimic the in vivo environment. Within PCI3D, COOME increased the survival and proliferation rates to as high as 92% after 7 days and promoted ST2 cell differentiation and mineralization. Simultaneously, we found that the COOME-conditioned medium also had the same effects. Therefore, COOME promotes ST2 cell osteogenic differentiation both directly and indirectly. It also promotes HUVEC migration and tube formation, which can be explained by the high expression of Vegf. Altogether, these results indicate that COOME, combined with our independently developed 3D printing system, can overcome the poor cell survival and bioactivity of orthopedic implants and provide a new method for clinical bone defect repair. Full article
(This article belongs to the Special Issue Novel Osteogenic Molecules and Delivery Methods for Bone Regeneration)
Show Figures

Figure 1

18 pages, 9241 KiB  
Article
Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells
by Regina Puts, Aseel Khaffaf, Maria Shaka, Hui Zhang and Kay Raum
Bioengineering 2023, 10(3), 387; https://doi.org/10.3390/bioengineering10030387 - 21 Mar 2023
Cited by 4 | Viewed by 2922
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a [...] Read more.
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell–cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival. Full article
(This article belongs to the Special Issue Advances in Fracture Healing Research)
Show Figures

Graphical abstract

17 pages, 1695 KiB  
Article
Mendelian Randomisation Confirms the Role of Y-Chromosome Loss in Alzheimer’s Disease Aetiopathogenesis in Men
by Pablo García-González, Itziar de Rojas, Sonia Moreno-Grau, Laura Montrreal, Raquel Puerta, Emilio Alarcón-Martín, Inés Quintela, Adela Orellana, Victor Andrade, Pamela V. Martino Adami, Stefanie Heilmann-Heimbach, Pilar Gomez-Garre, María Teresa Periñán, Ignacio Alvarez, Monica Diez-Fairen, Raul Nuñez Llaves, Claudia Olivé Roig, Guillermo Garcia-Ribas, Manuel Menéndez-González, Carmen Martínez, Miquel Aguilar, Mariateresa Buongiorno, Emilio Franco-Macías, Maria Eugenia Saez, Amanda Cano, Maria J. Bullido, Luis Miguel Real, Eloy Rodríguez-Rodríguez, Jose Luís Royo, Victoria Álvarez, Pau Pastor, Gerard Piñol-Ripoll, Pablo Mir, Miguel Calero Lara, Miguel Medina Padilla, Pascual Sánchez-Juan, Angel Carracedo, Sergi Valero, Isabel Hernandez, Lluis Tàrraga, Alfredo Ramirez, Mercé Boada and Agustín Ruizadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2023, 24(2), 898; https://doi.org/10.3390/ijms24020898 - 4 Jan 2023
Cited by 17 | Viewed by 6237
Abstract
Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer’s disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY [...] Read more.
Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer’s disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10−20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 3625 KiB  
Article
Parametric Numerical Modeling and Fabrication of PCL Scaffolds for Bone Tissue Engineering Applications
by Anton Früh, Bernd Rolauffs and Michael Seidenstuecker
Appl. Sci. 2022, 12(23), 12280; https://doi.org/10.3390/app122312280 - 30 Nov 2022
Cited by 1 | Viewed by 2372
Abstract
Bone tissue engineering (BTE) is an interdisciplinary discipline that focuses on bone structure–function relationships for improving the replacement and/or regeneration of bone tissues. Thereby, the architecture and load-bearing capacity of embedded scaffolds play an important role in the generation of artificial tissues. The [...] Read more.
Bone tissue engineering (BTE) is an interdisciplinary discipline that focuses on bone structure–function relationships for improving the replacement and/or regeneration of bone tissues. Thereby, the architecture and load-bearing capacity of embedded scaffolds play an important role in the generation of artificial tissues. The aim of this study was to develop a parametric numerical model and the accompanying fabrication of polycaprolactone (PCL) scaffolds for BTE applications. Therefore, we manufactured layered PCL-based constructs using three-dimensional (3D) printing. The material properties of PCL and constructs were determined by mechanical testing, and numerical models based on Beam188 Timoshenko elements were developed in the software environment ANSYS. PCL constructs were coated with collagen and seeded with osteoblasts, mesenchymal stem cells (MSCs), MLO-Y4 and MG63 cell types. We demonstrated the successful production of PCL constructs with 3D interconnected pores suitable for BTE applications. Furthermore, we provided for the first time geometrical parametric numerical models that determined the mechanical behavior of layered PCL scaffolds consisting of interconnected compartments for strains up to 3%. The parametric structures of the model allowed us to flexibly study new geometries in silico, which demonstrated its role as an important tool for supporting the fabrication of customized PCL constructs in planning and performing suitable mechanical characterizations for BTE applications. Full article
Show Figures

Figure 1

20 pages, 2663 KiB  
Article
The Osteocyte Stimulated by Wnt Agonist SKL2001 Is a Safe Osteogenic Niche Improving Bioactivities in a Polycaprolactone and Cell Integrated 3D Module
by Yangxi Liu, Xiaojie Ruan, Jun Li, Bo Wang, Jie Chen, Xiaofang Wang, Pengtao Wang and Xiaolin Tu
Cells 2022, 11(5), 831; https://doi.org/10.3390/cells11050831 - 28 Feb 2022
Cited by 15 | Viewed by 3464
Abstract
Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate [...] Read more.
Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate bone formation and resorption (PNAS 2015, PMID: 25605937). However, methods for taking advantage of the leading role of osteocytes in bone regeneration remain unexplored. Herein, we found that the osteocytes with SKL2001-activated Wnt signaling could be an osteogenic microenvironment (SOOME) which upregulates the expression of bone transcription factor Runx2 and Bglap and promotes the differentiation of bone marrow stromal cell ST2 into osteoblasts. Interestingly, 60 μM SKL2001 treatment of osteocytic MLO-Y4 for 24 h maintained Wnt signaling activation for three days after removal, which was sufficient to induce osteoblast differentiation. Triptonide, a Wnt inhibitor, could eliminate this differentiation. Moreover, on day 5, the Wnt signaling naturally decreased to the level of the control group, indicating that this method of Wnt-signaling induction is safe to use. We quickly verified in vivo function of SOOME to a good proximation in 3D bioprinted modules composed of reciprocally printed polycaprolactone bundles (for support) and cell bundles (for bioactivity). In the cell bundles, SOOME stably supported the growth and development of ST2 cells, the 7-day survival rate was as high as 91.6%, and proliferation ability increased linearly. Similarly, SOOME greatly promoted ST2 differentiation and mineralization for 28 days. In addition, SOOME upregulated the expression of angiopoietin 1, promoted endothelial cell migration and angiogenesis, and increased node number and total length of tubes and branches. Finally, we found that the function of SOOME could be realized through the paracrine pathway. This study reveals that osteocytes with Wnt signaling activated by SKL2001 are a safe osteogenic microenvironment. Both SOOME itself and its cell-free culture supernatant can improve bioactivity for osteoblast differentiation, with composite scaffolds especially bearing application value. Full article
(This article belongs to the Special Issue Cellular and Molecular Regulation of Bone Remodeling)
Show Figures

Graphical abstract

20 pages, 4245 KiB  
Article
The Osteogenesis Imperfecta Type V Mutant BRIL/IFITM5 Promotes Transcriptional Activation of MEF2, NFATc, and NR4A in Osteoblasts
by Vincent Maranda, Marie-Hélène Gaumond and Pierre Moffatt
Int. J. Mol. Sci. 2022, 23(4), 2148; https://doi.org/10.3390/ijms23042148 - 15 Feb 2022
Cited by 6 | Viewed by 3438
Abstract
BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to [...] Read more.
BRIL (bone restricted ifitm-like; also known as IFITM5) is a transmembrane protein expressed in osteoblasts. Although its role in skeletal development and homeostasis is unknown, mutations in BRIL result in rare dominant forms of osteogenesis imperfecta. The pathogenic mechanism has been proposed to be a gain-of or neomorphic function. To understand the function of BRIL and its OI type V mutant (MALEP BRIL) and whether they could activate signaling pathways in osteoblasts, we performed a luciferase reporter assay screen based on the activity of 26 transcription factors. When overexpressed in MC3T3-E1 and MLO-A5 cells, the MALEP BRIL activated the reporters dependent on MEF2, NFATc, and NR4A significantly more. Additional co-transfection experiments with MEF2C and NFATc1 and a number of their modulators (HDAC4, calcineurin, RCAN, FK506) confirmed the additive or synergistic activation of the pathways by MALEP, and suggested a coordinated regulation involving calcineurin. Endogenous levels of Nr4a members, as well as Ptgs2, were upregulated by MALEP BRIL. Y2H and co-immunoprecipitation indicated that BRIL interacted with CAML, but its contribution as the most upstream stimulator of the Ca2+-calcineurin-MEF2/NFATc cascade was not confirmed convincingly. Altogether the data presented provide the first ever readout to monitor for BRIL activity and suggest a potential gain-of-function causative effect for MALEP BRIL in OI type V, leading to perturbed signaling events and gene expression. Full article
(This article belongs to the Special Issue Osteoblast Differentiation and Activity in Skeletal Diseases 2.0)
Show Figures

Figure 1

15 pages, 13420 KiB  
Article
Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol
by Vladana Domazetovic, Irene Falsetti, Simone Ciuffi, Teresa Iantomasi, Gemma Marcucci, Maria Teresa Vincenzini and Maria Luisa Brandi
Int. J. Mol. Sci. 2022, 23(4), 2103; https://doi.org/10.3390/ijms23042103 - 14 Feb 2022
Cited by 13 | Viewed by 2525
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex [...] Read more.
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop