Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. The Effect of Ion Exchange and Calcination Sequence on the Structural and Acidic Properties of MCM-22
2.2. The Crystal Structure of Co3O4 and Co-MCM-22 Catalyst
2.3. Reduction Behavior and the Dispersion of Co Catalysts
2.4. FT Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of Nanosized Co3O4
3.3. Preparation of MCM-22 Zeolite
3.4. Preparation of Co-Based Catalyst
3.5. Characterizations
3.6. Catalytic Reactions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, M.; Fischer, N.; Claeys, M. Formation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review. Chem Catal. 2021, 1, 1014–1041. [Google Scholar] [CrossRef]
- Rommens, K.T.; Saeys, M. Molecular views on Fischer-Tropsch synthesis. Chem. Rev. 2023, 123, 5798–5858. [Google Scholar] [CrossRef]
- Platero, F.; Caballero, A.; Colón, G. Catalytic performance of cobalt supported onto APTES functionalized TiO2 for Fischer-Tropsch reaction. Fuel 2023, 340, 127528. [Google Scholar] [CrossRef]
- Lin, T.; An, Y.; Yu, F.; Gong, K.; Yu, H.; Wang, C.; Sun, Y.; Zhong, L. Advances in Selectivity Control for Fischer-Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal. 2022, 12, 12092–12112. [Google Scholar] [CrossRef]
- Chen, Q.P.; Tian, Y.; Lyu, S.S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L.H.; Zhang, J.; Zheng, L.R.; et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. Nat. Commun. 2018, 9, 3250–3258. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, S.; Zhang, Q.; Wang, Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew. Chem. Int. Ed. 2009, 48, 2565–2568. [Google Scholar] [CrossRef]
- Li, X.; He, J.; Meng, M.; Yoneyama, Y.; Tsubaki, N. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity. J. Catal. 2009, 265, 26–34. [Google Scholar] [CrossRef]
- Bao, J.; He, J.; Zhang, Y.; Yoneyama, Y.; Tsubaki, N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew. Chem. Int. Ed. 2008, 47, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Yao, N.; Shao, Y.; Han, Q.; Ma, C.; Yuan, C.; Li, C.; Li, X. New insight into the activity of ZSM-5 supported Co and Co/Ru bifunctional Fischer-Tropsch synthesis catalyst. Chem. Eng. J. 2014, 239, 408–415. [Google Scholar] [CrossRef]
- Pereira, A.L.C.; González-Carballo, J.M.; Pérez-Alonso, F.J.; Rojas, S.; Fierro, J.L.G.; do Carmo Rangel, M. Effect of the mesostructuration of the beta zeolite support on the properties of cobalt catalysts for Fischer-Tropsch synthesis. Top Catal. 2011, 54, 179–189. [Google Scholar] [CrossRef]
- Sartipi, S.; Alberts, M.; Meijerink, M.J.; Keller, T.C.; Pérez-Ramírez, J.; Gascon, J.; Kapteijn, F. Towards liquid fuels from biosyngas: Effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. ChemSusChem 2013, 6, 1646–1650. [Google Scholar] [CrossRef] [PubMed]
- Sartipi, S.; Parashar, K.; Valero-Romero, M.J.; Santos, V.P.; van der Linden, B.; Makkee, M.; Kapteijn, F.; Gascon, J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. J. Catal. 2013, 305, 179–190. [Google Scholar] [CrossRef]
- Martínez, A.; Prieto, G. Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. J. Catal. 2007, 245, 470–476. [Google Scholar] [CrossRef]
- Prieto, G.; Martínez, A.; Concepción, P.; Moreno-Tost, R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J. Catal. 2009, 266, 129–144. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Ban, M.; Lee, D.; Kim, S.; Lee, J.; Ha, K.-S. Unravelling the effects of short pore on Fischer-Tropsch synthesis and its role as selectivity controller. Chem. Eng. J. 2023, 475, 146039. [Google Scholar] [CrossRef]
- Hao, Q.-Q.; Liu, Z.-W.; Zhang, B.; Wang, G.-W.; Ma, C.; Frandsen, W.; Li, J.; Liu, Z.-T.; Hao, Z.; Su, D. Porous montmorillonite heterostructures directed by a single alkyl ammonium template for controlling the product distribution of Fischer-Tropsch synthesis over cobalt. Chem. Mater. 2012, 24, 972–974. [Google Scholar] [CrossRef]
- Hao, Q.-Q.; Lei, C.-Y.; Song, Y.-H.; Liu, Z.-T.; Liu, Z.-W. The delaminating and pillaring of MCM-22 for Fischer-Tropsch synthesis over cobalt. Catal. Today 2016, 274, 109–115. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; García-Mateos, F.J.; Kapteijn, F.; Rodríguez-Mirasol, J.; Cordero, T. Fischer-Tropsch synthesis over lignin-derived cobalt-containing porous carbon fiber catalysts. Appl. Catal. B-Environ. Energy 2023, 321, 122078. [Google Scholar] [CrossRef]
- Ouyang, R.H.; Liu, J.X.; Li, W.X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771. [Google Scholar] [CrossRef]
- Kistamurthy, D.; Saib, A.M.; Moodley, D.J.; Niemantsverdriet, J.W.; Weststrate, C.J. Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer-Tropsch synthesis conditions. J. Catal. 2015, 328, 123–129. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Li, X.; Asami, K.; Fujimoto, K. High performance Pd/beta catalyst for the production of gasoline-range iso-paraffins via a modified Fischer-Tropsch reaction. Appl. Catal. A Gen. 2006, 300, 162–169. [Google Scholar] [CrossRef]
- Li, X.; Luo, M.; Asami, K. Direct synthesis of middle iso-paraffins from synthesis gas on hybrid catalysts. Catal. Today 2004, 89, 439–446. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Li, X.; Asami, K.; Fujimoto, K. Iso-paraffins Synthesis from Modified Fischer-Tropsch Reactions Insights into Pd/beta and Pt/ beta Catalysts. Catal. Today 2005, 104, 41–47. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, B.; Qiao, M.; Wei, J.; Yue, Q.; Wang, C.; Deng, Y.; Kaliaguine, S.; Zhao, D. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 17653–17660. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Ibi, Y.; Hongo, D.; Hamabe, Y.; Suzuki, S.; Hayasaka, Y.; Shindo, T.; Yamada, M. Mechanistic aspects of the role of chelating agents in enhancing Fischer-Tropsch synthesis activity of Co/SiO2 catalyst: Importance of specific interaction of Co with chelate complex during calcination. J. Catal. 2012, 289, 151–163. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, C.Y.; Lin, Q.H.; Lu, P.; Niu, W.Q.; Tsubaki, N. Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts for Fischer-Tropsch synthesis. Catal. Today 2014, 228, 206–211. [Google Scholar] [CrossRef]
- Mochizuki, T.; Hara, T.; Koizumi, N.; Yamada, M. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents. Appl. Catal. A-Gen. 2007, 317, 97–104. [Google Scholar] [CrossRef]
- Mochizuki, T.; Hara, T.; Koizumi, N.; Yamada, M. Novel preparation method of highly active Co/SiO2 catalyst for Fischer-Tropsch synthesis with chelating agents. Catal. Lett. 2007, 113, 165–169. [Google Scholar] [CrossRef]
- Jos van Dillen, A.; Terörde, R.J.A.M.; Lensveld, D.J.; Geus, J.W.; de Jong, K.P. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 2003, 216, 257–264. [Google Scholar] [CrossRef]
- Villagran-Olivares, A.C.; Barroso, M.N.; López, C.A.; Llorca, J.; Abello, M.C. Chelating agent effects in the synthesis of supported Ni nanoparticles as catalysts for hydrogen production. Appl. Catal. A-Gen. 2021, 622, 118219. [Google Scholar] [CrossRef]
- Bambal, A.S.; Guggilla, V.S.; Kugler, E.L.; Gardner, T.H.; Dadyburjor, D.B. Poisoning of a silica-supported cobalt catalyst due to presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effects of chelating agent. Ind. Eng. Chem. Res. 2014, 53, 5846–5857. [Google Scholar] [CrossRef]
- Shi, L.; Tao, K.; Kawabata, T.; Shimamura, T.; Zhang, X.J.; Tsubaki, N. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for Fischer-Tropsch synthesis. ACS Catal. 2011, 1, 1225–1233. [Google Scholar] [CrossRef]
- Gorboletova, G.G.; Metlin, A.A. Standard Thermodynamic functions of Co2+ complexation with glycine and L-histidine in aqueous solution. J. Phys. Chem. 2016, 90, 334–338. [Google Scholar] [CrossRef]
- Hao, Q.-Q.; Hu, M.; Xie, Z.-X.; Ma, X.; Wang, W.; Ren, H.-P. Impact of coordination features of Co(II)-glycine complex on the surface sites of Co/SiO2 for Fischer-Tropsch synthesis. Catalysts 2020, 10, 1295. [Google Scholar] [CrossRef]
- Chen, J.-Q.; Li, Y.-Z.; Hao, Q.-Q.; Chen, H.; Liu, Z.-T.; Dai, C.; Zhang, J.; Ma, X.; Liu, Z.-W. Controlled direct synthesis of single- to multiple-layer MWW zeolite. Natl. Sci. Rev. 2021, 8, nwaa236. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.-T.; Zhao, D.-Y.; Hao, Q.-Q.; Luo, Q.-X.; Zhang, J.; Chen, H.; Sun, M.; Xu, L.; Ma, X. Gemini surfactant-directed facile pillaring of two-dimensional zeolites with enhanced catalytic activity in Friedel-Crafts alkylation. Ind. Eng. Chem. Res. 2020, 59, 16312–16320. [Google Scholar] [CrossRef]
- Ravishankar, R.; Li, M.M.; Borgna, A. Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer-Tropsch synthesis. Catal. Today 2005, 106, 149–153. [Google Scholar] [CrossRef]
- Bräuer, P.; Situmorang, O.; Ng, P.L.; D’Agostino, C. Effect of Al content on the strength of terminal silanol species in ZSM-5 zeolite catalysts: A quantitative DRIFTS study without the use of molar extinction coefficients. Phys. Chem. Chem. Phys. 2018, 20, 4250–4262. [Google Scholar] [CrossRef]
- Al-Khattaf, S.; D’Agostino, C.; Akhtar, M.N.; Al-Yassir, N.; Tan, N.Y.; Gladden, L.F. The effect of coke deposition on the activity and selectivity of the HZSM-5 zeolite during ethylbenzene alkylation reaction in the presence of ethanol. Catal. Sci. Technol. 2014, 4, 1017–1027. [Google Scholar] [CrossRef]
- Luo, Q.-X.; Guo, L.-P.; Yao, S.-Y.; Bao, J.; Liu, Z.-T.; Liu, Z.-W. Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. J. Catal. 2019, 369, 143–156. [Google Scholar] [CrossRef]
Catalysts | Co Size (nm) | Reduction Degree b (RD, %) | Co Dispersion c (D, %) | |
---|---|---|---|---|
d(Co3O4) a | d(Co)H d | |||
Co3O4(G) | 12.1 | --- | --- | --- |
Co3O4(N) | 34.5 | --- | --- | --- |
Co/MCM-22 | 20.0 | 21.4 | 67.0 | 3.0 |
Co-MCM-22(1) | 13.4 | 14.9 | 82.1 | 5.3 |
Co-MCM-22(2) | 18.5 | 20.4 | 87.3 | 4.1 |
Co-MCM-22(1)-500 | 19.5 | 19.7 | 86.2 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.-P.; Xie, Z.-X.; Tian, S.-P.; Ding, S.-Y.; Ma, Q.; Zhao, Y.-Z.; Zhang, Z.; Fu, J.-J.; Hao, Q.-Q. Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules 2024, 29, 1283. https://doi.org/10.3390/molecules29061283
Ren H-P, Xie Z-X, Tian S-P, Ding S-Y, Ma Q, Zhao Y-Z, Zhang Z, Fu J-J, Hao Q-Q. Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules. 2024; 29(6):1283. https://doi.org/10.3390/molecules29061283
Chicago/Turabian StyleRen, Hua-Ping, Zhi-Xia Xie, Shao-Peng Tian, Si-Yi Ding, Qiang Ma, Yu-Zhen Zhao, Zhe Zhang, Jiao-Jiao Fu, and Qing-Qing Hao. 2024. "Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance" Molecules 29, no. 6: 1283. https://doi.org/10.3390/molecules29061283
APA StyleRen, H.-P., Xie, Z.-X., Tian, S.-P., Ding, S.-Y., Ma, Q., Zhao, Y.-Z., Zhang, Z., Fu, J.-J., & Hao, Q.-Q. (2024). Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules, 29(6), 1283. https://doi.org/10.3390/molecules29061283