Medium-Term Monitoring of Greenhouse Gases above Rice-Wheat Rotation System Based on Mid-Infrared Laser Heterodyne Radiometer
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Data Acquisition and Inversion Methods
2.3. Experimental Design and Yield Measurement
3. Results
3.1. Inversion Results of MIR-LHR
3.2. Atmospheric N2O
3.3. Atmospheric CH4
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, N.; Ahmed, N.; Thompson, S.; Thompson, S.; Glaser, M.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Saintilan, N.; Horton, B.; Törnqvist, T.E.; Ase, E.L.; Khan, N.S.; Schuerch, M.; Perry, C.; Kopp, R.E.; Garner, G.G.; Murray, N.; et al. Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C. Nature 2023, 621, 112–119. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Available online: https://www.ipcc.ch/2018/10/10/ipcc-presents-findings-of-the-special-report-on-global-warming-of-1-5c-at-event-to-discuss-viet-nams-response-to-climate-change/ (accessed on 10 October 2018).
- Vinichenko, V.; Cherp, A.; Jewel, J. Historical precedents and feasibility of rapid coal and gas decline required for the 1.5 °C target. One Earth 2021, 4, 1477–1490. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhao, X.; Pittelkow, C.M.; Fan, M.; Zhang, X.; Yan, X. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Cao, L.; Yang, Y.; Ti, C.; Liu, Y.; Smith, P.; van Groenigen, K.J.; Lehmann, J.; Lal, R.; Butterbach-Bahl, K.; et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 2023, 4, 236–246. [Google Scholar] [CrossRef]
- Guo, Z.D.; Zhang, X.N. Carbon reduction effect of agricultural green production technology: A new evidence from China. Sci. Total Environ. 2023, 874, 162483. [Google Scholar] [CrossRef]
- Sass, R.L.; Fisher, F.M.; Ding, A.; Huang, Y. Exchange of methane from rice fields: National, regional, and global budgets. J. Geophys. Res. 1999, 104, 26943–26952. [Google Scholar] [CrossRef]
- Peng, L.; Tang, R.; Wang, G.; Ma, R.; Li, Y.; Li, G.; Yuan, J. Effect of aeration rate, aeration pattern, and turning frequency on maturity and gaseous emissions during kitchen waste composting. Environ. Technol. Innov. 2023, 29, 102997. [Google Scholar] [CrossRef]
- Wu, W.; Niu, X.; Yan, Z.; Li, S.; Comer-Warner, S.A.; Tian, H.; Li, S.-L.; Zou, J.; Yu, G.; Liu, C.-Q. Agricultural ditches are hotspots of greenhouse gas emissions controlled by nutrient input. Water Res. 2023, 242, 120271. [Google Scholar] [CrossRef]
- Ji, C.; Jin, Y.; Li, C.; Chen, J.; Kong, D.; Yu, K.; Liu, S.; Zou, J. Variation in soil methane release or uptake responses to biochar amendment: A separate meta-analysis. Ecosystems 2018, 21, 1692–1705. [Google Scholar] [CrossRef]
- Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; UI-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M.A.; Sarwar, G.; Haque, E.U.; et al. Thefingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 2020, 10, 18013. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Yang, S.; Wang, F.; Li, D.; Xu, J. Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice-winter wheat rotation systems in Southeast China. Ecol. Eng. 2016, 86, 239–246. [Google Scholar] [CrossRef]
- Tellez-Rio, A.; Garcia-Marco, S.; Navas, M.; Lopez-Solanilla, E.; Tenorio, J.L.; Vallejo, A. N2O and CH4 emissions from a fallow-wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem. Sci. Total Enoiron. 2015, 508, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Gonzalez, A.; Gonzalez-Navarro, O.E.; Govaerts, B.; Sayre, K.D.; Estrada, I.; Luna-Guido, M.; Ceja-Navarro, J.A.; Patifio-Zuifiga, L.; Marsch, R.; Dendooven, L. Straw management, crop rotation and nitrogen source effect on carbon and nitrogen dynamics: A laboratory study. Plant Soil 2009, 325, 243–253. [Google Scholar] [CrossRef]
- Fan, K.; Yan, Y.; Xu, D.; Li, S.; Zhao, Y.; Wang, X.; Xin, X. Methane and Nitrous Oxide Fluxes with Different Land Uses in the Temperate Meadow Steppe of Inner Mongolia, China. Agronomy 2022, 12, 2810. [Google Scholar] [CrossRef]
- Levy, P.; Drewer, J.; Jammet, M.; Leeson, S.; Friborg, T.; Skiba, U.; Oijen, M. Inference of spatial heterogeneity in surface fluxes from eddy covariance data: A case study from a subarctic mire ecosystem. Agric. For. Meteorol. 2020, 280, 107783. [Google Scholar] [CrossRef]
- Gu, M.; Chen, J.; Mei, J.; Tan, T.; Wang, G.; Liu, K.; Liu, G.; Liu, X. Open-path anti-pollution multi-pass cell-based TDLAS sensor for the online measurement of atmospheric H2O and CO2 fluxes. Opt. Express 2022, 30, 43961–43972. [Google Scholar] [CrossRef]
- Feng, M.Y.; Zhang, G.; Xia, L.J.; Xiong, X.; Li, B.Z.; Kong, P.; Zhan, M.J.; Zhang, Y.X. Spatial and temporal distribution of atmospheric methane in middle-low reaches of Yangtze River based on satellite observations. Geochimica 2021, 50, 121–132. [Google Scholar]
- Wilson, E.L.; DiGregorio, A.J.; Villanueva, G.; Grunberg, C.E.; Souders, Z.; Miletti, K.M.; Menendez, A.; Grunberg, M.H.; Floyd, M.A.M.; Bleacher, J.E.; et al. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH4 and CO2. Appl. Phys. B-Lasers O 2019, 125, 211. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Wang, G.; Zou, M.; Tan, T.; Liu, K.; Chen, W.; Gao, X. A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4. Opt. Lasers. Eng. 2020, 129, 106083. [Google Scholar] [CrossRef]
- Robinson, I.; Butcher, H.L.; Macleod, N.A.; Weidmann, D. Hollow waveguide-miniaturized quantum cascade laser heterodyne spectro-radiometer. Opt. Express 2021, 29, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, D.; Perrett, B.J.; Macleod, N.A.; Jenkins, R.M. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry. Opt. Express 2011, 19, 9074–9085. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Shen, F.; Li, J.; Liu, X.; Wang, J.; Wang, G.; Liu, K.; Chen, W.; Gao, X.; Tan, T. A MEMS modulator-based dual-channel mid-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CH4, H2O and N2O. Opt. Express 2022, 30, 31828–31838. [Google Scholar] [CrossRef]
- Li, J.; Xue, Z.; Li, Y.; Bo, G.; Shen, F.; Gao, X.; Zhang, J.; Tan, T. Real-Time Measurement of Atmospheric CO2, CH4 and N2O above Rice Fields Based on Laser Heterodyne Radiometers (LHR). Agronomy 2023, 13, 373. [Google Scholar] [CrossRef]
- Weidmann, D.; Reburn, W.J.; Smith, K.M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: Results and analysis. Appl. Opt. 2007, 46, 7162–7171. [Google Scholar] [CrossRef]
- Dudhia, A. The reference forward model (RFM). J. Quant. Spectrosc. Radiat. Transfer. 2017, 186, 243–253. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Yang, M.; Wen, H.; Jiao, Y. Methane Uptake and Nitrous Oxide Emission in Saline Soil Showed High Sensitivity to Nitrogen Fertilization Addition. Agronomy 2023, 13, 473. [Google Scholar] [CrossRef]
- Illarze, G.; del Pino, A.; Rodríguez-Blanco, A.; Irisarri, P. Application of Dairy Effluents to Pastures Affects Soil Nitrogen Dynamics and Microbial Activity. Agronomy 2023, 13, 470. [Google Scholar] [CrossRef]
- Sun, X.; Yang, X.; Hou, J.; Wang, B.; Fang, Q. Modeling the Effects of Rice-Vegetable Cropping System Conversion and Fertilization on GHG Emissions Using the DNDC Model. Agronomy 2023, 13, 379. [Google Scholar] [CrossRef]
- Banger, K.; Tian, H.; Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Global Chang. Biol. 2012, 18, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Bodelier, P.L. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr. Opin. Environ. Sustain. 2011, 3, 379–388. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Liu, J.; Qin, H.; Yuan, Q.; Fan, F.; Hu, Y.; Wang, J.; Wei, W.; Li, Y.; et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biol. Biochem. 2019, 135, 251–263. [Google Scholar] [CrossRef]
Crop | Date (Month/Day) | Agricultural Activity | ||
---|---|---|---|---|
2019–2020 | 2020–2021 | 2021–2022 | ||
Rice season | 4/27 | 4/20 | 4/23 | sowing |
6/2 | 5/25 | 5/22 | transplanting | |
7/23 | 7/15 | 7/20 | drainage | |
8/2 | 7/25 | 7/30 | flooding | |
8/10 | 8/1 | 8/3 | fertilizing (N-fertilizer) | |
10/7 | 9/30 | 10/4 | harvesting | |
Wheat season | 10/22 | 10/20 | 10/24 | sowing |
3/10 | 3/5 | 3/7 | fertilizing (N-fertilizer) | |
4/15 | 4/10 | 4/11 | harvesting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Li, J.; Shen, F.; Zhang, S.; Hu, X.; Tan, T. Medium-Term Monitoring of Greenhouse Gases above Rice-Wheat Rotation System Based on Mid-Infrared Laser Heterodyne Radiometer. Agronomy 2024, 14, 2162. https://doi.org/10.3390/agronomy14092162
Xue Z, Li J, Shen F, Zhang S, Hu X, Tan T. Medium-Term Monitoring of Greenhouse Gases above Rice-Wheat Rotation System Based on Mid-Infrared Laser Heterodyne Radiometer. Agronomy. 2024; 14(9):2162. https://doi.org/10.3390/agronomy14092162
Chicago/Turabian StyleXue, Zhengyue, Jun Li, Fengjiao Shen, Sheng Zhang, Xueyou Hu, and Tu Tan. 2024. "Medium-Term Monitoring of Greenhouse Gases above Rice-Wheat Rotation System Based on Mid-Infrared Laser Heterodyne Radiometer" Agronomy 14, no. 9: 2162. https://doi.org/10.3390/agronomy14092162
APA StyleXue, Z., Li, J., Shen, F., Zhang, S., Hu, X., & Tan, T. (2024). Medium-Term Monitoring of Greenhouse Gases above Rice-Wheat Rotation System Based on Mid-Infrared Laser Heterodyne Radiometer. Agronomy, 14(9), 2162. https://doi.org/10.3390/agronomy14092162