Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = MCM-35 zeolite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2897 KiB  
Article
Catalyst Accessibility and Acidity in the Hydrocracking of HDPE: A Comparative Study of H-USY, H-ZSM-5, and MCM-41 Modified with Ga and Al
by Cátia S. Costa, M. Rosário Ribeiro and João M. Silva
Molecules 2024, 29(17), 4248; https://doi.org/10.3390/molecules29174248 - 7 Sep 2024
Cited by 1 | Viewed by 1510
Abstract
Plastic pollution is a critical environmental issue due to the widespread use of plastic materials and their long degradation time. Hydrocracking (HDC) offers a promising solution to manage plastic waste by converting it into valuable products, namely chemicals or fuels. This work aims [...] Read more.
Plastic pollution is a critical environmental issue due to the widespread use of plastic materials and their long degradation time. Hydrocracking (HDC) offers a promising solution to manage plastic waste by converting it into valuable products, namely chemicals or fuels. This work aims to investigates the effect of catalyst accessibility and acidity on the HDC reaction of high density polyethylene (HDPE). Therefore, a variety of materials with significant differences in both textural and acidic properties were tested as catalysts. These include H-USY and H-ZSM.5 zeolites with various Si/Al molar ratios (H-USY: Si/Al = 2.9, 15, 30 and 40; H-ZSM-5: Si/Al = 11.5, 40, 500) and mesostructured MCM-41 materials modified with Ga and Al, also with different Si/metal ratios (Si/Al = 16 and 30; Si/Ga = 63 and 82). Thermogravimetric analysis under hydrogen atmosphere was used as a preliminary screening tool to evaluate the potential of the various catalysts for this application in terms of energy requirements. In addition, batch autoclave reactor experiments (T = 300 °C, PH2 = 20 bar, t = 60 min) were conducted to obtain further information on conversion, product yields and product distribution for the most promising systems. The results show that the catalytic performance in HDPE hydrocracking is determined by a balance between the acidity of the catalyst and its structural accessibility. Accordingly, for catalyst series where the structural and textural properties do not vary with the Si/Al ratio, there is a clear correlation of the HDPE degradation temperature and of the HDPE conversion with the Si/metal ratio (which relates to the acidic properties). In contrast, for catalyst series where the structural and textural properties vary with the Si/Al ratio, no consistent trend is observed and the catalytic performance is determined by a balance between the acidic and textural properties. The product distribution was also found to be influenced by the physical and chemical properties of the catalyst. Catalysts with strong acidity and smaller pores were observed to favor the formation of lighter hydrocarbons. In addition to the textural and acidic properties of the catalyst, the role of coke formation should not be neglected to ensure a comprehensive analysis of the catalytic performance. Full article
Show Figures

Figure 1

17 pages, 3702 KiB  
Article
Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation
by Pan Hou, Haopeng Su, Keyan Jin, Qiang Li and Wenfu Yan
Molecules 2024, 29(16), 3779; https://doi.org/10.3390/molecules29163779 - 9 Aug 2024
Viewed by 1335
Abstract
γ-valerolactone (GVL), derived from biomass, is a crucial platform compound for biofuel synthesis and various industrial applications. Current methods for synthesizing GVL involve expensive catalysts and high-pressure hydrogen, prompting the search for greener alternatives. This study focuses on a novel zirconium phosphate (ZrP)-pillared [...] Read more.
γ-valerolactone (GVL), derived from biomass, is a crucial platform compound for biofuel synthesis and various industrial applications. Current methods for synthesizing GVL involve expensive catalysts and high-pressure hydrogen, prompting the search for greener alternatives. This study focuses on a novel zirconium phosphate (ZrP)-pillared zeolite MCM-36 derivative catalyst for converting levulinic acid (LA) to GVL using alcohol as a hydrogen source. The incorporation of ZrP significantly contributes to mesoporosity and greatly enhances the acidity of the catalysts. Additionally, we employed 31P MAS NMR to comprehensively investigate the influence of phosphorus species on both the acidity and the catalytic conversion of LA to GVL. By adjusting the Zr-to-P ratios, we synthesized catalysts with enhanced acidity, achieving high conversion of LA and selectivity for GVL. The catalyst exhibited high recyclability, showing only minor deactivation over the course of five cycles. Furthermore, the catalyst was successfully applied to the one-pot conversion of furfural to GVL, showcasing its versatility in biomass conversion. This study highlights the potential of the MCM-ZrP1 catalyst for sustainable biomass conversion and offers insights for future research in renewable energy technologies. Full article
Show Figures

Figure 1

7 pages, 1089 KiB  
Article
Methanol to Aromatics on Hybrid Structure Zeolite Catalysts
by Maria V. Magomedova, Ekaterina G. Galanova, Anastasia V. Starozhitskaya, Mikhail I. Afokin, David V. Matevosyan, Sergey V. Egazaryants, Dmitry E. Tsaplin and Anton L. Maximov
Catalysts 2024, 14(7), 461; https://doi.org/10.3390/catal14070461 - 18 Jul 2024
Cited by 3 | Viewed by 1802
Abstract
A study on the reaction of methanol to aromatic hydrocarbons using catalysts based on hybrid zeolites MFI-MEL, MFI-MTW, and MFI-MCM-41 at a temperature of 340 °C and a pressure of 10.0 MPa was carried out. It is shown that in the synthesis of [...] Read more.
A study on the reaction of methanol to aromatic hydrocarbons using catalysts based on hybrid zeolites MFI-MEL, MFI-MTW, and MFI-MCM-41 at a temperature of 340 °C and a pressure of 10.0 MPa was carried out. It is shown that in the synthesis of hydrocarbons under pressure, the activity of the studied samples is similar and does not have a linear correlation with their total acidity. It was found that the catalyst’s activity is primarily determined by the rate of the initial methanol conversion reaction, which is related to the volume of micropores—more micropores lead to higher activity. Additionally, increasing the volume of mesopores results in the formation of heavier aromatic compounds, specifically C10–C11. Full article
(This article belongs to the Special Issue Microporous and Mesoporous Materials for Catalytic Applications)
Show Figures

Figure 1

13 pages, 1864 KiB  
Article
Investigating the Sole Olefin-Based Cycle in Small-Cage MCM-35-Catalyzed Methanol-to-Olefins Reactions
by Zhaohui Liu, Min Mao, Ruixue Yangcheng and Shuang Lv
Molecules 2024, 29(9), 2037; https://doi.org/10.3390/molecules29092037 - 28 Apr 2024
Viewed by 1251
Abstract
Small-pore zeolites catalyze the methanol-to-olefins (MTO) reaction via a dual-cycle mechanism, encompassing both olefin- and aromatic-based cycles. Zeolite topology is crucial in determining both the catalytic pathway and the product selectivity of the MTO reaction. Herein, we investigate the mechanistic influence of MCM-35 [...] Read more.
Small-pore zeolites catalyze the methanol-to-olefins (MTO) reaction via a dual-cycle mechanism, encompassing both olefin- and aromatic-based cycles. Zeolite topology is crucial in determining both the catalytic pathway and the product selectivity of the MTO reaction. Herein, we investigate the mechanistic influence of MCM-35 zeolite on the MTO process. The structural properties of the as-synthesized MCM-35 catalyst, including its confined cages (6.19 Å), were characterized, confirming them as the catalytic centers. Then, the MTO reactions were systematically performed and investigated over a MCM-35 catalyst. Feeding pure methanol to the reactor yielded minimal MTO activity despite the formation of some aromatic species within the zeolite. The results suggest that the aromatic-based cycle is entirely suppressed in MCM-35, preventing the simultaneous occurrence of the olefin-based cycle. However, cofeeding a small amount of propene in methanol can obviously enhance the methanol conversion under the same studied reaction conditions. Thus, the exclusive operation of the olefin-based cycle in the MTO reaction, independent of the aromatic-based cycle, was demonstrated in MCM-35 zeolite. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry)
Show Figures

Figure 1

12 pages, 2115 KiB  
Article
Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance
by Hua-Ping Ren, Zhi-Xia Xie, Shao-Peng Tian, Si-Yi Ding, Qiang Ma, Yu-Zhen Zhao, Zhe Zhang, Jiao-Jiao Fu and Qing-Qing Hao
Molecules 2024, 29(6), 1283; https://doi.org/10.3390/molecules29061283 - 14 Mar 2024
Cited by 2 | Viewed by 1352
Abstract
To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer–Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found [...] Read more.
To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer–Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated Co3O4 and H+-type MCM-22 without a further calcination process exhibits a moderate interaction between Co3O4 and MCM-22, which results in the higher reduction degree, higher dispersion, and higher mess-specific activity of Co. Thus, the newly developed method is more controllable and promising for the synthesis of metal-supported catalysts. Full article
Show Figures

Figure 1

14 pages, 2681 KiB  
Article
Hydrocarbon-Rich Bio-Oil Production from Ex Situ Catalytic Microwave Co-Pyrolysis of Peanut Shells and Low-Density Polyethylene over Zn-Modified Hierarchical Zeolite
by Zheng Dong, Yuanchong Yue, Jianmei Bai, Kun Chen, Mei Wang and Quan Bu
Catalysts 2024, 14(1), 88; https://doi.org/10.3390/catal14010088 - 21 Jan 2024
Cited by 1 | Viewed by 2343
Abstract
Peanut shells, a major economic and oil crop in China, boast an abundant availability and remarkably high lignin content compared to other agricultural residues. Previous work indicated that the modified hierarchical zeolite (Zn-ZSM-5/MCM41) was effective in promoting the conversion of intermediate macromolecules during [...] Read more.
Peanut shells, a major economic and oil crop in China, boast an abundant availability and remarkably high lignin content compared to other agricultural residues. Previous work indicated that the modified hierarchical zeolite (Zn-ZSM-5/MCM41) was effective in promoting the conversion of intermediate macromolecules during the lignin pyrolysis reaction and enhancing the yield and selectivity of liquid products. Thereby, this study aims to improve the quality of liquid products in the ex situ catalytic microwave co-pyrolysis of peanut shells and LDPE by utilizing Zn-ZSM-5/MCM41. Employing a compound center experimental design, we optimized reaction conditions through response surface analysis. The impact of microwave pyrolysis temperature and the catalyst-to-feedstock ratio on yield distribution and liquid product selectivity was explored. Results indicated a marginal increase in liquid product yield with rising pyrolysis temperatures. Moreover, an initial increase followed by a subsequent decrease in liquid product yield was observed with an increase in the catalyst-to-feedstock ratio. Optimal conditions of 450 °C and a catalyst-to-peanut hull ratio of 2.34% yielded the highest bio-oil yield at 34.25%. GC/MS analysis of the bio-oil revealed a peak in hydrocarbon content at 68.36% under conditions of 450 °C and a catalyst-to-feedstock ratio of 13.66%. Additionally, the quadratic model effectively predicted bio-oil yield and the selectivity for major chemical components. This study underscores the potential of Zn-ZSM-5/MCM41 in optimizing liquid product quality during catalytic co-pyrolysis, offering insights into bio-oil production and its chemical composition. Full article
(This article belongs to the Special Issue Catalytic Pyrolysis of Lignocellulosic Biomass)
Show Figures

Graphical abstract

25 pages, 3664 KiB  
Review
Fischer–Tropsch Synthesis Catalysts for Selective Production of Diesel Fraction
by Kristina Mazurova, Albina Miyassarova, Oleg Eliseev, Valentine Stytsenko, Aleksandr Glotov and Anna Stavitskaya
Catalysts 2023, 13(8), 1215; https://doi.org/10.3390/catal13081215 - 16 Aug 2023
Cited by 16 | Viewed by 8671
Abstract
The Fischer–Tropsch process is considered one of the most promising eco-friendly routes for obtaining synthetic motor fuels. Fischer–Tropsch synthesis is a heterogeneous catalytic process in which a synthesis gas (CO/H2) transforms into a mixture of aliphatic hydrocarbons, mainly linear alkanes. Recently, [...] Read more.
The Fischer–Tropsch process is considered one of the most promising eco-friendly routes for obtaining synthetic motor fuels. Fischer–Tropsch synthesis is a heterogeneous catalytic process in which a synthesis gas (CO/H2) transforms into a mixture of aliphatic hydrocarbons, mainly linear alkanes. Recently, an important direction has been to increase the selectivity of the process for the diesel fraction. Diesel fuel synthesized via the Fischer–Tropsch method has a number of advantages over conventional fuel, including the high cetane number, the low content of aromatic, and the practically absent sulfur and nitrogen impurities. One of the possible ways to obtain a high yield of diesel fuel via the Fischer–Tropsch process is the development of selective catalysts. In this review, the latest achievements in the field of production of diesel via Fischer–Tropsch synthesis using catalysts are reviewed for the first time. Catalytic systems based on Al2O3 and mesoporous silicates, such as MCM-41, SBA-15, and micro- and mesoporous zeolites, are observed. Together with catalytic systems, the main factors that influence diesel fuel selectivity such as temperature, pressure, CO:H2 ratio, active metal particle size, and carrier pore size are highlighted. The motivation behind this work is due to the increasing need for alternative processes in diesel fuel production with a low sulfur content and better exploitation characteristics. Full article
Show Figures

Graphical abstract

14 pages, 3832 KiB  
Article
Utilization of Loaded Cobalt onto MCM-48 Mesoporous Catalyst as a Heterogeneous Reaction in a Fixed Bed Membrane Reactor to Produce Isomerization Product from n-Heptane
by Nisreen S. Ali, Issam K. Salih, Hamed N. Harharah, Hasan Sh. Majdi, Hussein G. Salih, Khairi R. Kalash, Ali Al-Shathr, Farah T. Al-Sudani, Mahir A. Abdulrahman, Jamal M. Alrubaye, Talib M. Albayati, Noori M. Saady and Sohrab Zendehboudi
Catalysts 2023, 13(7), 1138; https://doi.org/10.3390/catal13071138 - 22 Jul 2023
Cited by 38 | Viewed by 2544
Abstract
The use of catalytic membranes as microstructured reactors without a separative function has proved effective. High catalytic activity is possible with minimal mass transport resistances if the reactant mixture is pushed to flow through the pores of a membrane that has been impregnated [...] Read more.
The use of catalytic membranes as microstructured reactors without a separative function has proved effective. High catalytic activity is possible with minimal mass transport resistances if the reactant mixture is pushed to flow through the pores of a membrane that has been impregnated with catalyst. In this study, n-heptane (C7H16) was hydrocracked and hydro-isomerized within a plug-flow zeolitic catalytic membrane-packed bed reactor. The metallic cobalt (Co) precursor at 3 wt.% was loaded onto support mesoporous materials MCM-48 to synthesize heterogeneous catalysis. The prepared MCM-48 was characterized by utilizing characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), nitrogen adsorption–desorption isotherms, and the Brunauer–Emmett–Teller (BET) surface area. The structural and textural characteristics of MCM-48 after encapsulation with Co were also investigated. The analyses were performed before and after metal loading. According to the results, the 3 wt.% Co/MCM-48 of metallic catalyst in a fixed bed membrane reactor (MR) appears to have an excellent catalytic activity of ~83% during converting C7H16 at 400 °C, whereas a maximum selectivity was approximately ~65% at 325 °C. According to our findings, the synthesized catalyst exhibits an acceptable selectivity to isomers with multiple branches, while making low aromatic components. In addition, a good catalytic stability was noticed for this catalyst over the reaction. Use of 3 wt.% Co/MCM-48 catalyst led to the highest isomerization selectivity as well as n-heptane conversion. Therefore, the heterogeneous catalysis MCM-48 is a promising option/ alternative for traditional hydrocracking and hydro-isomerization processes. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

14 pages, 4205 KiB  
Article
Novel “Anti-Zeolite” Ba3Sr3B4O12: Eu3+ Phosphors: Crystal Structure, Optical Properties, and Photoluminescence
by Rimma S. Bubnova, Andrey P. Shablinskii, Alexey V. Povolotskiy, Olga Yu. Shorets, Valery L. Ugolkov, Sergey N. Volkov, Valentina A. Yukhno and Stanislav K. Filatov
Symmetry 2023, 15(7), 1399; https://doi.org/10.3390/sym15071399 - 11 Jul 2023
Cited by 2 | Viewed by 1476
Abstract
Novel Ba3Sr3B4O12: Eu3+ phosphors were synthesized by crystallization from a melt. The crystal structures of Ba3(Sr3−1.5xEux)B4O12 (x = 0.03, 0.06, 0.15, 0.20, 0.25) [...] Read more.
Novel Ba3Sr3B4O12: Eu3+ phosphors were synthesized by crystallization from a melt. The crystal structures of Ba3(Sr3−1.5xEux)B4O12 (x = 0.03, 0.06, 0.15, 0.20, 0.25) solid solutions were refined from SCXRD data. The crystal structures of Ba3(Sr3−1.5xEux)B4O12 phosphors can be described in terms of the cationic sublattice and belong to the “anti-zeolite” family of borates. Its cationic framework is constructed of Ba and Sr atoms. The Eu3+ ions occupy the Sr(1) extraframework cationic site in the Ba3(Sr3−1.5xEux)B4O12 (x = 0.01–0.20) phosphors. The Ba3Sr2.625Eu0.25B4O12 borate crystallizes in a new structure type (I4/mcm, a = 13.132(3), c = 14.633(4) Å, V = 2523.5(11) Å3, Z = 8, R1 = 0.067). In the Ba3Sr2.625Eu0.25B4O12 crystal structure, the Eu3+ ions occupy Sr(1) and Ba/Sr(1) sites, which leads to changes in the crystal structure. The Wyckoff letter and occupancy of the O(5) site are changed; B–O anion groups contain two BO3 triangles (B(3) and B(4)), orientationally disordered over the four orientations, and two ordered BO3 triangles (B(1) and B(2)) in contrast to Ba3Sr3B4O12, in which these groups are disordered over the 4 and 8 orientations. The emission spectra of Ba3Sr3B4O12: Eu3+ show characteristic lines corresponding to the intraconfigurational 4f-4f transitions of Eu3+ ions. Ba3Sr2.7Eu0.20B4O12 demonstrates the strongest luminescent intensity among Ba3(Sr3−1.5xEux)B4O12 solid solutions. The increase in the Eu3+ content results in a gradual change in chromaticity from light red to orange-red/red. It can be concluded that Ba3Sr3B4O12: Eu3+ is a promising red phosphor. Full article
(This article belongs to the Special Issue Symmetry in Inorganic Crystallography and Mineralogy)
Show Figures

Figure 1

31 pages, 4156 KiB  
Article
Synthesis, Characterization, and NH3-SCR Catalytic Performance of Fe-Modified MCM-36 Intercalated with Various Pillars
by Agnieszka Szymaszek-Wawryca, Urbano Díaz, Bogdan Samojeden and Monika Motak
Molecules 2023, 28(13), 4960; https://doi.org/10.3390/molecules28134960 - 24 Jun 2023
Cited by 5 | Viewed by 1882
Abstract
Two series of MCM-36 zeolites intercalated with various pillars and modified with iron were synthesized, analyzed with respect to their physicochemical properties, and tested as catalysts for the NH3-SCR process. It was found that the characteristic MWW morphology of MCM-36 can [...] Read more.
Two series of MCM-36 zeolites intercalated with various pillars and modified with iron were synthesized, analyzed with respect to their physicochemical properties, and tested as catalysts for the NH3-SCR process. It was found that the characteristic MWW morphology of MCM-36 can be obtained successfully using silica, alumina, and iron oxide as pillars. Additionally, one-pot synthesis of the material with iron resulted in the incorporation of monomeric Fe3+ species into the framework positions. The results of catalytic tests revealed that the one-pot synthesized sample intercalated with silica and alumina was the most efficient catalyst of NO reduction, exhibiting ca. 100% activity at 250 °C. The outstanding performance of the material was attributed to the abundance of Lewis acid sites and the beneficial influence of alumina on the distribution of iron species in the zeolite. In contrast, the active centers originating from the Fe2O3 pillars improved the NO conversion in the high-temperature range. Nevertheless, the aggregated particles of the metal oxide limited the access of the reacting molecules to the inner structure of the catalyst, which affected the overall activity and promoted the formation of N2O above 300 °C. Full article
(This article belongs to the Special Issue Research on Green Adsorbents)
Show Figures

Graphical abstract

17 pages, 1944 KiB  
Article
Dimethyl Ether to Olefins on Hybrid Intergrowth Structure Zeolites
by Maria V. Magomedova, Anastasiya V. Starozhitskaya, Ilya A. Davidov, Dmitry E. Tsaplin and Anton L. Maximov
Catalysts 2023, 13(3), 570; https://doi.org/10.3390/catal13030570 - 11 Mar 2023
Cited by 6 | Viewed by 2275
Abstract
A series of catalysts based on hybrid intergrowth structure zeolites MFI-MEL, MFI-MTW, and MFI-MCM-41 are studied in the reaction of olefins synthesis from dimethyl ether at atmospheric pressure and a temperature of 340 °C. The total acidity of hybrid zeolite-based catalysts is shown [...] Read more.
A series of catalysts based on hybrid intergrowth structure zeolites MFI-MEL, MFI-MTW, and MFI-MCM-41 are studied in the reaction of olefins synthesis from dimethyl ether at atmospheric pressure and a temperature of 340 °C. The total acidity of hybrid zeolite-based catalysts is shown to correlate with their activity. However, the use of zeolite with the structure MFI-MCM-41, which is characterized by a high content of medium acid sites, additionally catalyzes the methanol dehydration reaction, resulting in a decrease in the observed DME conversion. The obtained product distributions are brought into correlation with the texture of catalysts. It is shown that the use of hybrid zeolites does not change the mechanism of reaction, but the structural features of zeolites influence the priority of the competing MTO reactions: high ethylene yield is observed for catalysts with high micropore volume. The topology of the hybrid zeolite has been shown to influence the hydrogen transfer reaction rate, but not to change the isomerizing activity of the catalyst. Full article
(This article belongs to the Special Issue Microporous and Mesoporous Materials for Catalytic Applications)
Show Figures

Figure 1

13 pages, 3460 KiB  
Article
Kinetics of Heavy Reformate Conversion to Xylenes over MCM-41 on Zeolite Beta Composite Catalyst
by Syed Ahmed Ali and Mohammad Mozahar Hossain
Catalysts 2023, 13(2), 335; https://doi.org/10.3390/catal13020335 - 2 Feb 2023
Cited by 3 | Viewed by 2014
Abstract
Commercial heavy reformate is converted over MCM-41 on zeolite beta composite catalyst to produce mixed xylenes in a fluidized-bed batch reactor. The heavy reformate feedstock contains 67.4 wt.% trimethyl benzenes (TMBs) and 31.1 wt.% methyl ethyl benzenes (MEBs). The experiments were carried out [...] Read more.
Commercial heavy reformate is converted over MCM-41 on zeolite beta composite catalyst to produce mixed xylenes in a fluidized-bed batch reactor. The heavy reformate feedstock contains 67.4 wt.% trimethyl benzenes (TMBs) and 31.1 wt.% methyl ethyl benzenes (MEBs). The experiments were carried out at 300, 350 and 400 °C, while the reaction times were varied between 5 and 20 s. The conversion of MEBs was more than two times the conversion of TMBs. The selectivity to xylenes was quite high (60–65 wt.%) but changed very little with reaction time or temperature. A kinetic model was developed using a five-reaction network. The product composition obtained from the estimated kinetic parameters closely matches the experimental results, which confirms the validity of the assumptions made for kinetic modeling. The trend in the apparent activation energies of the reactions was in accordance with the relative size of the reactant molecules, and the lowest activation energy was for the transalkylation of TMBs with toluene to produce xylenes. Full article
Show Figures

Figure 1

18 pages, 4164 KiB  
Article
Catalytic Distillation of Atmospheric Residue of Petroleum over HY-MCM-41 Micro-Mesoporous Materials
by Camila G. D. P. Morais, Jilliano B. Silva, Josue S. Almeida, Rafaela R. Oliveira, Marcio D. S. Araujo, Glauber J. T. Fernandes, Regina C. O. B. Delgado, Ana C. F. Coriolano, Valter J. Fernandes and Antonio S. Araujo
Catalysts 2023, 13(2), 296; https://doi.org/10.3390/catal13020296 - 28 Jan 2023
Cited by 5 | Viewed by 3957
Abstract
Catalytic distillation is a technology that combines a heterogeneous catalytic reaction and the separation of reactants and products via distillation in a single reactor/distillation system. This process combines catalysis, kinetics, and mass transfer to obtain more selective products. The heterogeneous catalyst provides the [...] Read more.
Catalytic distillation is a technology that combines a heterogeneous catalytic reaction and the separation of reactants and products via distillation in a single reactor/distillation system. This process combines catalysis, kinetics, and mass transfer to obtain more selective products. The heterogeneous catalyst provides the sites for catalytic reactions and the porous surface for liquid/vapor separation. The advantages of catalytic distillation are energy savings, low waste streams, catalyst longevity, higher conversion, and product selectivity; these properties are interesting for petrochemical and petroleum industries. For this study, 100 mL of atmospheric residue of petroleum (ATR) was distilled in the presence of 1.0 g of a micro/mesoporous catalyst composed of a HY-MCM-41, and the reactor used was an OptiDist automatic distillation device, operating according to ASTM D-86 methodology. The products were collected and analyzed by gas chromatography. The samples of ATR, HY/ATR, and HY-MCM-41/ATR were analyzed by thermogravimetry (TG) to determine the activation energies (Ea) relative to the thermal decomposition of the process, using the Ozawa–Flynn–Wall (OFW) kinetic model. The obtained results show a potential catalytic distillation system for use in the reaction of heavy petroleum fractions and product separation from the HY/MCM-41 micro/mesoporous catalyst. The TG data revealed two mass loss events for ATR in the ranges of 100–390 and 390–590 °C, corresponding to volatilization and thermal cracking, respectively. The Ea determined for the thermal degradation of the ATR without a catalyst was in the range of 83–194 kJ/mol, whereas in the presence of the HY-MCM-41 catalyst, it decreased to 61–105 kJ/mol, evidencing the catalytic effect of the micro-mesoporous material. The chromatography analysis allowed for the identification of gasoline and a major production of diesel and gasoil when the HY-MCM-41 mixture was used as the catalyst, evidencing the synergism of the combined effect of the acid sites, the crystalline phase, and the microporosity of the HY zeolite with the accessibility of the hexagonal mesoporous structure of the MCM-41 material. Full article
(This article belongs to the Special Issue Microporous and Mesoporous Materials for Catalytic Applications)
Show Figures

Figure 1

7 pages, 2363 KiB  
Article
Can We Form Mesoporous Zeolites by Steam Assisted Crystallization of MCM-41?
by Iane M. S. Souza, Sibele B. C. Pergher and Alexander Sachse
Molecules 2022, 27(24), 8934; https://doi.org/10.3390/molecules27248934 - 15 Dec 2022
Viewed by 1883
Abstract
The possibility of crystallizing silicalite-1 (MFI) from the pore walls of as-synthesized MCM-41 via steam-assisted crystallization (SAC) was thoroughly investigated. A kinetic study was conducted through the impregnation of as-synthesized MCM-41 with the structure-directing agent tetrapropyl-ammonium hydroxide (TPAOH). Materials obtained after different SAC [...] Read more.
The possibility of crystallizing silicalite-1 (MFI) from the pore walls of as-synthesized MCM-41 via steam-assisted crystallization (SAC) was thoroughly investigated. A kinetic study was conducted through the impregnation of as-synthesized MCM-41 with the structure-directing agent tetrapropyl-ammonium hydroxide (TPAOH). Materials obtained after different SAC treatment times (1–288 h) were characterized by XRD, nitrogen physisorption at 77 K, TGA/DTA, and SEM. The achieved results allowed us to conclude that during SAC treatment, rapid destruction of the hexagonal mesophase occurs with the enlargement of mesopores, probably by their coalescence, until achieving non-porous amorphous silica. Only thereafter is the crystallization of the MFI phase evidenced through the development of micron-sized (>10 µm) MFI structured crystals. This study suggests the probable practical impossibility of even partial crystallization of the pore walls of mesoporous materials by SAC. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

19 pages, 2684 KiB  
Article
Au/Ti Synergistically Modified Supports Based on SiO2 with Different Pore Geometries and Architectures
by Gabriela Petcu, Elena Maria Anghel, Elena Buixaderas, Irina Atkinson, Simona Somacescu, Adriana Baran, Daniela Cristina Culita, Bogdan Trica, Corina Bradu, Madalina Ciobanu and Viorica Parvulescu
Catalysts 2022, 12(10), 1129; https://doi.org/10.3390/catal12101129 - 28 Sep 2022
Cited by 8 | Viewed by 2671
Abstract
New photocatalysts were obtained by immobilization of titanium and gold species on zeolite Y, hierarchical zeolite Y, MCM-48 and KIT-6 supports with microporous, hierarchical and mesoporous cubic structure. The obtained samples were characterized by X-ray diffraction (XRD), N2-physisorption, scanning and transmission [...] Read more.
New photocatalysts were obtained by immobilization of titanium and gold species on zeolite Y, hierarchical zeolite Y, MCM-48 and KIT-6 supports with microporous, hierarchical and mesoporous cubic structure. The obtained samples were characterized by X-ray diffraction (XRD), N2-physisorption, scanning and transmission electron microscopy (SEM/TEM), diffuse reflectance UV–Vis spectroscopy (DRUV-Vis), X-ray photoelectron spectroscopy (XPS), Raman and photoluminescence spectroscopy. The photocatalytic properties were evaluated in degradation of amoxicillin (AMX) from water, under UV (254 nm) and visible light (532 nm) irradiation. The higher degradation efficiency and best apparent rate constant were obtained under UV irradiation for Au-TiO2-KIT-6, while in the visible condition for the Au-TiO2-MCM-48 sample containing anatase, rutile and the greatest percent of Au metallic clusters were found (evidenced by XPS). Although significant values of amoxicillin degradation were obtained, total mineralization was not achieved. These results were explained by different reaction mechanisms, in which Au species act as e trap in UV and e generator in visible light. Full article
(This article belongs to the Special Issue Effect of the Modification of Catalysts on the Catalytic Performance)
Show Figures

Graphical abstract

Back to TopTop