Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = MERS-CoV epidemiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 729 KB  
Article
Pathogenesis and Transmissibility of Middle East Respiratory Syndrome Coronaviruses of African Origin in Alpacas
by Richard A. Bowen, Airn Hartwig, Anneliese Bruening, Audrey Walker and Malik Peiris
Viruses 2025, 17(11), 1524; https://doi.org/10.3390/v17111524 - 20 Nov 2025
Viewed by 617
Abstract
The Middle East Respiratory Syndrome coronavirus (MERS-CoV) remains a highly significant threat to global public health. Dromedary camels are the zoonotic source of human infection. All cases of zoonotic Middle East Respiratory Syndrome (MERS) have occurred in Middle Eastern countries despite MERS-CoV infection [...] Read more.
The Middle East Respiratory Syndrome coronavirus (MERS-CoV) remains a highly significant threat to global public health. Dromedary camels are the zoonotic source of human infection. All cases of zoonotic Middle East Respiratory Syndrome (MERS) have occurred in Middle Eastern countries despite MERS-CoV infection of camels being widespread in Africa. This disparity in the geographic burden of the disease may be due to genomic differences between MERS-CoV circulating in Middle Eastern countries (clades A and B) versus those infecting camels in Africa (clade C), although the precise genetic determinants of virulence remain to be elucidated. The objective of the studies reported here was to evaluate differences in the magnitude of virus shedding and in transmissibility of clades A/B and C viruses using alpacas as a surrogate for dromedary camels. We found that two of three African-origin, clade C strains of MERS-CoV induced very reduced levels of virus shedding and were transmitted inefficiently to contact control animals as compared to one other clade C virus and representative viruses from clade A and B. Lower virus titers in the nasopharynx may be associated with lower zoonotic transmission and human disease severity and may explain the observed epidemiology of MERS-CoV in Africa where zoonotic disease appears rare. These results add to our understanding of the transmission of different lineages of MERS CoV in camelids and zoonotic transmission. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 1237 KB  
Article
Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence
by Sasiprapa Ninwattana, Spencer L. Sterling, Khwankamon Rattanatumhi, Nattakarn Thippamom, Piyapha Hirunpatrawong, Pakamas Sangsub, Thaniwan Cheun-Arom, Dominic Esposito, Chee Wah Tan, Wee Chee Yap, Feng Zhu, Lin-Fa Wang, Eric D. Laing, Supaporn Wacharapluesadee and Opass Putcharoen
Viruses 2025, 17(6), 837; https://doi.org/10.3390/v17060837 - 10 Jun 2025
Viewed by 1777
Abstract
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study [...] Read more.
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study aimed to determine the seroprevalence of betacoronaviruses in an occupational cohort in contact with bats before and after the emergence of SARS-CoV-2. Serum samples from pre- and post-COVID-19 pandemic were screened using antigen-based multiplex microsphere immunoassays (MMIAs) and a multiplex surrogate virus neutralization test (sVNT). Pre-pandemic samples showed no SARS-CoV-2 antibodies, while post-pandemic samples from vaccinated participants displayed binding and neutralizing antibodies against SARS-CoV-2 and a related bat CoV. Furthermore, one participant (1/237, 0.43%) had persistent antibodies against MERS-CoV in 2017, 2018 and 2021 but was seronegative in 2023, despite reporting no history of traveling abroad or severe pneumonia. The observed sustained antibody levels indicate a possible exposure to MERS-CoV or a MERS-CoV-like virus, although the etiology and clinical relevance of this finding remains unclear. Ongoing surveillance in high-risk populations remains crucial for understanding virus epidemiology and mitigating zoonotic transmission risk. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

11 pages, 615 KB  
Article
Low-Level Zoonotic Transmission of Clade C MERS-CoV in Africa: Insights from Scoping Review and Cohort Studies in Hospital and Community Settings
by Andrew Karani, Cynthia Ombok, Silvia Situma, Robert Breiman, Marianne Mureithi, Walter Jaoko, M. Kariuki Njenga and Isaac Ngere
Viruses 2025, 17(1), 125; https://doi.org/10.3390/v17010125 - 17 Jan 2025
Cited by 5 | Viewed by 2352
Abstract
Human outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) are more common in Middle Eastern and Asian human populations, associated with clades A and B. In Africa, where clade C is dominant in camels, human cases are minimal. We reviewed 16 studies (n [...] Read more.
Human outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) are more common in Middle Eastern and Asian human populations, associated with clades A and B. In Africa, where clade C is dominant in camels, human cases are minimal. We reviewed 16 studies (n = 6198) published across seven African countries between 2012 and 2024 to assess human MERS-CoV cases. We also analyzed data from four cohort studies conducted in camel-keeping communities between 2018 and 2024 involving camel keepers, camel slaughterhouse workers, and hospital patients with acute respiratory illness (ARI). The analysis showed a pooled MERS-CoV prevalence of 2.4% (IQR: 0.6, 11.4) from 16 publications and 1.14% from 4 cohort studies (n = 2353). Symptomatic cases were rarely reported, with most individuals reporting camel contact, and only 12% had travel history to the Middle East. There was one travel-associated reported death, resulting in a mortality rate of 0.013%. The findings suggest a low camel-to-human transmission of clade C MERS-CoV in Africa. Ongoing research focuses on genomic comparisons between clade C and the more virulent clades A and B, alongside the surveillance of viral evolution. This study highlights the need for continuous monitoring but indicates that MERS-CoV clade C currently poses a minimal public health threat in Africa. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

12 pages, 4608 KB  
Article
Evolutionary Relationships of Unclassified Coronaviruses in Canadian Bat Species
by Ayo Yila Simon, Maulik D. Badmalia, Sarah-Jo Paquette, Jessica Manalaysay, Dominic Czekay, Bishnu Sharma Kandel, Asma Sultana, Oliver Lung, George Giorgi Babuadze and Nariman Shahhosseini
Viruses 2024, 16(12), 1878; https://doi.org/10.3390/v16121878 - 4 Dec 2024
Cited by 1 | Viewed by 1896
Abstract
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. [...] Read more.
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada. Tissue samples from 500 bat specimens collected in Canada were analyzed using pan-coronavirus RT-PCR assays to detect the presence of CoVs from four genera: Alpha-CoVs, Beta-CoV, Gamma-CoV, and Delta-CoV. Phylogenetic analysis was performed targeting the RNA-dependent RNA polymerase (RdRP) gene. Our results showed an overall 1.4% CoV positivity rate in our bat sample size. Phylogenetic analysis based on the ~600 bp sequences led to the identification of an unclassified subgenus of Alpha-CoV, provisionally named Eptacovirus. The findings contribute to a better understanding of the diversity and evolution of CoVs found in the bat species of Canada. The current study underscores the significance of bats in the epidemiology of CoVs and enhances the knowledge of their genetic diversity and potential impact on global public health. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

15 pages, 3029 KB  
Article
Potential of a Bead-Based Multiplex Assay for SARS-CoV-2 Antibody Detection
by Karla Rottmayer, Mandy Schwarze, Christian Jassoy, Ralf Hoffmann, Henry Loeffler-Wirth and Claudia Lehmann
Biology 2024, 13(4), 273; https://doi.org/10.3390/biology13040273 - 18 Apr 2024
Cited by 2 | Viewed by 2905
Abstract
Serological assays for SARS-CoV-2 play a pivotal role in the definition of whether patients are infected, the understanding of viral epidemiology, the screening of convalescent sera for therapeutic and prophylactic purposes, and in obtaining a better understanding of the immune response towards the [...] Read more.
Serological assays for SARS-CoV-2 play a pivotal role in the definition of whether patients are infected, the understanding of viral epidemiology, the screening of convalescent sera for therapeutic and prophylactic purposes, and in obtaining a better understanding of the immune response towards the virus. The aim of this study was to investigate the performance of a bead-based multiplex assay. This assay allowed for the simultaneous testing of IgG antibodies against SARS-CoV-2 spike, S1, S2, RBD, and nucleocapsid moieties and S1 of seasonal coronaviruses hCoV-22E, hCoV-HKU1, hCoV-NL63, and hCoV-OC43, as well as MERS and SARS-CoV. We compared the bead-based multiplex assay with commercial ELISA tests. We tested the sera of 27 SARS-CoV-2 PCR-positive individuals who were previously tested with different ELISA assays. Additionally, we investigated the reproducibility of the results by means of multiple testing of the same sera. Finally, the results were correlated with neutralising assays. In summary, the concordance of the qualitative results ranged between 78% and 96% depending on the ELISA assay and the specific antigen. Repeated freezing–thawing cycles resulted in reduced mean fluorescence intensity, while the storage period had no influence in this respect. In our test cohort, we detected up to 36% of sera positive for the development of neutralising antibodies, which is in concordance with the bead-based multiplex and IgG ELISA. Full article
Show Figures

Figure 1

17 pages, 4027 KB  
Article
Epidemiology and Scenario Simulations of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) Disease Spread and Control for Dromedary Camels in United Arab Emirates (UAE)
by Magdi Mohamed Ali, Eihab Fathelrahman, Adil I. El Awad, Yassir M. Eltahir, Raeda Osman, Youssef El-Khatib, Rami H. AlRifai, Mohamed El Sadig, Abdelmalik Ibrahim Khalafalla and Aaron Reeves
Animals 2024, 14(3), 362; https://doi.org/10.3390/ani14030362 - 23 Jan 2024
Cited by 1 | Viewed by 4178
Abstract
Middle East Respiratory Syndrome (MERS-CoV) is a coronavirus-caused viral respiratory infection initially detected in Saudi Arabia in 2012. In UAE, high seroprevalence (97.1) of MERS-CoV in camels was reported in several Emirate of Abu Dhabi studies, including camels in zoos, public escorts, and [...] Read more.
Middle East Respiratory Syndrome (MERS-CoV) is a coronavirus-caused viral respiratory infection initially detected in Saudi Arabia in 2012. In UAE, high seroprevalence (97.1) of MERS-CoV in camels was reported in several Emirate of Abu Dhabi studies, including camels in zoos, public escorts, and slaughterhouses. The objectives of this research include simulation of MERS-CoV spread using a customized animal disease spread model (i.e., customized stochastic model for the UAE; analyzing the MERS-CoV spread and prevalence based on camels age groups and identifying the optimum control MERS-CoV strategy. This study found that controlling animal mobility is the best management technique for minimizing epidemic length and the number of affected farms. This study also found that disease dissemination differs amongst camels of three ages: camel kids under the age of one, young camels aged one to four, and adult camels aged four and up; because of their immunological state, kids, as well as adults, had greater infection rates. To save immunization costs, it is advised that certain age groups be targeted and that intense ad hoc unexpected vaccinations be avoided. According to the study, choosing the best technique must consider both efficacy and cost. Full article
Show Figures

Figure 1

18 pages, 3225 KB  
Article
HLA-DQ2/8 and COVID-19 in Celiac Disease: Boon or Bane
by Aaron Lerner, Carina Benzvi and Aristo Vojdani
Microorganisms 2023, 11(12), 2977; https://doi.org/10.3390/microorganisms11122977 - 13 Dec 2023
Cited by 2 | Viewed by 3617
Abstract
The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, [...] Read more.
The SARS-CoV-2 pandemic continues to pose a global threat. While its virulence has subsided, it has persisted due to the continual emergence of new mutations. Although many high-risk conditions related to COVID-19 have been identified, the understanding of protective factors remains limited. Intriguingly, epidemiological evidence suggests a low incidence of COVID-19-infected CD patients. The present study explores whether their genetic background, namely, the associated HLA-DQs, offers protection against severe COVID-19 outcomes. We hypothesize that the HLA-DQ2/8 alleles may shield CD patients from SARS-CoV-2 and its subsequent effects, possibly due to memory CD4 T cells primed by previous exposure to human-associated common cold coronaviruses (CCC) and higher affinity to those allele’s groove. In this context, we examined potential cross-reactivity between SARS-CoV-2 epitopes and human-associated CCC and assessed the binding affinity (BA) of these epitopes to HLA-DQ2/8. Using computational methods, we analyzed sequence similarity between SARS-CoV-2 and four distinct CCC. Of 924 unique immunodominant 15-mer epitopes with at least 67% identity, 37 exhibited significant BA to HLA-DQ2/8, suggesting a protective effect. We present various mechanisms that might explain the protective role of HLA-DQ2/8 in COVID-19-afflicted CD patients. If substantiated, these insights could enhance our understanding of the gene–environment enigma and viral–host relationship, guiding potential therapeutic innovations against the ongoing SARS-CoV-2 pandemic. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

19 pages, 1322 KB  
Systematic Review
Prevalence and Molecular Epidemiology of Human Coronaviruses in Africa Prior to the SARS-CoV-2 Outbreak: A Systematic Review
by Lisa Arrah Mbang Tambe, Phindulo Mathobo, Mukhethwa Munzhedzi, Pascal Obong Bessong and Lufuno Grace Mavhandu-Ramarumo
Viruses 2023, 15(11), 2146; https://doi.org/10.3390/v15112146 - 25 Oct 2023
Cited by 4 | Viewed by 2600
Abstract
Coronaviruses, re-emerging in human populations, cause mild or severe acute respiratory diseases, and occasionally epidemics. This study systematically reviewed human coronavirus (HCoVs) infections in Africa prior to the SARS-CoV-2 outbreak. Forty studies on the prevalence or molecular epidemiology of HCoVs were available from [...] Read more.
Coronaviruses, re-emerging in human populations, cause mild or severe acute respiratory diseases, and occasionally epidemics. This study systematically reviewed human coronavirus (HCoVs) infections in Africa prior to the SARS-CoV-2 outbreak. Forty studies on the prevalence or molecular epidemiology of HCoVs were available from 13/54 African countries (24%). The first published data on HCoV was from South Africa in 2008. Eight studies (20%) reported on HCoV molecular epidemiology. Endemic HCoV prevalence ranged from 0.0% to 18.2%. The prevalence of zoonotic MERS-CoV ranged from 0.0% to 83.5%. Two studies investigated SARS-CoV infection, for which a prevalence of 0.0% was reported. There was heterogeneity in the type of tests used in determining HCoV prevalence. Two studies reported that risk factors for HCoV include exposure to infected animals or humans. The quantity of virologic investigations on HCoV on the African continent was scant, and Africa was not prepared for SARS-CoV-2. Full article
(This article belongs to the Special Issue Animal and Human Respiratory Viruses—Causes of the Next Pandemic?)
Show Figures

Figure 1

19 pages, 2887 KB  
Article
Predictive Modeling and Control Strategies for the Transmission of Middle East Respiratory Syndrome Coronavirus
by Bibi Fatima, Mehmet Yavuz, Mati ur Rahman, Ali Althobaiti and Saad Althobaiti
Math. Comput. Appl. 2023, 28(5), 98; https://doi.org/10.3390/mca28050098 - 30 Sep 2023
Cited by 26 | Viewed by 2748
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious respiratory illness that poses a significant threat to public health. Understanding the transmission dynamics of MERS-CoV is crucial for effective control and prevention strategies. In this study, we develop a precise mathematical [...] Read more.
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious respiratory illness that poses a significant threat to public health. Understanding the transmission dynamics of MERS-CoV is crucial for effective control and prevention strategies. In this study, we develop a precise mathematical model to capture the transmission dynamics of MERS-CoV. We incorporate some novel parameters related to birth and mortality rates, which are essential factors influencing the spread of the virus. We obtain epidemiological data from reliable sources to estimate the model parameters. We compute its basic reproduction number (R0). Stability theory is employed to analyze the local and global properties of the model, providing insights into the system’s equilibrium states and their stability. Sensitivity analysis is conducted to identify the most critical parameter affecting the transmission dynamics. Our findings revealed important insights into the transmission dynamics of MERS-CoV. The stability analysis demonstrated the existence of stable equilibrium points, indicating the long-term behavior of the epidemic. Through the evaluation of optimal control strategies, we identify effective intervention measures to mitigate the spread of MERS-CoV. Our simulations demonstrate the impact of time-dependent control variables, such as supportive care and treatment, in reducing the number of infected individuals and controlling the epidemic. The model can serve as a valuable tool for public health authorities in designing effective control and prevention strategies, ultimately reducing the burden of MERS-CoV on global health. Full article
Show Figures

Figure 1

24 pages, 1405 KB  
Review
A SARS-CoV-2: Companion Animal Transmission and Variants Classification
by Rachana Pandit and Qiana L. Matthews
Pathogens 2023, 12(6), 775; https://doi.org/10.3390/pathogens12060775 - 29 May 2023
Cited by 8 | Viewed by 6402
Abstract
The continuous emergence of novel viruses and their diseases are a threat to global public health as there have been three outbreaks of coronaviruses that are highly pathogenic to humans in the span of the last two decades, severe acute respiratory syndrome (SARS)-CoV [...] Read more.
The continuous emergence of novel viruses and their diseases are a threat to global public health as there have been three outbreaks of coronaviruses that are highly pathogenic to humans in the span of the last two decades, severe acute respiratory syndrome (SARS)-CoV in 2002, Middle East respiratory syndrome (MERS)-CoV in 2012, and novel SARS-CoV-2 which emerged in 2019. The unprecedented spread of SARS-CoV-2 worldwide has given rise to multiple SARS-CoV-2 variants that have either altered transmissibility, infectivity, or immune escaping ability, causing diseases in a broad range of animals including human and non-human hosts such as companion, farm, zoo, or wild animals. In this review, we have discussed the recent SARS-CoV-2 outbreak, potential animal reservoirs, and natural infections in companion and farm animals, with a particular focus on SARS-CoV-2 variants. The expeditious development of COVID-19 vaccines and the advancements in antiviral therapeutics have contained the COVID-19 pandemic to some extent; however, extensive research and surveillance concerning viral epidemiology, animal transmission, variants, or seroprevalence in diverse hosts are essential for the future eradication of COVID-19. Full article
Show Figures

Figure 1

15 pages, 2614 KB  
Article
Epidemiology of Non-SARS-CoV2 Human Coronaviruses (HCoVs) in People Presenting with Influenza-like Illness (ILI) or Severe Acute Respiratory Infections (SARI) in Senegal from 2012 to 2020
by Modeste Name Faye, Mamadou Aliou Barry, Mamadou Malado Jallow, Serigne Fallou Wade, Marie Pedapa Mendy, Sara Sy, Amary Fall, Davy Evrard Kiori, Ndiende Koba Ndiaye, Deborah Goudiaby, Arfang Diamanka, Mbayame Ndiaye Niang and Ndongo Dia
Viruses 2023, 15(1), 20; https://doi.org/10.3390/v15010020 - 21 Dec 2022
Cited by 11 | Viewed by 3229
Abstract
In addition to emerging coronaviruses (SARS-CoV, MERS, SARS-CoV-2), there are seasonal human coronaviruses (HCoVs): HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1. With a wide distribution around the world, HCoVs are usually associated with mild respiratory disease. In the elderly, young children and immunocompromised patients, more [...] Read more.
In addition to emerging coronaviruses (SARS-CoV, MERS, SARS-CoV-2), there are seasonal human coronaviruses (HCoVs): HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1. With a wide distribution around the world, HCoVs are usually associated with mild respiratory disease. In the elderly, young children and immunocompromised patients, more severe or even fatal respiratory infections may be observed. In Africa, data on seasonal HCoV are scarce. This retrospective study investigated the epidemiology and genetic diversity of seasonal HCoVs during nine consecutive years of influenza-like illness surveillance in Senegal. Nasopharyngeal swabs were collected from ILI outpatients or from SARI hospitalized patients. HCoVs were diagnosed by qRT-PCR and the positive samples were selected for molecular characterization. Among 9337 samples tested for HCoV, 406 (4.3%) were positive: 235 (57.9%) OC43, 102 (25.1%) NL63, 58 (14.3%) 229E and 17 (4.2%) HKU1. The four types circulated during the study period and a peak was noted between November and January. Children under five were the most affected. Co-infections were observed between HCoV types (1.2%) or with other viruses (76.1%). Genetically, HCoVs types showed diversity. The results highlighted that the impact of HCoVs must be taken into account in public health; monitoring them is therefore particularly necessary both in the most sensitive populations and in animals. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

15 pages, 2457 KB  
Article
Outbreak of Middle East Respiratory Syndrome Coronavirus in Camels and Probable Spillover Infection to Humans in Kenya
by Isaac Ngere, Elizabeth A. Hunsperger, Suxiang Tong, Julius Oyugi, Walter Jaoko, Jennifer L. Harcourt, Natalie J. Thornburg, Harry Oyas, Mathew Muturi, Eric M. Osoro, John Gachohi, Cynthia Ombok, Jeanette Dawa, Ying Tao, Jing Zhang, Lydia Mwasi, Caroline Ochieng, Athman Mwatondo, Boku Bodha, Daniel Langat, Amy Herman-Roloff, M. Kariuki Njenga, Marc-Alain Widdowson and Peninah M. Munyuaadd Show full author list remove Hide full author list
Viruses 2022, 14(8), 1743; https://doi.org/10.3390/v14081743 - 9 Aug 2022
Cited by 18 | Viewed by 5367
Abstract
The majority of Kenya’s > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0–24 months from 33 homesteads in Northern Kenya and followed them between April 2018 [...] Read more.
The majority of Kenya’s > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0–24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April–September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

12 pages, 1098 KB  
Article
Viral and Bacterial Zoonotic Agents in Dromedary Camels from Southern Tunisia: A Seroprevalence Study
by Simone Eckstein, Rosina Ehmann, Abderraouf Gritli, Mohamed Ben Rhaiem, Houcine Ben Yahia, Manuel Diehl, Roman Wölfel, Susann Handrick, Mohamed Ben Moussa and Kilian Stoecker
Microorganisms 2022, 10(4), 727; https://doi.org/10.3390/microorganisms10040727 - 29 Mar 2022
Cited by 10 | Viewed by 4882
Abstract
The rapid spread of SARS-CoV-2 clearly demonstrated the potential of zoonotic diseases to cause severe harm to public health. Having limited access to medical care combined with severe underreporting and a lack of active surveillance, Africa carries a high burden of neglected zoonotic [...] Read more.
The rapid spread of SARS-CoV-2 clearly demonstrated the potential of zoonotic diseases to cause severe harm to public health. Having limited access to medical care combined with severe underreporting and a lack of active surveillance, Africa carries a high burden of neglected zoonotic diseases. Therefore, the epidemiological monitoring of pathogen circulation is essential. Recently, we found extensive Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence in free-roaming dromedary camels from southern Tunisia. In this study, we aimed to investigate the seroprevalence, and thus the risk posed to public health, of two additional viral and two bacterial pathogens in Tunisian dromedaries: Rift Valley fever virus (RVFV), foot-and-mouth disease virus (FMDV), Coxiella burnetii and Brucella spp. via ELISA. With 73.6% seropositivity, most animals had previously been exposed to the causative agent of Q fever, C. burnetii. Additionally, 7.4% and 1.0% of the dromedaries had antibodies against Brucella and RVFV, respectively, while no evidence was found for the occurrence of FMDV. Our studies revealed considerable immunological evidence of various pathogens within Tunisian dromedary camels. Since these animals have intense contact with humans, they pose a high risk of transmitting serious zoonotic diseases during active infection. The identification of appropriate countermeasures is therefore highly desirable. Full article
(This article belongs to the Special Issue Farm Animal and Wildlife Zoonotic Microorganisms)
Show Figures

Figure 1

24 pages, 1889 KB  
Review
Classical and Next-Generation Vaccine Platforms to SARS-CoV-2: Biotechnological Strategies and Genomic Variants
by Rachel Siqueira de Queiroz Simões and David Rodríguez-Lázaro
Int. J. Environ. Res. Public Health 2022, 19(4), 2392; https://doi.org/10.3390/ijerph19042392 - 18 Feb 2022
Cited by 16 | Viewed by 6284
Abstract
Several coronaviruses (CoVs) have been identified as human pathogens, including the α-CoVs strains HCoV-229E and HCoV-NL63 and the β-CoVs strains HCoV-HKU1 and HCoV-OC43. SARS-CoV, MERS-CoV, and SARS-CoV-2 are also classified as β-coronavirus. New SARS-CoV-2 spike genomic variants are responsible for human-to-human and interspecies [...] Read more.
Several coronaviruses (CoVs) have been identified as human pathogens, including the α-CoVs strains HCoV-229E and HCoV-NL63 and the β-CoVs strains HCoV-HKU1 and HCoV-OC43. SARS-CoV, MERS-CoV, and SARS-CoV-2 are also classified as β-coronavirus. New SARS-CoV-2 spike genomic variants are responsible for human-to-human and interspecies transmissibility, consequences of adaptations of strains from animals to humans. The receptor-binding domain (RBD) of SARS-CoV-2 binds to receptor ACE2 in humans and animal species with high affinity, suggesting there have been adaptive genomic variants. New genomic variants including the incorporation, replacement, or deletion of the amino acids at a variety of positions in the S protein have been documented and are associated with the emergence of new strains adapted to different hosts. Interactions between mutated residues and RBD have been demonstrated by structural modelling of variants including D614G, B.1.1.7, B1.351, P.1, P2; other genomic variants allow escape from antibodies generated by vaccines. Epidemiological and molecular tools are being used for real-time tracking of pathogen evolution and particularly new SARS-CoV-2 variants. COVID-19 vaccines obtained from classical and next-generation vaccine production platforms have entered clinicals trials. Biotechnology strategies of the first generation (attenuated and inactivated virus–CoronaVac, CoVaxin; BBIBP-CorV), second generation (replicating-incompetent vector vaccines–ChAdOx-1; Ad5-nCoV; Sputnik V; JNJ-78436735 vaccine-replicating-competent vector, protein subunits, virus-like particles–NVX-CoV2373 vaccine), and third generation (nucleic-acid vaccines–INO-4800 (DNA); mRNA-1273 and BNT 162b (RNA vaccines) have been used. Additionally, dendritic cells (LV-SMENP-DC) and artificial antigen-presenting (aAPC) cells modified with lentiviral vector have also been developed to inhibit viral activity. Recombinant vaccines against COVID-19 are continuously being applied, and new clinical trials have been tested by interchangeability studies of viral vaccines developed by classical and next-generation platforms. Full article
Show Figures

Figure 1

7 pages, 250 KB  
Review
Literature Review of Omicron: A Grim Reality Amidst COVID-19
by Suraj Arora, Vishakha Grover, Priyanka Saluja, Youssef Abdullah Algarni, Shahabe Abullais Saquib, Shaik Mohammed Asif, Kavita Batra, Mohammed Y. Alshahrani, Gotam Das, Rajni Jain and Anchal Ohri
Microorganisms 2022, 10(2), 451; https://doi.org/10.3390/microorganisms10020451 - 16 Feb 2022
Cited by 42 | Viewed by 8622
Abstract
Coronavirus disease 2019 (COVID-19) first emerged in Wuhan city in December 2019, and became a grave global concern due to its highly infectious nature. The Severe Acute Respiratory Coronavirus-2, with its predecessors (i.e., MERS-CoV and SARS-CoV) belong to the family of Coronaviridae. [...] Read more.
Coronavirus disease 2019 (COVID-19) first emerged in Wuhan city in December 2019, and became a grave global concern due to its highly infectious nature. The Severe Acute Respiratory Coronavirus-2, with its predecessors (i.e., MERS-CoV and SARS-CoV) belong to the family of Coronaviridae. Reportedly, COVID-19 has infected 344,710,576 people around the globe and killed nearly 5,598,511 persons in the short span of two years. On November 24, 2021, B.1.1.529 strain, later named Omicron, was classified as a Variant of Concern (VOC). SARS-CoV-2 has continuously undergone a series of unprecedented mutations and evolved to exhibit varying characteristics. These mutations have largely occurred in the spike (S) protein (site for antibody binding), which attribute high infectivity and transmissibility characteristics to the Omicron strain. Although many studies have attempted to understand this new challenge in the COVID-19 strains race, there is still a lot to be demystified. Therefore, the purpose of this review was to summarize the structural or virologic characteristics, burden, and epidemiology of the Omicron variant and its potential to evade the immune response. Full article
(This article belongs to the Special Issue The Ecology and Evolution of SARS-CoV-2)
Back to TopTop