Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = MEMS-FTIR spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3843 KiB  
Article
Goat’s Skim Milk Enriched with Agrocybe aegerita (V. Brig.) Vizzini Mushroom Extract: Optimization, Physico-Chemical Characterization, and Evaluation of Techno-Functional, Biological and Antimicrobial Properties
by Danijel D. Milinčić, Ivana Sredović Ignjatović, Dejan Stojković, Jovana Petrović, Aleksandar Ž. Kostić, Jasmina Glamočlija, Ana Doroški Petković, Ana Plećić, Steva Lević, Vladislav Rac, Vladimir B. Pavlović, Slađana P. Stanojević, Viktor A. Nedović and Mirjana B. Pešić
Foods 2025, 14(6), 1056; https://doi.org/10.3390/foods14061056 - 19 Mar 2025
Viewed by 908
Abstract
The aim of this study was to develop a novel functional ingredient—goat’s skim milk enriched with Agrocybe aegerita (V. Brig.) Vizzini mushroom extract (ME/M)—using Central Composite Design (CCD). The optimized ME/M ingredient was evaluated for its physico-chemical, techno-functional, biological, and antimicrobial properties. Physico-chemical [...] Read more.
The aim of this study was to develop a novel functional ingredient—goat’s skim milk enriched with Agrocybe aegerita (V. Brig.) Vizzini mushroom extract (ME/M)—using Central Composite Design (CCD). The optimized ME/M ingredient was evaluated for its physico-chemical, techno-functional, biological, and antimicrobial properties. Physico-chemical properties were analyzed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). The ingredient exhibited a polymodal particle size distribution and contained glucans, along with a newly formed polypeptide resulting from the selective cleavage of goat milk proteins. A 0.1% ME/M solution demonstrated good emulsifying and foaming properties. Additionally, ME/M showed strong antiproliferative effects on human cancer cell lines, particularly Caco-2 (colorectal) and MCF7 (breast) cancer cells. The ingredient also promoted HaCaT cell growth without cytotoxic effects, suggesting its safety and potential wound-healing properties. Furthermore, the addition of ME/M to HaCaT cells inoculated with Staphylococcus aureus resulted in reduced IL-6 levels compared to the control (without ME/M), indicating a dose-dependent anti-inflammatory effect. The optimized ME/M ingredient also exhibited antibacterial, antifungal, anticandidal, and antibiofilm activity in one-fourth of MIC. These findings suggest that the formulated ME/M ingredient has strong potential for use in the development of functional foods offering both desirable techno-functional properties and bioactive benefits. Full article
(This article belongs to the Special Issue Bioactive Compounds, Antioxidants, and Health Benefits—Volume II)
Show Figures

Figure 1

14 pages, 5629 KiB  
Article
A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical
by Carlos D. Gutierrez, Rosana L. Aranzábal, Ana M. Lechuga, Carlos A. Serrano, Flor Meza, Carlos Elvira, Alberto Gallardo and Michael A. Ludeña
Gels 2024, 10(9), 602; https://doi.org/10.3390/gels10090602 - 22 Sep 2024
Viewed by 1756
Abstract
In this study, poly(HEMA-PEGxMEM-IA) hydrogels were prepared by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGxMEM), 2-hydroxyethyl methacrylate (HEMA), and itaconic acid (IA). The reaction was carried out in ethanolic solution using N,N′-methylenebisacrylamide (MBA) as a crosslinking agent and 1-hydroxycyclohexyl phenyl ketone [...] Read more.
In this study, poly(HEMA-PEGxMEM-IA) hydrogels were prepared by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGxMEM), 2-hydroxyethyl methacrylate (HEMA), and itaconic acid (IA). The reaction was carried out in ethanolic solution using N,N′-methylenebisacrylamide (MBA) as a crosslinking agent and 1-hydroxycyclohexyl phenyl ketone (HCPK) as a photo-initiator. The poly(HEMA-PEGxMEM-IA) hydrogels (HGx) were evaluated as a delivery system for ursolic acid (UA), a phytochemical extracted from the plant Clinopodium revolutum, “flor de arena”. The hydrogels were characterized by Fourier-transform infrared spectroscopy (FTIR-ATR), Raman spectroscopy, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The swelling behavior was studied in buffer solutions from pH 2 to 10, specifically at pH 2.2 (gastric environment) and 7.4 (intestinal environment). It was found that the hydrogels studied showed sensitivity to pH. At pH 2.2, the degree of swelling for HG5 and HG9 hydrogels was 0.45 and 0.93 (g water/g hydrogel), respectively. At pH 7.4, the degree of swelling for HG5 and HG9 hydrogels was 1.97 and 2.64 (g water/g hydrogel), respectively. The SEM images show the variation in pore size as a function of pH, and the UA crystals in the pores of the hydrogels can also be observed. The in vitro UA release data best fit the Korsmeyer–Peppas kinetic model and the diffusion exponent indicates that the release mechanism is governed by Fickian diffusion. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Graphical abstract

12 pages, 1788 KiB  
Article
Potential of a Miniature Spectral Analyzer for District-Scale Monitoring of Multiple Gaseous Air Pollutants
by Alaa Fathy, Martine Gnambodoe-Capochichi, Yasser M. Sabry, Momen Anwar, Amr O. Ghoname, Ahmed Saeed, Yamin Leprince-Wang, Diaa Khalil and Tarik Bourouina
Sensors 2023, 23(14), 6343; https://doi.org/10.3390/s23146343 - 12 Jul 2023
Cited by 8 | Viewed by 2002
Abstract
Gas sensors that can measure multiple pollutants simultaneously are highly desirable for on-site air pollution monitoring at various scales, both indoor and outdoor. Herein, we introduce a low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously, thus allowing for true analytical [...] Read more.
Gas sensors that can measure multiple pollutants simultaneously are highly desirable for on-site air pollution monitoring at various scales, both indoor and outdoor. Herein, we introduce a low-cost multi-parameter gas analyzer capable of monitoring multiple gaseous pollutants simultaneously, thus allowing for true analytical measurement. It is a spectral sensor consisting of a Fourier-transform infrared (FTIR) gas analyzer based on a mid-infrared (MIR) spectrometer. The sensor is as small as 7 × 5 × 2.5 cm3. It was deployed in an open-path configuration within a district-scale climatic chamber (Sense City, Marne-la-Vallée, France) with a volume of 20 × 20 × 8 m3. The setup included a transmitter and a receiver separated by 38 m to enable representative measurements of the entire district domain. We used a car inside the climatic chamber, turning the engine on and off to create time sequences of a pollution source. The results showed that carbon dioxide (CO2) and water vapor (H2O) were accurately monitored using the spectral sensor, with agreement with the reference analyzers used to record the pollution levels near the car exhaust. Furthermore, the lower detection limits of CO, NO2 and NO were assessed, demonstrating the capability of the sensor to detect these pollutants. Additionally, a preliminary evaluation of the potential of the spectral sensor to screen multiple volatile organic compounds (VOCs) was conducted at the laboratory scale. Overall, the results demonstrated the potential of the proposed multi-parameter spectral gas sensor in on-site gaseous pollution monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Gas Sensors)
Show Figures

Figure 1

22 pages, 4671 KiB  
Article
Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry
by Noah Atkinson, Tyler A. Morhart, Garth Wells, Grace T. Flaman, Eric Petro, Stuart Read, Scott M. Rosendahl, Ian J. Burgess and Sven Achenbach
Sensors 2023, 23(14), 6251; https://doi.org/10.3390/s23146251 - 8 Jul 2023
Cited by 7 | Viewed by 3498
Abstract
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical [...] Read more.
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 μm height and 600 μm width in 5 mm thick PDMS were fabricated on 2” and 4” demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of H2O and D2O demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices. Full article
(This article belongs to the Special Issue Process Technologies for Polymer-Based Sensor Systems)
Show Figures

Figure 1

13 pages, 2122 KiB  
Article
Graphene Oxide/Nitrocellulose Non-Covalent Hybrid as Solid Phase for Oligo-DNA Extraction from Complex Medium
by Georgian A. Toader, Florentin R. Nitu and Mariana Ionita
Molecules 2023, 28(12), 4599; https://doi.org/10.3390/molecules28124599 - 7 Jun 2023
Cited by 11 | Viewed by 2382
Abstract
A nitrocellulose–graphene oxide hybrid that consists of a commercially nitrocellulose (NC) membrane non-covalently modified with graphene oxide (GO) microparticles was successfully prepared for oligonucleotide extraction. The modification of NC membrane was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), which highlighted the principal absorption [...] Read more.
A nitrocellulose–graphene oxide hybrid that consists of a commercially nitrocellulose (NC) membrane non-covalently modified with graphene oxide (GO) microparticles was successfully prepared for oligonucleotide extraction. The modification of NC membrane was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), which highlighted the principal absorption bands of both the NC membrane at 1641, 1276, and 835 cm−1 (NO2) and of GO in the range of 3450 cm−1 (CH2-OH). The SEM analysis underlined the well-dispersed and uniform coverage of NC membrane with GO, which displayed thin spider web morphology. The wettability assay indicated that the NC–GO hybrid membrane exhibited slightly lower hydrophilic behavior, with a water contact angle of 26.7°, compared to the 15° contact angle of the NC control membrane. The NC–GO hybrid membranes were used to separate oligonucleotides that had fewer than 50 nucleotides (nt) from complex solutions. The features of the NC–GO hybrid membranes were tested for extraction periods of 30, 45, and 60 min in three different complex solutions, i.e., an aqueous medium, an α-Minimum Essential Medium (αMEM), and an αMEM supplemented with fetal bovine serum (FBS). The oligonucleotides were desorbed from the surface of the NC–GO hybrid membrane using Tris-HCl buffer with a pH of 8.0. Out of the three media utilized, the best results were achieved after 60 min incubation of the NC–GO membranes in αMEM, as evidenced by the highest fluorescence emission of 294 relative fluorescence units (r.f.u.). This value corresponded to the extraction of approximately 330–370 pg (≈7%) of the total oligo-DNA. This method is an efficient and effortless way to purify short oligonucleotides from complex solutions. Full article
(This article belongs to the Special Issue Polysaccharide-Based Biopolymer: Recent Development and Applications)
Show Figures

Figure 1

15 pages, 4378 KiB  
Article
Hybrid Polymer Composites Based on Polystyrene (PS) Used in the Melted and Extruded Manufacturing Technology
by Katarzyna Bulanda, Mariusz Oleksy and Rafał Oliwa
Polymers 2022, 14(22), 5000; https://doi.org/10.3390/polym14225000 - 18 Nov 2022
Cited by 6 | Viewed by 2291
Abstract
As part of the work, innovative hybrid polymer composites dedicated to rapid prototyping, especially for 3D printing with the melted and extruded manufacturing (MEM) technique, were developed. For this purpose, the influence of modified fillers, such as alumina-modified silica, bentonite modified with quaternary [...] Read more.
As part of the work, innovative hybrid polymer composites dedicated to rapid prototyping, especially for 3D printing with the melted and extruded manufacturing (MEM) technique, were developed. For this purpose, the influence of modified fillers, such as alumina-modified silica, bentonite modified with quaternary ammonium salt, and lignin/silicon dioxide hybrid filler, on the functional properties of polystyrene-based composites was investigated. The introduced additives were selected to improve the processing properties of polystyrene (PS), in particular its thermal stability, while maintaining good mechanical properties. In the first part of the work, using the proprietary technological line, filaments from unfilled PS and its composites were obtained, which contain modified fillers in the amount of 1.5% to 3.0% by weight. Samples for testing functional properties were obtained by 3D printing in MEM technology and injection technique. The rheological properties—mass melt flow rate (MFR), viscosity, and mechanical properties—are presented in the further part of the work. The size and the respective dispersion in the polystyrene polymer matrix of the fillers used were determined by scanning electron microscopy with energy dispersion spectroscopy (SEM/EDS). The correct dispersion of additives in PS was also confirmed by wide-angle X-ray analysis (WAXS). A significant improvement in the thermal stability of the obtained composites after the introduction of fillers into the polymer matrix was confirmed on the basis of thermogravimetric analysis (TGA). The remaining tests of physicochemical properties, differential scanning calorimetry (DSC), and infrared spectroscopy with Fourier transform (FT-IR) allowed us to state no significant changes in relation to polystyrene. The obtained test results allowed us to conclude that the amount and type of fillers used in the PS polymer matrix significantly affect the performance properties of the tested hybrid composites. The composites obtained as part of the work can be successfully used in rapid prototyping technologies, especially for the production of details originally designed from PS, which are required to have higher thermal stability than is guaranteed only by the polymer matrix. Full article
(This article belongs to the Special Issue Advanced Polymer Hybrid Materials)
Show Figures

Graphical abstract

17 pages, 4810 KiB  
Article
Polymer Composites Based on Glycol-Modified Poly(Ethylene Terephthalate) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing Technology
by Katarzyna Bulanda, Mariusz Oleksy and Rafał Oliwa
Polymers 2022, 14(8), 1605; https://doi.org/10.3390/polym14081605 - 14 Apr 2022
Cited by 7 | Viewed by 2969
Abstract
As part of the work, innovative polymer composites dedicated to 3D printing applications were developed. For this purpose, the influence of modified fillers, such as silica modified with alumina, bentonite modified with quaternary ammonium salt, and hybrid filler lignin/silicon dioxide, on the functional [...] Read more.
As part of the work, innovative polymer composites dedicated to 3D printing applications were developed. For this purpose, the influence of modified fillers, such as silica modified with alumina, bentonite modified with quaternary ammonium salt, and hybrid filler lignin/silicon dioxide, on the functional properties of composites based on glycol-modified poly(ethylene terephthalate) (PET-G) was investigated. In the first part of the work, using the proprietary technological line, filaments from unfilled polymer and its composites were obtained, which contained modified fillers in an amount from 1.5% to 3.0% by weight. The fittings for the testing of functional properties were obtained using the 3D printing technique in the Melted and Extruded Manufacturing (MEM) technology and the injection molding technique. In a later part of the work, rheological properties such as mass melt flow rate (MFR) and viscosity, and mechanical properties such as Rockwell hardness, Charpy impact strength, and static tensile strength with Young’s modulus were presented. The structure of the obtained composites was also described and determined using scanning electron microscopy with an attachment for the microanalysis of chemical composition (SEM/EDS) and the atomic force microscope (AFM). The correct dispersion of the fillers in the polymer matrix was confirmed by wide-angle X-ray scattering analysis (WAXS). In turn, the physicochemical properties were presented on the basis of the research results: thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). On the basis of the obtained results, it was found that both the amount and the type of fillers used significantly affected the functional properties of the tested composites. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Structure of Polymer Nanomaterials)
Show Figures

Graphical abstract

14 pages, 1033 KiB  
Article
Deep Learning on Synthesized Sensor Characteristics and Transmission Spectra Enabling MEMS-Based Spectroscopic Gas Analysis beyond the Fourier Transform Limit
by Samar Elaraby, Sherif M. Abuelenin, Adel Moussa and Yasser M. Sabry
Foundations 2021, 1(2), 304-317; https://doi.org/10.3390/foundations1020022 - 15 Dec 2021
Cited by 7 | Viewed by 3140
Abstract
Miniaturized Fourier transform infrared spectrometers serve emerging market needs in many applications such as gas analysis. The miniaturization comes at the cost of lower performance than bench-top instrumentation, especially for the spectral resolution. However, higher spectral resolution is needed for better identification of [...] Read more.
Miniaturized Fourier transform infrared spectrometers serve emerging market needs in many applications such as gas analysis. The miniaturization comes at the cost of lower performance than bench-top instrumentation, especially for the spectral resolution. However, higher spectral resolution is needed for better identification of the composition of materials. This article presents a convolutional neural network (CNN) for 3X resolution enhancement of the measured infrared gas spectra using a Fourier transform infrared (FTIR) spectrometer beyond the transform limit. The proposed network extracts a set of high-dimensional features from the input spectra and constructs high-resolution outputs by nonlinear mapping. The network is trained using synthetic transmission spectra of complex gas mixtures and simulated sensor non-idealities such as baseline drifts and non-uniform signal-to-noise ratio. Ten gases that are relevant to the natural and bio gas industry are considered whose mixtures suffer from overlapped features in the mid-infrared spectral range of 2000–4000 cm1. The network results are presented for both synthetic and experimentally measured spectra using both bench-top and miniaturized MEMS spectrometers, improving the resolution from 60 cm1 to 20 cm1 with a mean square error down to 2.4×103 in the transmission spectra. The technique supports selective spectral analysis based on miniaturized MEMS spectrometers. Full article
(This article belongs to the Special Issue Infrared Spectroscopy: Principles and Instrumentation)
Show Figures

Figure 1

16 pages, 5076 KiB  
Article
Flame-Made La2O3-Based Nanocomposite CO2 Sensors as Perspective Part of GHG Monitoring System
by Matvey Andreev, Vadim Platonov, Darya Filatova, Elena Galitskaya, Sergey Polomoshnov, Sergey Generalov, Anastasiya Nikolaeva, Vladimir Amelichev, Oleg Zhdaneev, Valeriy Krivetskiy and Marina Rumyantseva
Sensors 2021, 21(21), 7297; https://doi.org/10.3390/s21217297 - 2 Nov 2021
Cited by 13 | Viewed by 3284
Abstract
Continuous monitoring of greenhouse gases with high spatio-temporal resolution has lately become an urgent task because of tightening environmental restrictions. It may be addressed with an economically efficient solution, based on semiconductor metal oxide gas sensors. In the present work, CO2 detection [...] Read more.
Continuous monitoring of greenhouse gases with high spatio-temporal resolution has lately become an urgent task because of tightening environmental restrictions. It may be addressed with an economically efficient solution, based on semiconductor metal oxide gas sensors. In the present work, CO2 detection in the relevant concentration range and ambient conditions was successfully effectuated by fine-particulate La2O3-based materials. Flame spray pyrolysis technique was used for the synthesis of sensitive materials, which were studied with X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and low temperature nitrogen adsorption coupled with Brunauer–Emmett–Teller (BET) effective surface area calculation methodology. The obtained materials represent a composite of lanthanum oxide, hydroxide and carbonate phases. The positive correlation has been established between the carbonate content in the as prepared materials and their sensor response towards CO2. Small dimensional planar MEMS micro-hotplates with low energy consumption were used for gas sensor fabrication through inkjet printing. The sensors showed highly selective CO2 detection in the range of 200–6667 ppm in humid air compared with pollutant gases (H2 50 ppm, CH4 100 ppm, NO2 1 ppm, NO 1 ppm, NH3 20 ppm, H2S 1 ppm, SO2 1 ppm), typical for the atmospheric air of urbanized and industrial area. Full article
(This article belongs to the Special Issue Gas Sensors Based on Semiconductor Materials)
Show Figures

Figure 1

23 pages, 10577 KiB  
Article
Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology
by Katarzyna Bulanda, Mariusz Oleksy, Rafał Oliwa, Grzegorz Budzik, Łukasz Przeszłowski, Jacek Fal and Teofil Jesionowski
Polymers 2021, 13(15), 2455; https://doi.org/10.3390/polym13152455 - 26 Jul 2021
Cited by 32 | Viewed by 4833
Abstract
As part of the present work, polymer composites used in 3D printing technology, especially in Melted and Extruded Manufacturing (MEM) technology, were obtained. The influence of modified fillers such as alumina modified silica, quaternary ammonium bentonite, lignin/silicon dioxide hybrid filler and unmodified multiwalled [...] Read more.
As part of the present work, polymer composites used in 3D printing technology, especially in Melted and Extruded Manufacturing (MEM) technology, were obtained. The influence of modified fillers such as alumina modified silica, quaternary ammonium bentonite, lignin/silicon dioxide hybrid filler and unmodified multiwalled carbon nanotubes on the properties of polycarbonate (PC) composites was investigated. In the first part of the work, the polymer and its composites containing 0.5–3 wt.% filler were used to obtain a filament using the proprietary technological line. The moldings for testing functional properties were obtained with the use of 3D printing and injection molding techniques. In the next part of the work, the rheological properties—mass flow rate (MFR) and mechanical properties—Rockwell hardness, Charpy impact strength and static tensile strength with Young’s modulus were examined. The structure of the obtained composites was also described and determined using scanning electron microscopy (SEM). The porosity, roughness and dimensional stability of samples obtained by 3D printing were also determined. On the other hand, the physicochemical properties were presented on the basis of the research results using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), wide angle X-ray scattering analysis (WAXS) and Fourier Transform infrared spectroscopy (FT-IR). Additionally, the electrical conductivity of the obtained composites was investigated. On the basis of the obtained results, it was found that both the amount and the type of filler significantly affected the functional properties of the composites tested in the study. Full article
(This article belongs to the Special Issue Mechanics of Polymer and Polymer Composite Materials and Structures)
Show Figures

Graphical abstract

24 pages, 12151 KiB  
Article
Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene Fiber Matrix
by Aurelia Cristina Nechifor, Andreia Pîrțac, Paul Constantin Albu, Alexandra Raluca Grosu, Florina Dumitru, Ioana Alina Dimulescu (Nica), Ovidiu Oprea, Dumitru Pașcu, Gheorghe Nechifor and Simona Gabriela Bungău
Membranes 2021, 11(6), 429; https://doi.org/10.3390/membranes11060429 - 5 Jun 2021
Cited by 21 | Viewed by 4954
Abstract
The separation, concentration and transport of the amino acids through membranes have been continuously developed due to the multitude of interest amino acids of interest and the sources from which they must be recovered. At the same time, the types of membranes used [...] Read more.
The separation, concentration and transport of the amino acids through membranes have been continuously developed due to the multitude of interest amino acids of interest and the sources from which they must be recovered. At the same time, the types of membranes used in the sepa-ration of the amino acids are the most diverse: liquids, ion exchangers, inorganic, polymeric or composites. This paper addresses the recuperative separation of three amino acids (alanine, phe-nylalanine, and methionine) using membranes from cellulosic derivatives in polypropylene ma-trix. The microfiltration membranes (polypropylene hollow fibers) were impregnated with solu-tions of some cellulosic derivatives: cellulose acetate, 2-hydroxyethyl-cellulose, methyl 2-hydroxyethyl-celluloseand sodium carboxymethyl-cellulose. The obtained membranes were characterized in terms of the separation performance of the amino acids considered (retention, flux, and selectivity) and from a morphological and structural point of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and thermal gravimetric analyzer (TGA). The re-sults obtained show that phenylalanine has the highest fluxes through all four types of mem-branes, followed by methionine and alanine. Of the four kinds of membrane, the most suitable for recuperative separation of the considered amino acids are those based on cellulose acetate and methyl 2-hydroxyethyl-cellulose. Full article
(This article belongs to the Collection Polymeric Membranes: Science, Materials and Applications)
Show Figures

Figure 1

17 pages, 4810 KiB  
Article
Comparison of the Physicochemical Properties of Carboxylic and Phosphonic Acid Self-Assembled Monolayers Created on a Ti-6Al-4V Substrate
by Michal Cichomski, Milena Prowizor, Dorota Anna Kowalczyk, Andrzej Sikora, Damian Batory and Mariusz Dudek
Materials 2020, 13(22), 5137; https://doi.org/10.3390/ma13225137 - 14 Nov 2020
Cited by 6 | Viewed by 2844
Abstract
This study compared the tribological properties in nano- and millinewton load ranges of Ti‑6Al-4V surfaces that were modified using self-assembled monolayers (SAMs) of carboxylic and phosphonic acids. The effectiveness of the creation of SAMs with the use of the liquid phase deposition (LPD) [...] Read more.
This study compared the tribological properties in nano- and millinewton load ranges of Ti‑6Al-4V surfaces that were modified using self-assembled monolayers (SAMs) of carboxylic and phosphonic acids. The effectiveness of the creation of SAMs with the use of the liquid phase deposition (LPD) technique was monitored by the contact angle measurement, the surface free energy (SFE) calculation, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) measurements. The obtained results indicated that more stable and well-ordered layers, which were characterized by the lowest values of the coefficient of friction, adhesion, and wear rate, were obtained using phosphonic acid as a surface modifier. Based on the obtained results, it was found that the Ti-6Al-4V alloy modified by phosphonic acid would be the most advantageous for practical applications, especially in micro- and nanoelectromechanical systems (MEMS/NEMS). Full article
(This article belongs to the Special Issue Tribological and Corrosive Investigations in Advanced Nanomaterials)
Show Figures

Graphical abstract

16 pages, 4899 KiB  
Article
Cylindrical IR-ATR Sensors for Process Analytics
by Armin Lambrecht, Carsten Bolwien, Jochen Erb, Hendrik Fuhr and Gerd Sulz
Sensors 2020, 20(10), 2917; https://doi.org/10.3390/s20102917 - 21 May 2020
Cited by 4 | Viewed by 3874
Abstract
Infrared attenuated total reflection (ATR) spectroscopy is a common laboratory technique for the analysis of highly absorbing liquids and solids. However, in a process environment, maintaining a sufficient sample exchange and cleaning of the sensitive surface of the element is a crucial issue. [...] Read more.
Infrared attenuated total reflection (ATR) spectroscopy is a common laboratory technique for the analysis of highly absorbing liquids and solids. However, in a process environment, maintaining a sufficient sample exchange and cleaning of the sensitive surface of the element is a crucial issue. An important industrial application is the measurement of isocyanate concentrations. Isocyanates are necessary for the fabrication of polyurethane materials and are among the chemicals with the highest production volume worldwide. For process applications, narrowband photometers or MEMS spectrometers are more appropriate than the use of bulky FTIR instruments frequently encountered in a laboratory environment. Toluene diisocyanate (TDI) and hexamethylene diisocyanate (HDI) concentrations are measured with a planar ATR photometer setup. Using a miniature Fabry–Perot interferometer (FPI), trace concentrations below 100 ppm (m/m) are detected. By employing an ATR element of the cylindrical shape, sensors can be realized with a smooth surface ideally suited for an automatic cleaning system in a process environment. A laboratory setup with sapphire tubes as ATR elements for incorporation in a liquid flow system is described. Reflection and transmission configurations were investigated. Measurements with acetonitrile as a less toxic substitute showed that with cylindrical ATR sensors’ detection limits for isocyanate concentrations below 100 ppm (m/m) are feasible. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

11 pages, 3346 KiB  
Article
Continuous Monitoring of Air Purification: A Study on Volatile Organic Compounds in a Gas Cell
by Alaa Fathy, Marie Le Pivert, Young Jai Kim, Mame Ousmane Ba, Mazen Erfan, Yasser M. Sabry, Diaa Khalil, Yamin Leprince-Wang, Tarik Bourouina and Martine Gnambodoe-Capochichi
Sensors 2020, 20(3), 934; https://doi.org/10.3390/s20030934 - 10 Feb 2020
Cited by 14 | Viewed by 5305
Abstract
Air pollution is one of the major environmental issues that humanity is facing. Considering Indoor Air Quality (IAQ), Volatile Organic Compounds (VOCs) are among the most harmful gases that need to be detected, but also need to be eliminated using air purification technologies. [...] Read more.
Air pollution is one of the major environmental issues that humanity is facing. Considering Indoor Air Quality (IAQ), Volatile Organic Compounds (VOCs) are among the most harmful gases that need to be detected, but also need to be eliminated using air purification technologies. In this work, we tackle both problems simultaneously by introducing an experimental setup enabling continuous measurement of the VOCs by online absorption spectroscopy using a MEMS-based Fourier Transform infrared (FTIR) spectrometer, while those VOCs are continuously eliminated by continuous adsorption and photocatalysis, using zinc oxide nanowires (ZnO-NWs). The proposed setup enabled a preliminary study of the mechanisms involved in the purification process of acetone and toluene, taken as two different VOCs, also typical of those that can be found in tobacco smoke. Our experiments revealed very different behaviors for those two gases. An elimination ratio of 63% in 3 h was achieved for toluene, while it was only 14% for acetone under same conditions. Adsorption to the nanowires appears as the dominant mechanism for the acetone, while photocatalysis is dominant in case of the toluene. Full article
(This article belongs to the Special Issue Optical Sensing Based on Microscale Devices)
Show Figures

Figure 1

Back to TopTop