Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = MFI zeolite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1808 KiB  
Article
Catalytic Pyrolysis of Cellulose Biomass to Aromatic Hydrocarbons Using Modified HZSM-5 Zeolite
by Jian Li, Laizhi Sun, Derun Hua, Xinning Lu, Dandan Yang and Zhiying Wu
Nanomaterials 2025, 15(10), 751; https://doi.org/10.3390/nano15100751 - 16 May 2025
Viewed by 423
Abstract
Gallium-modified Zeolite Socony Mobil-5 (ZSM-5) zeolites were synthesized using wetness impregnation and hydrothermal synthesis methods. The structural and acidic properties of the zeolites were characterized through an analytical instrument, which demonstrated that Gallium-modified HZSM-5 zeolites retain the Mobil five instructure (MFI) framework structure, [...] Read more.
Gallium-modified Zeolite Socony Mobil-5 (ZSM-5) zeolites were synthesized using wetness impregnation and hydrothermal synthesis methods. The structural and acidic properties of the zeolites were characterized through an analytical instrument, which demonstrated that Gallium-modified HZSM-5 zeolites retain the Mobil five instructure (MFI) framework structure, but exhibit a reduction in Brønsted acid sites and a decrease in micropore size. The catalytic performance of these zeolites in the pyrolysis of cellulose biomass and polyethylene was tested. Compared with HZSM-5, Ga-modified HZSM-5 zeolites considerably increased monoaromatic yields while reducing alkanes production. In particular, gallium-impregnated HZSM-5 increased the monoaromatic yield from 37.6% for ZSM-5 to 43.2%, while hydrothermal synthesized Ga-HMFI reduced polyaromatic and alkane yields from 6.6% and 24.6% for HZSM-5 to 2.9% and 11.4%, respectively. These results indicated that Ga-modified HZSM-5 zeolites can improve the synergy between cellulose-derived oxygenates and polyethylene-derived olefins, enhancing the yield of petrochemical hydrocarbons compared to that predicted by theoretical calculations. Full article
Show Figures

Graphical abstract

23 pages, 10496 KiB  
Article
Synthesis MFI Zeolites Using Alternative Silica Source for CO2 Capture
by Clenildo de Longe, Aryandson da Silva, Anne Beatriz Figueira Câmara, Francisco Gustavo Hayala Silveira Pinto, Lindiane Bieseki, Luciene Santos de Carvalho and Sibele Berenice Castellã Pergher
Ceramics 2025, 8(2), 56; https://doi.org/10.3390/ceramics8020056 - 16 May 2025
Viewed by 1391
Abstract
In recent years, climate change has attracted the attention of the scientific community. These changes are attributed to human action, which is responsible for the emission of polluting gases, mainly through the burning of fossil fuels, deforestation, and industrial processes that are responsible [...] Read more.
In recent years, climate change has attracted the attention of the scientific community. These changes are attributed to human action, which is responsible for the emission of polluting gases, mainly through the burning of fossil fuels, deforestation, and industrial processes that are responsible for the greenhouse effect. Post-combustion CO2 capture using solid adsorbents is a technology that is currently gaining prominence as an alternative and viable form of capture to other industrial processes used. Zeolites are adsorbents capable of capturing CO2 selectively due to their properties such as textural properties, high surface area, and active sites. In this context, this work developed materials with a zeolite structure with an alternative low-cost silica source from beach sand, called MPI silica, to make the process eco-friendly. Crystallization time studies were carried out for materials containing MFI-type zeolites with MPI silica with a time of 15 h (ZM 15 h) and 3 days (SM 3 d), with relative crystallinities of 92.90% and 111.90%, respectively. The synthesized materials were characterized by several techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), the textural analysis of N2 adsorption/desorption isotherms, absorption spectroscopy in the infrared region with Fourier transform (FTIR), scanning electron microscopy (SEM), and thermal analysis. The evaluation of the experimental adsorption isotherms showed that the best results were for the zeolites synthesized in the basic medium, namely ZMP 3 d, ZM 10.5 h, and ZM 15 h, with capacities of 3.72, 3.10, and 3.22 mmol/g of CO2, respectively, and in the hydrofluoric medium, namely SP 9 d, SM 3 d, and SM 6 d, with capacities of 3.94, 3.78, and 3.60 mmol/g of CO2, respectively. The evaluation of the mathematical models indicated that the zeolites in the basic medium best fitted the Freündlich model, namely ZMP 3 d, ZM 10.5 h, and ZM 15 h, with capacities of 2.56, 1.68, and 1.87 mmol/g of CO2, respectively. The zeolites in the hydrofluoric medium are adjusted to the Langmuir model (SP 9 d and SM 3 d) and Temkin model (SM 6 d), with capacities of 3.79, 2.23, and 2.11 mmol/g of CO2, respectively. Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
Show Figures

Figure 1

24 pages, 6186 KiB  
Article
Synthesis of Sandwich-Structured Zeolite Molecular Sieves and Their Adsorption Performance for Volatile Hydrocarbons
by Tongyuan Liu, Wenxing Qi, Lihong Nie and Beifu Wang
Materials 2025, 18(8), 1758; https://doi.org/10.3390/ma18081758 - 11 Apr 2025
Cited by 1 | Viewed by 520
Abstract
To address the issue of volatile organic compound (VOC) emissions during crude oil storage and transportation, this study proposes a sandwich-structured zeolite molecular sieve (SMZ) fabricated via a pressing-sintering process integrating ZSM-5 powder and granules. The resulting monolithic zeolite exhibits enhanced mechanical strength [...] Read more.
To address the issue of volatile organic compound (VOC) emissions during crude oil storage and transportation, this study proposes a sandwich-structured zeolite molecular sieve (SMZ) fabricated via a pressing-sintering process integrating ZSM-5 powder and granules. The resulting monolithic zeolite exhibits enhanced mechanical strength and optimized pore architecture. Systematic investigations revealed that sintering at 600 °C with 10% carboxymethyl cellulose (CMC) yielded SMZ with a specific surface area of 349.51 m2/g and pore volume of 0.37 cm3/g. Its hierarchical pore system—micropores (0.495 nm) coupled with mesopores (2–10 nm)—significantly improved adsorption kinetics. Dynamic adsorption tests demonstrated superior performance: SMZ achieved saturation capacities of 127.6 mg/g for propane and 118.2 mg/g for n-butane in liquefied petroleum gas (LPG), with a breakthrough time of 41 min and a 106% increase in adsorption capacity compared to conventional monolithic zeolite (MZ) (90.2 mg/g vs. 43.8 mg/g). Regeneration studies confirmed that combined thermal desorption (250 °C) and nitrogen purging maintained > 95% capacity retention over five cycles, attributed to the high thermal stability of the MFI topology framework (≤600 °C) and crack-resistant ceramic-like interfaces. Additionally, SMZ exhibited exceptional hydrophobicity, with a selectivity coefficient of 20.9 for propane under 60% relative humidity. This work provides theoretical and technical foundations for developing efficient and durable adsorbents for industrial VOC mitigation. Full article
Show Figures

Figure 1

17 pages, 16114 KiB  
Article
Effect of Metal Dispersion in Rh-Based Zeolite and SiO2 Catalysts on the Hydroformylation of Olefin Mixtures from Fischer–Tropsch Synthesis
by Yu Wang, Xuemin Cao, Yuting Dai, Tao Yan, Xiangjie Zhang, Huizi He, Yujie Xie, Tiejun Lin, Chang Song and Peng He
Catalysts 2025, 15(3), 212; https://doi.org/10.3390/catal15030212 - 24 Feb 2025
Cited by 2 | Viewed by 963
Abstract
This study investigates the hydroformylation of C5+ olefins derived from Fischer–Tropsch synthesis (FTS) using Rh-based catalysts supported on zeolites (MFI, MEL) and SiO2. A series of catalysts were synthesized through two different methods: a one-pot hydrothermal crystallization process, which results [...] Read more.
This study investigates the hydroformylation of C5+ olefins derived from Fischer–Tropsch synthesis (FTS) using Rh-based catalysts supported on zeolites (MFI, MEL) and SiO2. A series of catalysts were synthesized through two different methods: a one-pot hydrothermal crystallization process, which results in highly dispersed Rh species encapsulated within the zeolite framework (Rh@MFI, Rh@MEL), and an impregnation method that produces larger Rh nanoparticles exposed on the support surface (Rh/MFI, Rh/MEL, Rh/SiO2). Characterization techniques such as BET, TEM, and FTIR were employed to evaluate different catalysts, revealing significant differences in the dispersion and accessibility of Rh species. Owing to its more accessible mesoporous structure, Rh/SiO2 with a pore size of 5.6 nm exhibited the highest olefin conversion rate (>90%) and 40% selectivity to C6+ aldehydes. In contrast, zeolite-encapsulated catalysts exhibited higher selectivity for C6+ aldehydes (~50%) due to better confinement and linear aldehyde formation. This study also examined the influence of FTS byproducts, including paraffins and short-chain olefins, on the hydroformylation reaction. Results showed that long-chain paraffins had a negligible effect on olefin conversion, while the presence of short-chain olefins, such as propene, reduced both olefin conversion and aldehyde selectivity due to competitive adsorption. This work highlights the critical role of catalyst design, olefin diffusion, and feedstock composition in optimizing hydroformylation performance, offering insights for improving the efficiency of syngas-to-olefins and aldehydes processes. Full article
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Zeolitized Clays and Their Use for the Capture and Photo-Fenton Degradation of Methylene Blue
by Koffi Simeon Kouadio, Ekou Tchirioua and Jérémy Dhainaut
Catalysts 2025, 15(2), 188; https://doi.org/10.3390/catal15020188 - 18 Feb 2025
Viewed by 2524
Abstract
Water pollution by dyes is a major environmental problem, particularly in the textile, food, and pharmaceutical industries. These dyes are often complex chemical compounds that are difficult to remediate due to their chemical stability, their solubility in water, and their resistance to conventional [...] Read more.
Water pollution by dyes is a major environmental problem, particularly in the textile, food, and pharmaceutical industries. These dyes are often complex chemical compounds that are difficult to remediate due to their chemical stability, their solubility in water, and their resistance to conventional treatment processes such as filtration, coagulation, or decantation. Thus, to date, there is still a need to make water treatment processes more performant and cost-efficient. The main aim of this research is to prepare photocatalytically active MFI-type zeolites from natural clays and support iron oxide nanoparticles. These catalysts were characterized and evaluated for the capture and the photo-Fenton degradation of methylene blue (MB) in aqueous solution. After 10 min under photo-Fenton conditions, Fe/MTK-MFI presented almost complete removal of MB for up to four consecutive cycles. Full article
(This article belongs to the Special Issue Porous Catalysts: Synthesis and Catalytic Performance)
Show Figures

Figure 1

11 pages, 809 KiB  
Article
Computing Entropy for Long-Chain Alkanes Using Linear Regression: Application to Hydroisomerization
by Shrinjay Sharma, Richard Baur, Marcello Rigutto, Erik Zuidema, Umang Agarwal, Sofia Calero, David Dubbeldam and Thijs J. H. Vlugt
Entropy 2024, 26(12), 1120; https://doi.org/10.3390/e26121120 - 21 Dec 2024
Viewed by 1041
Abstract
Entropies for alkane isomers longer than C10 are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott’s tables which are [...] Read more.
Entropies for alkane isomers longer than C10 are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott’s tables which are obtained from a statistical mechanics-based correlation. Entropy production and heat input are calculated for the hydroisomerization of C7 isomers in various zeolites (FAU-, ITQ-29-, BEA-, MEL-, MFI-, MTW-, and MRE-types) at 500 K at chemical equilibrium. Small variations in these properties are observed because of the differences in reaction equilibrium distributions for these zeolites. The effect of chain length on heat input and entropy production is also studied for the hydroisomerization of C7, C8, C10, and C14 isomers in MTW-type zeolite at 500 K. For longer chains, both heat input and entropy production increase. Enthalpies and absolute entropies of C7 hydroisomerization reaction products in MTW-type zeolite increase with higher temperatures. These findings highlight the accuracy of our linear regression model in computing entropies for alkanes and provide insight for designing and optimizing zeolite-catalyzed hydroisomerization processes. Full article
Show Figures

Figure 1

17 pages, 11112 KiB  
Article
Molecular Simulation of Adsorption of CO2 from a Combustion Exhaust Mixture of Zeolites with Different Topological Structures
by Shiqing Wang, Xu Jiang, Yutong Wang, Jiaxin Liu, Xiaolong Qiu, Lianbo Liu, Shiwang Gao, Xiong Yang, Jing Ma and Chuanzhao Zhang
Processes 2024, 12(12), 2730; https://doi.org/10.3390/pr12122730 - 2 Dec 2024
Cited by 1 | Viewed by 1241
Abstract
In this work, a molecular simulation method was used to study the adsorption of seven combustion products (CO2, H2O, SO2, N2, O2, NO and NO2) on three zeolites with different topological [...] Read more.
In this work, a molecular simulation method was used to study the adsorption of seven combustion products (CO2, H2O, SO2, N2, O2, NO and NO2) on three zeolites with different topological structures (4A, MIF and MOR). Adsorption isotherms of pure components and mixtures at a wide range of temperatures (253–333 K) were calculated using the Monte Carlo method, obtaining equilibrium parameters including the adsorption capacity, adsorption heat and energy distribution. The calculation results indicated that 4A zeolite with more micropores has a stronger adsorption performance for CO2. The presence of water significantly reduced the CO2 capture efficiency of the three zeolites, and the CO2 adsorption amount decreased by more than 80%. Adsorption kinetics was studied using the molecular dynamic (MD) method, MFI and MOR, with channel-type pore structures exhibiting stronger gas diffusion performance, though their separation efficiency was not high. A 4A zeolite has the potential for kinetic separation of CO2. Full article
(This article belongs to the Special Issue Low Carbon Management in Energy Systems: CO2 Capture Technology)
Show Figures

Figure 1

23 pages, 74396 KiB  
Article
Antimicrobial and Oxidative Activities of Different Levels of Silver-Exchanged Zeolites X and ZSM-5 and Their Ecotoxicity
by Elitsa L. Pavlova, Elena P. Nenova, Lyubomira D. Yocheva, Iliana A. Ivanova and Peter A. Georgiev
Pharmaceuticals 2024, 17(12), 1586; https://doi.org/10.3390/ph17121586 - 25 Nov 2024
Cited by 1 | Viewed by 1153
Abstract
Objectives: The antimicrobial, oxidative activities, and ecotoxicity of synthesized silver-loaded zeolites (X and ZSM-5(MFI), Si-to-Al ratios 12 and 25) were studied, linking antimicrobial properties to material structure and released active silver species. Methods: The materials were characterized by SEM, EDX, TEM, and XRPD. [...] Read more.
Objectives: The antimicrobial, oxidative activities, and ecotoxicity of synthesized silver-loaded zeolites (X and ZSM-5(MFI), Si-to-Al ratios 12 and 25) were studied, linking antimicrobial properties to material structure and released active silver species. Methods: The materials were characterized by SEM, EDX, TEM, and XRPD. All materials, with a silver content of 1–3%wt for the Ss and about 35%wt for the X-zeolites, were tested against Escherichia coli and Staphylococcus aureus. Redox activity was studied in physiological (pH 7.4/37 °C) and optimal (pH 8.5/37 °C) conditions in chemiluminescent model systems. In the ecotoxicity tests, we used Daphnia magna. Results: A proportional correlation was observed between the bactericidal effect of and the silver content in the zeolites. AgX with a Si/Al ratio of ~1.23 and 35% silver showed a higher antimicrobial efficiency, particularly against Gram-negative E. coli versus Gram-positive S. aureus. The concentration thresholds were as follows: AgXas had a bactericidal effect at 0.003 g/L−1, with an MIC at 0.0015 m/L−1 for E. coli; SA25-Ag, AgXcl, AgXrc had a bactericidal effect at 2.5 g/L−1. The bacteria were more resilient than Daphnia magna, which showed a 90–100% lethality at Ag–zeolite concentrations of 0.00625 to 0.0125 g/L−1. AgXas and AgXrc demonstrated strong reactive oxygen species generation at both the physiological and optimal pH, explaining their bactericidal effects. In general, the tested materials showed an inhibition of the generated reactive oxygen species depending on the model system and conditions. Conclusions: The silver species leached from the new materials explain their higher oxidation and bactericidal activity. While suitable for stringently controlled biological applications, their release into the environment, in concentrations higher than 0.01g/L−1, should be avoided. Full article
Show Figures

Figure 1

17 pages, 3183 KiB  
Article
On the Location and Accessibility of Active Acid Sites in MFI Zeolites Modified by Alkaline Treatment
by Lucas G. Tonutti, Lourdes Vergara, Carlos A. Querini and Bruno O. Dalla Costa
Processes 2024, 12(11), 2567; https://doi.org/10.3390/pr12112567 - 16 Nov 2024
Viewed by 940
Abstract
An MFI zeolite (Si/Al = 40) was desilicated by alkaline treatment in order to generate mesopores. Temperature, alkali concentration and treatment duration were adjusted to maximize mesoporosity while preserving the zeolite structure. Special attention was paid to the characterization of the strength and [...] Read more.
An MFI zeolite (Si/Al = 40) was desilicated by alkaline treatment in order to generate mesopores. Temperature, alkali concentration and treatment duration were adjusted to maximize mesoporosity while preserving the zeolite structure. Special attention was paid to the characterization of the strength and accessibility of the acid sites. The catalysts were tested in the isobutane/butene alkylation, a reaction that is typically catalyzed by zeolites but limited by coke deposition. Additionally, glycerol esterification with acetic acid was used as a test reaction due to the required participation of large pores. The results confirmed that mesopores were successfully generated in the MFI zeolite, and the diffusion through the solid was enhanced, but the active sites were mainly confined to the micropores. Full article
Show Figures

Figure 1

13 pages, 3470 KiB  
Article
Hydrophobicity and Pore Structure: Unraveling the Critical Factors of Alcohol and Acid Adsorption in Zeolites
by Yangyang Xie, Honglei Fan, Mingyang Che, Ya Liu, Chunjing Liu, Xin Hu and Botao Teng
Molecules 2024, 29(22), 5251; https://doi.org/10.3390/molecules29225251 - 6 Nov 2024
Cited by 1 | Viewed by 1060
Abstract
Adsorbing and recycling alcohols and acids from industrial wastewater is of great significance in wastewater treatment; establishing the possible quantitative relationship of alcohol–acid adsorption capacity with the struct0ures of adsorbents and exploring the key factors determining their adsorption performance is very important and [...] Read more.
Adsorbing and recycling alcohols and acids from industrial wastewater is of great significance in wastewater treatment; establishing the possible quantitative relationship of alcohol–acid adsorption capacity with the struct0ures of adsorbents and exploring the key factors determining their adsorption performance is very important and challenging in environment science. To solve this difficult problem, the adsorption of C1-5 alcohols, C2-4 acids, and Fischer–Tropsch synthesis (FTS) wastewater on zeolites with similar hydrophobicity and pore structures (β and MFI), similar hydrophilicity but different pore structures (Y and MOR), and similar pore structures but significant differences in hydrophobicity (MOR vs. β and MFI) was systematically investigated. It was found that: (1) For materials with similar pore structures, increased hydrophobicity correlates with enhanced adsorption capacities for alcohols and acids. (2) For materials with similar hydrophobicity, a higher content of ultramicropores leads to increased adsorption of alcohols and acids. (3) Between pore structure and hydrophobicity, it is hydrophobicity that ultimately plays a decisive role in adsorption capacities. The adsorption behavior of zeolites in FTS wastewater exhibits a consistent trend, with β-zeolite demonstrating the highest hydrophobicity (contact angle of 105°) and the greatest adsorption capacity in FTS wastewater, achieving 103 mg/g. Following five adsorption–desorption cycles, the zeolites retained their adsorption capacity without significant degradation, indicating their excellent stability and reusability. The findings identify the critical factors determining adsorption performance and provide a solid foundation for the design and development of high-performance adsorbents for alcohol–acid adsorption. Full article
(This article belongs to the Collection Porous Materials)
Show Figures

Figure 1

17 pages, 9926 KiB  
Article
Enhanced Stability and Selectivity in Pt@MFI Catalysts for n-Butane Dehydrogenation: The Crucial Role of Sn Promoter
by Nengfeng Gong, Gaolei Qin, Pengfei Li, Xiangjie Zhang, Yan Chen, Yong Yang and Peng He
Catalysts 2024, 14(11), 760; https://doi.org/10.3390/catal14110760 - 29 Oct 2024
Cited by 5 | Viewed by 1794
Abstract
The dehydrogenation of n-butane to butenes is a crucial process for producing valuable petrochemical intermediates. This study explores the role of oxyphilic metal promoters (Sn, Zn, and Ga) in enhancing the performance and stability of Pt@MFI catalysts for n-butane dehydrogenation. The [...] Read more.
The dehydrogenation of n-butane to butenes is a crucial process for producing valuable petrochemical intermediates. This study explores the role of oxyphilic metal promoters (Sn, Zn, and Ga) in enhancing the performance and stability of Pt@MFI catalysts for n-butane dehydrogenation. The presence of Sn in the catalyst inhibits the agglomeration of Pt clusters, maintaining their subnanometric particle size. PtSn@MFI exhibits superior stability and selectivity for butenes while suppressing cracking reactions, with selectivity for C1–C3 products as low as 2.1% at 550 °C compared to over 30.5% for Pt@MFI. Using a combination of high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy, we examined the structural and electronic properties of the catalysts. Our findings reveal that Zn tends to consume hydroxyl groups and substitute framework sites, and Ga induces more defective sites in the zeolite structure. In contrast, the interaction between SnOx and the zeolite framework does not depend on reactions with hydroxyl groups. The incorporation of Sn significantly prevents Pt particle agglomeration, maintaining smaller Pt particle sizes and reducing coke formation compared to Zn and Ga promoters. Theoretical calculations showed that Sn increases the positive charge on Pt clusters, enhancing their interaction with the zeolite framework and reducing sintering, albeit with a slight increase in the energy barrier for C-H activation. These results underscore the dual benefits of Sn as a promoter, offering enhanced structural stability and reduced coke formation, thus paving the way for the rational design of more effective and durable catalysts for alkane dehydrogenation and other high-value chemical processes. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Figure 1

7 pages, 1089 KiB  
Article
Methanol to Aromatics on Hybrid Structure Zeolite Catalysts
by Maria V. Magomedova, Ekaterina G. Galanova, Anastasia V. Starozhitskaya, Mikhail I. Afokin, David V. Matevosyan, Sergey V. Egazaryants, Dmitry E. Tsaplin and Anton L. Maximov
Catalysts 2024, 14(7), 461; https://doi.org/10.3390/catal14070461 - 18 Jul 2024
Cited by 3 | Viewed by 1802
Abstract
A study on the reaction of methanol to aromatic hydrocarbons using catalysts based on hybrid zeolites MFI-MEL, MFI-MTW, and MFI-MCM-41 at a temperature of 340 °C and a pressure of 10.0 MPa was carried out. It is shown that in the synthesis of [...] Read more.
A study on the reaction of methanol to aromatic hydrocarbons using catalysts based on hybrid zeolites MFI-MEL, MFI-MTW, and MFI-MCM-41 at a temperature of 340 °C and a pressure of 10.0 MPa was carried out. It is shown that in the synthesis of hydrocarbons under pressure, the activity of the studied samples is similar and does not have a linear correlation with their total acidity. It was found that the catalyst’s activity is primarily determined by the rate of the initial methanol conversion reaction, which is related to the volume of micropores—more micropores lead to higher activity. Additionally, increasing the volume of mesopores results in the formation of heavier aromatic compounds, specifically C10–C11. Full article
(This article belongs to the Special Issue Microporous and Mesoporous Materials for Catalytic Applications)
Show Figures

Figure 1

14 pages, 6569 KiB  
Article
Pervaporation Dehydration Mechanism and Performance of High-Aluminum ZSM-5 Zeolite Membranes for Organic Solvents
by Qing Wang, Cheng Qian, Changxu Guo, Nong Xu, Qiao Liu, Bin Wang, Long Fan and Kunhong Hu
Int. J. Mol. Sci. 2024, 25(14), 7723; https://doi.org/10.3390/ijms25147723 - 14 Jul 2024
Cited by 4 | Viewed by 2263
Abstract
Membrane-based pervaporation (PV) for organic solvent dehydration is of great significance in the chemical and petrochemical industries. In this work, high-aluminum ZSM-5 zeolite membranes were synthesized by a fluoride-assisted secondary growth on α-alumina tubular supports using mordenite framework inverted (MFI) nanoseeds (~110 nm) [...] Read more.
Membrane-based pervaporation (PV) for organic solvent dehydration is of great significance in the chemical and petrochemical industries. In this work, high-aluminum ZSM-5 zeolite membranes were synthesized by a fluoride-assisted secondary growth on α-alumina tubular supports using mordenite framework inverted (MFI) nanoseeds (~110 nm) and a template-free synthesis solution with a low Si/Al ratio of 10. Characterization by XRD, EDX, and SEM revealed that the prepared membrane was a pure-phase ZSM-5 zeolite membrane with a Si/Al ratio of 3.8 and a thickness of 2.8 µm. Subsequently, two categories of PV performance parameters (i.e., flux versus separation factor and permeance versus selectivity) were used to systematically examine the effects of operating conditions on the PV dehydration performance of different organic solvents (methanol, ethanol, n-propanol, and isopropanol), and their PV mechanisms were explored. Employing permeance and selectivity effectively disentangles the influence of operating conditions on PV performance, thereby elucidating the inherent contribution of membranes to separation performance. The results show that the mass transfer during PV dehydration of organic solvents was mainly dominated by the adsorption–diffusion mechanism. Furthermore, the diffusion of highly polar water and methanol molecules within membrane pores had a strong mutual slowing-down effect, resulting in significantly lower permeance than other binary systems. However, the mass transfer process for water/low-polar organic solvent (ethanol, n-propanol, and isopropanol) mixtures was mainly controlled by competitive adsorption caused by affinity differences. In addition, the high-aluminum ZSM-5 zeolite membrane exhibited superior PV dehydration performance for water/isopropanol mixtures. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

23 pages, 9451 KiB  
Article
Odors Adsorption in Zeolites Including Natural Clinoptilolite: Theoretical and Experimental Studies
by Izabela Czekaj and Natalia Sobuś
Materials 2024, 17(13), 3088; https://doi.org/10.3390/ma17133088 - 24 Jun 2024
Cited by 2 | Viewed by 2115
Abstract
This publication presents the results of combined theoretical and experimental research for the potential use of natural clinoptilolite zeolite (CLI) as an odor-adsorbing material. In this study of adsorption capacity, CLI of various granulation was used and its modifications were made by ion [...] Read more.
This publication presents the results of combined theoretical and experimental research for the potential use of natural clinoptilolite zeolite (CLI) as an odor-adsorbing material. In this study of adsorption capacity, CLI of various granulation was used and its modifications were made by ion exchange using Sn and Fe metals to check whether the presence of metals as potential active centers does not lead to catalytic processes and may lead to enhanced absorption of odorous substances through their adsorption on the created metallic forms. Additionally, in order to increase the specific surface area, modifications were made in the form of hierarchization in an acidic environment using hydrochloric acid to also create the hydrogen form of zeolite and thus also check how the material behaves as an adsorbent. To compare the effect of CLI as a sorption material, synthetic zeolite MFI was also used—as a sodium form and after the introduction of metals (Sn, Fe). The above materials were subjected to adsorption measurements using odorous substances (including acetaldehyde, dimethylamine, pentanoic acid and octanoic acid). Based on the measurements performed, the most advantageous material that traps odorants is a natural material—clinoptilolite. Depending on the faction, its ability varies for different compounds. In the case of acetaldehyde, an effective material is clinoptilolite with a grain size of up to 2 mm. In the case of carboxylic acids, it is material after hierarchization with a fraction of 3–4 mm. In the case of theoretical calculations, information was obtained to show that metallic centers are more stable above oxygen, which is associated with the skeletal aluminum in clinoptilolite. Full article
Show Figures

Figure 1

15 pages, 3697 KiB  
Article
Investigating the Physical and Operational Characteristics of Manufacturing Processes for MFI-Type Zeolite Membranes for Ethanol/Water Separation via Principal Component Analysis
by Hamdi Chaouk, Emil Obeid, Jalal Halwani, Wiem Abdelbaki, Hanna Dib, Omar Mouhtady, Eddie Gazo Hanna, Célio Fernandes and Khaled Younes
Processes 2024, 12(6), 1145; https://doi.org/10.3390/pr12061145 - 1 Jun 2024
Cited by 1 | Viewed by 1176
Abstract
In this study, Principal Component Analysis (PCA) was applied to discern the underlying trends for 31 distinct MFI (Mobil No. 5)-zeolite membranes of 11 textural, chemical, and operational factors related to manufacturing processes. Initially, a comprehensive PCA approach was employed for the entire [...] Read more.
In this study, Principal Component Analysis (PCA) was applied to discern the underlying trends for 31 distinct MFI (Mobil No. 5)-zeolite membranes of 11 textural, chemical, and operational factors related to manufacturing processes. Initially, a comprehensive PCA approach was employed for the entire dataset, revealing a moderate influence of the first two principal components (PCs), which collectively accounted for around 38% of the variance. Membrane samples exhibited close proximity, which prevented the formation of any clusters. To address this limitation, a subset acquisition strategy was followed, based on the findings of the PCA for the entire dataset. This resulted in an enhanced overall contribution and the revelation of diverse patterns among the membranes and the considered manufacturing factors (total variance between 55% and 77%). The segmentation of the data unveiled a robust correlation between silica (SiO2) concentration and pervaporation conditions. Additionally, a notable clustering of the chemical compositions of the preparation solutions underscored their significant influence on the operational efficacy of MFI zeolite membranes. On the other hand, an exclusive chemical composition of the preparation solution was noticed. This highlighted the high influence of the chemical composition on the operational efficiency of MFI zeolite membranes. The coupling of PCA with experimental results can provide a data-driven enhancement strategy for the manufacturing of MFI-type zeolite membranes used for ethanol/water separation. Full article
Show Figures

Graphical abstract

Back to TopTop