Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = MIR lasers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5206 KiB  
Article
Self-Powered Photodetectors with Ultra-Broad Spectral Response and Thermal Stability for Broadband, Energy Efficient Wearable Sensing and Optoelectronics
by Peter X. Feng, Elluz Pacheco Cabrera, Jin Chu, Badi Zhou, Soraya Y. Flores, Xiaoyan Peng, Yiming Li, Liz M. Diaz-Vazquez and Andrew F. Zhou
Molecules 2025, 30(14), 2897; https://doi.org/10.3390/molecules30142897 - 8 Jul 2025
Viewed by 384
Abstract
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), [...] Read more.
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), high responsivity (up to 1015 mA/W at 250 nm and 2.5 V bias), and thermal stability up to 100 °C. The synthesis process involved CO2 laser exfoliation of hexagonal boron nitride, followed by gold NP deposition via RF sputtering and thermal annealing. Structural and compositional analyses confirmed the formation of a three-dimensional network of atomically thin BN nanosheets decorated with uniformly distributed gold nanoparticles. This architecture facilitates plasmon-enhanced absorption and efficient charge separation via heterojunction interfaces, significantly boosting photocurrent generation across the deep ultraviolet (DUV), visible, near-infrared (NIR), and mid-infrared (MIR) spectral regions. First-principles calculations support the observed broadband response, confirming bandgap narrowing induced by defects in h-BN and functionalization by gold nanoparticles. The device’s self-driven operation, wide spectral response, and durability under elevated temperatures underscore its strong potential for next-generation broadband, self-powered, and wearable sensing and optoelectronic applications. Full article
(This article belongs to the Special Issue Novel Nanomaterials: Sensing Development and Applications)
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 809
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

27 pages, 10012 KiB  
Article
Beam Emittance and Bunch Length Diagnostics for the MIR-FEL Beamline at Chiang Mai University
by Kittipong Techakaew, Kanlayaporn Kongmali, Siriwan Pakluea and Sakhorn Rimjaem
Particles 2025, 8(3), 64; https://doi.org/10.3390/particles8030064 - 21 Jun 2025
Viewed by 1120
Abstract
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing [...] Read more.
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing FEL performance. However, dedicated systems for direct measurement of transverse emittance and bunch length at the undulator entrance have been lacking. This paper addresses this gap by presenting the design, simulation, and analysis of diagnostic stations for accurate characterization of these parameters. A two-quadrupole emittance measurement system was developed, enabling independent control of beam-focusing in both transverse planes. An analytical model was formulated specifically for this configuration to enhance emittance reconstruction accuracy. Systematic error analysis was conducted using ASTRA beam dynamics simulations, incorporating 3D field maps from CST Studio Suite and fully including space-charge effects. Results show that transverse emittance values as low as 0.15 mm·mrad can be measured with less than 20% error when the initial RMS beam size is under 2 mm. Additionally, quadrupole misalignment effects were quantified, showing that alignment within ±0.95 mm limits systematic errors to below 33.3%. For bunch length measurements, a transition radiation (TR) station coupled with a Michelson interferometer was designed. Spectral and interferometric simulations reveal that transverse beam size and beam splitter properties significantly affect measurement accuracy. A 6% error due to transverse size was identified, while Kapton beam splitters introduced additional systematic distortions. In contrast, a 6 mm-thick silicon beam splitter enabled accurate, correction-free measurements. The finite size of the radiator was also found to suppress low-frequency components, resulting in up to 10.6% underestimation of bunch length. This work provides a practical and comprehensive diagnostic framework that accounts for multiple error sources in both transverse emittance and bunch length measurements. These findings contribute valuable insight for the beam diagnostics community and support improved control of beam quality in MIR FEL systems. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

17 pages, 3117 KiB  
Article
Explosives Analysis Using Thin-Layer Chromatography–Quantum Cascade Laser Spectroscopy
by John R. Castro-Suarez, Luis A. Pérez-Almodóvar, Doris M. Laguer-Martínez, José L. Ruiz-Caballero, José A. Centeno-Ortiz, Tamara Felix-Massa, Leonardo C. Pacheco-Londoño and Samuel P. Hernández-Rivera
Molecules 2025, 30(8), 1844; https://doi.org/10.3390/molecules30081844 - 19 Apr 2025
Viewed by 619
Abstract
A new hyphenated technique using thin-layer chromatography (TLC) to separate analytes in mixtures, coupled with mid-infrared (MIR) laser spectroscopy for identification and quantification, is presented. The method, which provides a means for rapid screening of analytes that is practical, low-cost, fast, robust, and [...] Read more.
A new hyphenated technique using thin-layer chromatography (TLC) to separate analytes in mixtures, coupled with mid-infrared (MIR) laser spectroscopy for identification and quantification, is presented. The method, which provides a means for rapid screening of analytes that is practical, low-cost, fast, robust, and reproducible, was tested using nitroaromatic and aliphatic nitro high explosives (HEs) as target analytes. HEs are anthropogenic contaminants containing an -NO2 group. For validation of the new technique, a direct comparison of the 2,4,6-trinitrotoluene (TNT) spectrum, obtained by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with TLC, was carried out. The MIR laser spectroscopy-based method was evaluated by calculating the analytical figures of merit regarding the calibration curves’ linearity and the method’s sensitivity and precision. The TNT spectrum obtained by the MIR laser method showed two prominent and characteristic bands of the explosive at approximately 1350 cm−1 and 1550 cm−1 compared to the spectrum acquired by ATR-FTIR. The detection limit calculated for TNT was 84 ng, while the quantification limit was 252 ng. Multivariate analysis was used to evaluate the spectroscopic data to identify sources of variation and determine their relation. Partial least squares (PLS) regression analysis and PLS combined with discriminant analysis (PLS-DA) were used for quantification and classification. The new technique, TLC-QCL, is amenable to a smaller footprint with further developments in MIR laser technology, making it portable for fieldwork. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

21 pages, 2682 KiB  
Article
Non-Canonical Wnt16 and microRNA-145 Mediate the Response of Human Bone Marrow Stromal Cells to Additively Manufactured Porous 3-Dimensional Biomimetic Titanium–Aluminum–Vanadium Constructs
by David. J. Cohen, Michael B. Berger, Jingyao Deng, Thomas W. Jacobs, Barbara D. Boyan and Zvi Schwartz
Cells 2025, 14(3), 211; https://doi.org/10.3390/cells14030211 - 1 Feb 2025
Viewed by 1475
Abstract
Metal 3D printing is increasingly being used to manufacture titanium–aluminum–vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, [...] Read more.
Metal 3D printing is increasingly being used to manufacture titanium–aluminum–vanadium (Ti6Al4V) implants. In vitro studies using 2D substrates demonstrate that the osteoblastic differentiation of bone marrow stromal cells (MSCs) on Ti6Al4V surfaces, with a microscale/nanoscale surface topography that mimics an osteoclast resorption pit, involves non-canonical Wnt signaling; Wnt3a is downregulated and Wnt5a is upregulated, leading to the local production of BMP2 and semaphorin 3A (sema3A). In this study, it was examined whether the regulation of MSCs in a 3D environment occurs by a similar mechanism. Human MSCs from two different donors were cultured for 7, 14, or 21 days on porous (3D) or solid (2D) constructs fabricated by powder-bed laser fusion. mRNA and secretion of osteoblast markers, as well as factors that enhance peri-implant osteogenesis, were analyzed, with a primary focus on the Wnt family, sema3A, and microRNA-145 (miR-145) signaling pathways. MSCs exhibited greater production of osteocalcin, latent and active TGFβ1, sema3A, and Wnt16 on the 3D constructs compared to 2D, both of which had similar microscale/nanoscale surface modifications. Wnt3a was reduced on 2D constructs as a function of time; Wnt11 and Wnt5a remained elevated in the 3D and 2D cultures. To better understand the role of Wnt16, cultures were treated with rhWnt16; endogenous Wnt16 was blocked using an antibody. Wnt16 promoted proliferation and inhibited osteoblast differentiation, potentially by reducing production of BMP2 and BMP4. Wnt16 expression was reduced by exogenous Wnt16 in 3D cells. Addition of the anti-Wnt16 antibody to the cultures reversed the effects of exogenous Wnt16, indicating an autocrine mechanism. Wnt16 increased miR-145-5p, suggesting a potential feedback mechanism. The miR-145-5p mimic increased Wnt16 production and inhibited sema3A in a 3D porous substrate-specific manner. Wnt16 did not affect sema3A production, but it was reduced by miR-145-5p mimic on the 3D constructs and stimulated by miR-145-5p inhibitor. Media from 7-, 14-, and 21-day cultures of MSCs grown on 3D constructs inhibited osteoclast activity to a greater extent than media from the 2D cultures. The findings present a significant step towards understanding the complex molecular interplay that occurs in 3D Ti6Al4V constructs fabricated by additive manufacturing. In addition to enhancing osteogenesis, the 3D porous biomimetic structure inhibits osteoclast activities, indicating its role in modulating bone remodeling processes. Our data suggest that the pathway mediated by sema3A/Wnt16/miR145-5p was enhanced by the 3D surface and contributes to bone regeneration in the 3D implants. This comprehensive exploration contributes valuable insights to guide future strategies in implant design, customization, and ultimately aims at improving clinical outcomes and successful osseointegration. Full article
Show Figures

Figure 1

7 pages, 2734 KiB  
Communication
High-Energy Burst-Mode 3.5 μm MIR KTA-OPO
by Haowen Guo, Chunyan Jia, Shuai Ye, Yongping Yao, Tiejun Ma, Jiayu Zhang, Meng Bai, Jinbao Xia, Hongkun Nie, Bo Yao, Jingliang He and Baitao Zhang
Photonics 2025, 12(1), 72; https://doi.org/10.3390/photonics12010072 - 15 Jan 2025
Viewed by 888
Abstract
In this paper, a high energy 3.5 μm mid-infrared (MIR) burst-mode KTA optical parametric oscillator (OPO) was demonstrated. Utilizing a quasi-continuous wave (QCW) laser diode (LD) side-pump module and electro-optic (EO) Q-switching technique, a high beam quality 1064 nm burst-mode laser was achieved [...] Read more.
In this paper, a high energy 3.5 μm mid-infrared (MIR) burst-mode KTA optical parametric oscillator (OPO) was demonstrated. Utilizing a quasi-continuous wave (QCW) laser diode (LD) side-pump module and electro-optic (EO) Q-switching technique, a high beam quality 1064 nm burst-mode laser was achieved as the fundamental source, generating 30 mJ high-energy pulses at burst repetition rates of 100 Hz and 200 Hz with sub-burst repetition rates of 20 kHz, 40 kHz, and 50 kHz. The KTA-OPO produced a 3.5 μm MIR burst-mode laser output with 4 to 11 sub-pulses per pulse envelope. The output energies were 2.9 mJ, 2.81 mJ, and 2.79 mJ at 100 Hz, as well as 2.8 mJ, 2.75 mJ, and 2.72 mJ at 200 Hz, with corresponding conversion efficiencies of 9.6%, 9.3%, and 9.3% at 100 Hz, as well as 9.3%, 9.2%, and 9.1% at 200 Hz, respectively. Our results pave a new way for generating burst-mode MIR lasers. Full article
Show Figures

Figure 1

13 pages, 3343 KiB  
Article
Raman, MIR, VNIR, and LIBS Spectra of Szomolnokite, Rozenite, and Melanterite: Martian Implications
by Xiai Zhuo, Ruize Zhang, Erbin Shi, Jiahui Liu and Zongcheng Ling
Universe 2024, 10(12), 462; https://doi.org/10.3390/universe10120462 - 19 Dec 2024
Viewed by 1183
Abstract
Different sulfates (Ca-, Mg, and Fe- sulfates) have been extensively detected on the Martian surface. As one of the Martian sulfates, the presence of ferrous sulfates will provide valuable clues about the redox environment, hydrological processes, and climatic history of ancient Mars. In [...] Read more.
Different sulfates (Ca-, Mg, and Fe- sulfates) have been extensively detected on the Martian surface. As one of the Martian sulfates, the presence of ferrous sulfates will provide valuable clues about the redox environment, hydrological processes, and climatic history of ancient Mars. In this study, three hydrated ferrous sulfates were prepared in the laboratory by heating dehydration reactions. These samples were analyzed using X-ray Diffraction (XRD) to confirm their phase and homogeneity. Subsequently, Raman, mid-infrared (MIR) spectra, visible near-infrared (VNIR) spectra, and laser-induced breakdown spectroscopy (LIBS) were measured and analyzed. The results demonstrate that the spectra of three hydrated ferrous sulfates exhibit distinctive features (e.g., the v1 and v3 features of SO42 tetrahedra in their Raman and MIR spectra) that can offer new insights for identifying different ferrous sulfates on Mars and aid in the interpretation of in-situ data collected by instruments such as the Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC), SuperCam, and ChemCam, etc. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

39 pages, 13148 KiB  
Article
Fiducial Reference Measurement for Greenhouse Gases (FRM4GHG)
by Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Pieter Bogaert, Pepijn Cardoen, Huilin Chen, Filip Desmet, Omaira García, David W. T. Griffith, Frank Hase, Pauli Heikkinen, Benedikt Herkommer, Christian Hermans, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Bavo Langerock, Neil A. Macleod, Jamal Makkor, Winfried Markert, Christof Petri, Qiansi Tu, Corinne Vigouroux, Damien Weidmann and Minqiang Zhouadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(18), 3525; https://doi.org/10.3390/rs16183525 - 23 Sep 2024
Cited by 3 | Viewed by 1874
Abstract
The Total Carbon Column Observing Network (TCCON) and the Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) are two ground-based networks that provide the retrieved concentrations of up to 30 atmospheric trace gases, using solar absorption spectrometry. [...] Read more.
The Total Carbon Column Observing Network (TCCON) and the Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) are two ground-based networks that provide the retrieved concentrations of up to 30 atmospheric trace gases, using solar absorption spectrometry. Both networks provide reference measurements for the validation of satellites and models. TCCON concentrates on long-lived greenhouse gases (GHGs) for carbon cycle studies and validation. The number of sites is limited, and the geographical coverage is uneven, covering mainly Europe and the USA. A better distribution of stations is desired to improve the representativeness of the data for various atmospheric conditions and surface conditions and to cover a large latitudinal distribution. The two successive Fiducial Reference Measurements for Greenhouse Gases European Space Agency projects (FRM4GHG and FRM4GHG2) aim at the assessment of several low-cost portable instruments for precise measurements of GHGs to complement the existing ground-based sites. Several types of low spectral resolution Fourier transform infrared (FTIR) spectrometers manufactured by Bruker, namely an EM27/SUN, a Vertex70, a fiber-coupled IRCube, and a Laser Heterodyne spectro-Radiometer (LHR) developed by UK Rutherford Appleton Laboratory are the participating instruments to achieve the Fiducial Reference Measurements (FRMs) status. Intensive side-by-side measurements were performed using all four instruments next to the Bruker IFS 125HR high spectral resolution FTIR, performing measurements in the NIR (TCCON configuration) and MIR (NDACC configuration) spectral range. The remote sensing measurements were complemented by AirCore launches, which provided in situ vertical profiles of target gases traceable to the World Meteorological Organization (WMO) reference scale. The results of the intercomparisons are shown and discussed. Except for the EM27/SUN, all other instruments, including the reference TCCON spectrometer, needed modifications during the campaign period. The EM27/SUN and the Vertex70 provided stable and precise measurements of the target gases during the campaign with quantified small biases. As part of the FRM4GHG project, one EM27/SUN is now used as a travel standard for the verification of column-integrated GHG measurements. The extension of the Vertex70 to the MIR provides the opportunity to retrieve additional concentrations of N2O, CH4, HCHO, and OCS. These MIR data products are comparable to the retrieval results from the high-resolution IFS 125HR spectrometer as operated by the NDACC. Our studies show the potential for such types of spectrometers to be used as a travel standard for the MIR species. An enclosure system with a compact solar tracker and meteorological station has been developed to house the low spectral resolution portable FTIR systems for performing solar absorption measurements. This helps the spectrometers to be mobile and enables autonomous operation, which will help to complement the TCCON and NDACC networks by extending the observational capabilities at new sites for the observation of GHGs and additional air quality gases. The development of the retrieval software allows comparable processing of the Vertex70 type of spectra as the EM27/SUN ones, therefore bringing them under the umbrella of the COllaborative Carbon Column Observing Network (COCCON). A self-assessment following the CEOS-FRM Maturity Matrix shows that the COCCON is able to provide GHG data products of FRM quality and can be used for either short-term campaigns or long-term measurements to complement the high-resolution FTIR networks. Full article
Show Figures

Figure 1

13 pages, 2462 KiB  
Article
Medium-Term Monitoring of Greenhouse Gases above Rice-Wheat Rotation System Based on Mid-Infrared Laser Heterodyne Radiometer
by Zhengyue Xue, Jun Li, Fengjiao Shen, Sheng Zhang, Xueyou Hu and Tu Tan
Agronomy 2024, 14(9), 2162; https://doi.org/10.3390/agronomy14092162 - 22 Sep 2024
Viewed by 3721
Abstract
The rice-wheat rotation system is a major agricultural practice in China as well as an important source of greenhouse gas (GHG) emissions. In this study, the developed mid-infrared laser heterodyne radiometer (MIR-LHR) was used for the remote sensing of atmospheric CH4 and [...] Read more.
The rice-wheat rotation system is a major agricultural practice in China as well as an important source of greenhouse gas (GHG) emissions. In this study, the developed mid-infrared laser heterodyne radiometer (MIR-LHR) was used for the remote sensing of atmospheric CH4 and N2O concentrations above the rice-wheat rotation system. From April 2019 to May 2022, the atmospheric column concentrations of CH4 and N2O above the rice-wheat rotation system were continuously observed in Hefei, China. The peak values of the N2O column concentration appeared 7~10 days after wheat seasonal fertilization, with additional peaks during the drainage period of rice cultivation. During the three-year rice-wheat crop rotation cycle, a consistent trend was observed in the CH4 column concentrations, which increased during the rice-growing season and subsequently decreased during the wheat-growing season. The data reveal different seasonal patterns and the impact of agricultural activities on their emissions. During the observation period, the fluctuations in the CH4 and N2O column concentrations associated with the rice-wheat rotation system were about 40 ppbv and 6 ppbv, respectively. The MIR-LHR developed for this study shows great potential for analyzing fluctuations in atmospheric column concentrations caused by GHG emissions in the rice-wheat rotation system. Full article
Show Figures

Figure 1

11 pages, 3252 KiB  
Article
5.3 W/265 μJ Mid-IR All-Fiber Er3+:ZBLAN Gain-Switched Laser Based on Dielectric Fiber Mirror and Fiber-Tip Protection
by Tingting Chen, Jue Su, Wenbo Zhong, Yu Ding, Lu Huang, Yikun Bu, Jianfeng Li and Zhengqian Luo
Photonics 2024, 11(8), 700; https://doi.org/10.3390/photonics11080700 - 28 Jul 2024
Viewed by 1079
Abstract
We report a 2.8 μm all-fiber high-power and high-energy gain-switched Er3+:ZBLAN laser based on dielectric fiber mirror and fiber-tip protection. The fiber pigtail mirror, specifically designed for dichroic operation (i.e., anti-reflection at 976 nm pump wavelength and high-reflection around 2.8 μm [...] Read more.
We report a 2.8 μm all-fiber high-power and high-energy gain-switched Er3+:ZBLAN laser based on dielectric fiber mirror and fiber-tip protection. The fiber pigtail mirror, specifically designed for dichroic operation (i.e., anti-reflection at 976 nm pump wavelength and high-reflection around 2.8 μm laser wavelength), shows high damage density of >10 MW/cm2. An anti-reflection protective film is coated on the input tip of Er3+:ZBLAN fiber and an AlF3 endcap is spliced to the output tip of Er3+:ZBLAN fiber for mitigating the fiber-tip photodegradation and high-power catastrophic failure at 2.8 μm. The compact all-fiber cavity is formed by efficiently connecting the Er3+:ZBLAN fiber with dielectric fiber mirror using the standard FC/PC fiber adaptor. When the 976 nm pump operates in pulsed regime, the all-fiber mid-infrared gain-switched laser can be attained with two states of single-pulse and pulse-burst output. The extracted maximum pulse energy is 4.8 μJ in the single-pulse state, and the shortest pulse width is 426 ns. The pulse-burst mode can generate a maximum average power of 5.291 W and burst energy of 264.55 μJ. This work may offer a promising way to realize the low-cost, all-fiber, high-power and high-energy gain-switched laser at MIR wavelengths. Full article
(This article belongs to the Special Issue Research on Rare-Earth-Doped Fiber Lasers)
Show Figures

Figure 1

10 pages, 3878 KiB  
Article
Study on Spectral Properties and Mid-Infrared Laser Performance of Er, La:CaF2 Crystals
by Zhen Zhang, Jingjing Liu, Yunfei Wang, Fengkai Ma, Shaochen Liu, Zhonghan Zhang, Jie Liu and Liangbi Su
Crystals 2024, 14(7), 639; https://doi.org/10.3390/cryst14070639 - 11 Jul 2024
Cited by 3 | Viewed by 1372
Abstract
Er3+-doped fluorite crystals, including CaF2 and SrF2, are considered as attractive laser gain materials in the mid-infrared (MIR) region with merits of high laser efficiency as well as low doping concentration. In this work, a series of Er, [...] Read more.
Er3+-doped fluorite crystals, including CaF2 and SrF2, are considered as attractive laser gain materials in the mid-infrared (MIR) region with merits of high laser efficiency as well as low doping concentration. In this work, a series of Er, La:CaF2 crystals were grown and the modulation effect of co-doping La3+ ions on the spectral properties and mid-infrared laser performance was investigated. It was found that introducing La3+ ions can effectively manipulate the coordination environment of Er3+ ions embedded in CaF2 crystal, thus modulating the shape and intensity of absorption and emission bands. On the other hand, La3+ ions can partially substitute Er3+ sites in the clusters to form mixed clusters, which affects the energy transfer processes between Er3+ ions as well as ~3 μm laser performance, which is dominated by energy transfer up-conversion (ETU) processes between Er3+ ions. By co-doping La3+ ions into Er:CaF2 crystal at an appropriate concentration, the spectral parameter modulation can be achieved while maintaining a high MIR laser efficiency. Full article
(This article belongs to the Special Issue Photoelectric Functional Crystals)
Show Figures

Figure 1

13 pages, 1901 KiB  
Technical Note
Spectroscopy of Magnesium Sulfate Double Salts and Their Implications for Mars Exploration
by Erbin Shi, Ruize Zhang, Xiaojia Zeng, Yanqing Xin, Enming Ju and Zongcheng Ling
Remote Sens. 2024, 16(9), 1592; https://doi.org/10.3390/rs16091592 - 30 Apr 2024
Cited by 2 | Viewed by 2679
Abstract
Magnesium sulfate has been widely detected on the surface of Mars. The occurrence of magnesium sulfate and mixed cationic sulfates preserves clues regarding the sedimentary environment, hydrological processes, and climate history of ancient Mars. In this study, seven magnesium sulfate double salts were [...] Read more.
Magnesium sulfate has been widely detected on the surface of Mars. The occurrence of magnesium sulfate and mixed cationic sulfates preserves clues regarding the sedimentary environment, hydrological processes, and climate history of ancient Mars. In this study, seven magnesium sulfate double salts were synthesized in the laboratory using a high-temperature solid phase reaction or slow evaporation of aqueous solutions. The samples were analyzed using X-ray diffraction to confirm their phase and homogeneity. Subsequently, the Raman, mid-infrared spectra, and visible near-infrared spectra of these samples were collected and analyzed. Our results showed that the spectra of the analyzed magnesium sulfate double salts exhibited distinctive spectral features. These laboratory results may provide new insights for the identification of various magnesium sulfate double salts on Mars during the interpretation of in situ data collected by Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), SuperCam, and the ExoMars Raman Laser Spectrometer (RLS). In addition, the MIR and VNIR spectra features obtained in this study provide an improved reference and spectra library for decipherment of data sourced from the Thermal Emission Spectrometer (TES), Thermal Emission Imaging System (THEMIS), and Mars Mineralogical Spectrometer (MMS). Full article
(This article belongs to the Special Issue Planetary Remote Sensing and Applications to Mars and Chang’E-6/7)
Show Figures

Figure 1

10 pages, 897 KiB  
Article
Characterization of RF System for MIR/THz Free Electron Lasers at Chiang Mai University
by Pitchayapak Kitisri, Jatuporn Saisut and Sakhorn Rimjaem
Particles 2024, 7(2), 382-391; https://doi.org/10.3390/particles7020021 - 11 Apr 2024
Cited by 1 | Viewed by 1894
Abstract
The establishment of the mid-infrared and terahertz free-electron laser (MIR/THz FEL) facility is ongoing at the PBP-CMU Electron Linac Laboratory (PCELL) in Chiang Mai University. The facility utilizes an S-band radio-frequency (RF) gun and a linear accelerator (linac) to generate and accelerate electron [...] Read more.
The establishment of the mid-infrared and terahertz free-electron laser (MIR/THz FEL) facility is ongoing at the PBP-CMU Electron Linac Laboratory (PCELL) in Chiang Mai University. The facility utilizes an S-band radio-frequency (RF) gun and a linear accelerator (linac) to generate and accelerate electron bunches. These electron bunches are accelerated in the RF gun and the linac using RF pulses with a frequency of 2856 MHz. Measuring the RF properties becomes essential, as the RF pulse information can be utilized to estimate the electron beam properties. To achieve the measurement results, we employed an RF measurement system comprising directional couplers, coaxial cables, attenuators, a crystal detector, and an oscilloscope. Prior to conducting measurements, the crystal detector and RF equipment were calibrated and characterized to ensure precise and reliable results. The electron beam energy estimation using the measured RF power was compared with the measured beam energies. The gun and the linac were operated with an absorbed RF power of 1.52 MW and an input power of 1.92 MW, respectively. The estimated electron beam energies were found to be 2.18 MeV and 15.0 MeV, respectively, closely aligning with the measured beam energies of 2.1 MeV and 14.0 MeV after the gun and linac acceleration. These consistent energy values support the reliability of our RF power measurement system and procedure. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources)
Show Figures

Figure 1

14 pages, 2620 KiB  
Article
Er:YAG Laser Alleviates Inflammaging in Diabetes-Associated Periodontitis via Activation CTBP1-AS2/miR-155/SIRT1 Axis
by Min Yee Ng, Cheng-Chia Yu, Szu-Han Chen, Yi-Wen Liao and Taichen Lin
Int. J. Mol. Sci. 2024, 25(4), 2116; https://doi.org/10.3390/ijms25042116 - 9 Feb 2024
Cited by 6 | Viewed by 2046
Abstract
Periodontitis is a significant health concern for individuals with diabetes mellitus (DM), characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates susceptibility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped yttrium–aluminum–garnet laser (ErL) in periodontitis treatment [...] Read more.
Periodontitis is a significant health concern for individuals with diabetes mellitus (DM), characterized by inflammation and periodontium loss. Hyperglycaemia in DM exacerbates susceptibility to periodontitis by inducing inflammaging in the host immune system. The use of erbium-doped yttrium–aluminum–garnet laser (ErL) in periodontitis treatment has gained attention, but its impact on diabetic-associated periodontitis (DP) and underlying mechanisms remain unclear. In this study, we simulated DP by exposing human periodontal ligament fibroblasts (PDLFs) to advanced glycation end products (AGEs) and lipopolysaccharides from P. gingivalis (Pg-LPS). Subsequently, we evaluated the impact of ErL on the cells’ wound healing and assessed their inflammaging markers. ErL treatment promoted wound healing and suppressed inflammaging activities, including cell senescence, IL-6 secretion, and p65 phosphorylation. Moreover, the laser-targeted cells were observed to have upregulated expression of CTBP1-AS2, which, when overexpressed, enhanced wound healing ability and repressed inflammaging. Moreover, bioinformatic analysis revealed that CTBP1-AS2 acted as a sponge for miR155 and upregulated SIRT1. In conclusion, ErL demonstrated the ability to improve wound healing and mitigate inflammaging in diabetic periodontal tissue through the CTBP1-AS2/miR-155/SIRT1 axis. Targeting this axis could represent a promising therapeutic approach for preventing periodontitis in individuals with DM. Full article
Show Figures

Figure 1

12 pages, 1772 KiB  
Review
Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery
by Xiaolin Liang, Kai Jiao, Xiange Wang, Yuze Wang, Yuyang Wang, Shengchuang Bai, Rongping Wang, Zheming Zhao and Xunsi Wang
Photonics 2024, 11(1), 19; https://doi.org/10.3390/photonics11010019 - 26 Dec 2023
Cited by 3 | Viewed by 2209
Abstract
High-power laser delivery in infrared optical fiber has received much attention due to the urgent needs in the fields of national defense security, biomedicine, advanced manufacturing, and so on. In recent decades, there has been extensive research aimed at enhancing the capabilities of [...] Read more.
High-power laser delivery in infrared optical fiber has received much attention due to the urgent needs in the fields of national defense security, biomedicine, advanced manufacturing, and so on. In recent decades, there has been extensive research aimed at enhancing the capabilities of infrared laser power delivery through the purification of infrared glass or the optimization of fiber structures. This article provides an overview of common passive mid-infrared (MIR) optical fibers with numerous glasses and fiber structures, as well as their characteristics in laser power delivery. This review also highlights potential research directions and analyzes the challenges of passive mid-infrared fibers in the current applications. Full article
(This article belongs to the Special Issue Specialty Optical Fibers: Advance and Sensing Application)
Show Figures

Figure 1

Back to TopTop