Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Ion Exchange and Calcination Sequence on the Structural and Acidic Properties of MCM-22
2.2. The Crystal Structure of Co3O4 and Co-MCM-22 Catalyst
2.3. Reduction Behavior and the Dispersion of Co Catalysts
2.4. FT Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of Nanosized Co3O4
3.3. Preparation of MCM-22 Zeolite
3.4. Preparation of Co-Based Catalyst
3.5. Characterizations
3.6. Catalytic Reactions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, M.; Fischer, N.; Claeys, M. Formation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review. Chem Catal. 2021, 1, 1014–1041. [Google Scholar] [CrossRef]
- Rommens, K.T.; Saeys, M. Molecular views on Fischer-Tropsch synthesis. Chem. Rev. 2023, 123, 5798–5858. [Google Scholar] [CrossRef]
- Platero, F.; Caballero, A.; Colón, G. Catalytic performance of cobalt supported onto APTES functionalized TiO2 for Fischer-Tropsch reaction. Fuel 2023, 340, 127528. [Google Scholar] [CrossRef]
- Lin, T.; An, Y.; Yu, F.; Gong, K.; Yu, H.; Wang, C.; Sun, Y.; Zhong, L. Advances in Selectivity Control for Fischer-Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal. 2022, 12, 12092–12112. [Google Scholar] [CrossRef]
- Chen, Q.P.; Tian, Y.; Lyu, S.S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L.H.; Zhang, J.; Zheng, L.R.; et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. Nat. Commun. 2018, 9, 3250–3258. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, S.; Zhang, Q.; Wang, Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew. Chem. Int. Ed. 2009, 48, 2565–2568. [Google Scholar] [CrossRef]
- Li, X.; He, J.; Meng, M.; Yoneyama, Y.; Tsubaki, N. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity. J. Catal. 2009, 265, 26–34. [Google Scholar] [CrossRef]
- Bao, J.; He, J.; Zhang, Y.; Yoneyama, Y.; Tsubaki, N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew. Chem. Int. Ed. 2008, 47, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Yao, N.; Shao, Y.; Han, Q.; Ma, C.; Yuan, C.; Li, C.; Li, X. New insight into the activity of ZSM-5 supported Co and Co/Ru bifunctional Fischer-Tropsch synthesis catalyst. Chem. Eng. J. 2014, 239, 408–415. [Google Scholar] [CrossRef]
- Pereira, A.L.C.; González-Carballo, J.M.; Pérez-Alonso, F.J.; Rojas, S.; Fierro, J.L.G.; do Carmo Rangel, M. Effect of the mesostructuration of the beta zeolite support on the properties of cobalt catalysts for Fischer-Tropsch synthesis. Top Catal. 2011, 54, 179–189. [Google Scholar] [CrossRef]
- Sartipi, S.; Alberts, M.; Meijerink, M.J.; Keller, T.C.; Pérez-Ramírez, J.; Gascon, J.; Kapteijn, F. Towards liquid fuels from biosyngas: Effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. ChemSusChem 2013, 6, 1646–1650. [Google Scholar] [CrossRef] [PubMed]
- Sartipi, S.; Parashar, K.; Valero-Romero, M.J.; Santos, V.P.; van der Linden, B.; Makkee, M.; Kapteijn, F.; Gascon, J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. J. Catal. 2013, 305, 179–190. [Google Scholar] [CrossRef]
- Martínez, A.; Prieto, G. Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. J. Catal. 2007, 245, 470–476. [Google Scholar] [CrossRef]
- Prieto, G.; Martínez, A.; Concepción, P.; Moreno-Tost, R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J. Catal. 2009, 266, 129–144. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Ban, M.; Lee, D.; Kim, S.; Lee, J.; Ha, K.-S. Unravelling the effects of short pore on Fischer-Tropsch synthesis and its role as selectivity controller. Chem. Eng. J. 2023, 475, 146039. [Google Scholar] [CrossRef]
- Hao, Q.-Q.; Liu, Z.-W.; Zhang, B.; Wang, G.-W.; Ma, C.; Frandsen, W.; Li, J.; Liu, Z.-T.; Hao, Z.; Su, D. Porous montmorillonite heterostructures directed by a single alkyl ammonium template for controlling the product distribution of Fischer-Tropsch synthesis over cobalt. Chem. Mater. 2012, 24, 972–974. [Google Scholar] [CrossRef]
- Hao, Q.-Q.; Lei, C.-Y.; Song, Y.-H.; Liu, Z.-T.; Liu, Z.-W. The delaminating and pillaring of MCM-22 for Fischer-Tropsch synthesis over cobalt. Catal. Today 2016, 274, 109–115. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; García-Mateos, F.J.; Kapteijn, F.; Rodríguez-Mirasol, J.; Cordero, T. Fischer-Tropsch synthesis over lignin-derived cobalt-containing porous carbon fiber catalysts. Appl. Catal. B-Environ. Energy 2023, 321, 122078. [Google Scholar] [CrossRef]
- Ouyang, R.H.; Liu, J.X.; Li, W.X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771. [Google Scholar] [CrossRef]
- Kistamurthy, D.; Saib, A.M.; Moodley, D.J.; Niemantsverdriet, J.W.; Weststrate, C.J. Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer-Tropsch synthesis conditions. J. Catal. 2015, 328, 123–129. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Li, X.; Asami, K.; Fujimoto, K. High performance Pd/beta catalyst for the production of gasoline-range iso-paraffins via a modified Fischer-Tropsch reaction. Appl. Catal. A Gen. 2006, 300, 162–169. [Google Scholar] [CrossRef]
- Li, X.; Luo, M.; Asami, K. Direct synthesis of middle iso-paraffins from synthesis gas on hybrid catalysts. Catal. Today 2004, 89, 439–446. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Li, X.; Asami, K.; Fujimoto, K. Iso-paraffins Synthesis from Modified Fischer-Tropsch Reactions Insights into Pd/beta and Pt/ beta Catalysts. Catal. Today 2005, 104, 41–47. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, B.; Qiao, M.; Wei, J.; Yue, Q.; Wang, C.; Deng, Y.; Kaliaguine, S.; Zhao, D. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 17653–17660. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Ibi, Y.; Hongo, D.; Hamabe, Y.; Suzuki, S.; Hayasaka, Y.; Shindo, T.; Yamada, M. Mechanistic aspects of the role of chelating agents in enhancing Fischer-Tropsch synthesis activity of Co/SiO2 catalyst: Importance of specific interaction of Co with chelate complex during calcination. J. Catal. 2012, 289, 151–163. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, C.Y.; Lin, Q.H.; Lu, P.; Niu, W.Q.; Tsubaki, N. Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts for Fischer-Tropsch synthesis. Catal. Today 2014, 228, 206–211. [Google Scholar] [CrossRef]
- Mochizuki, T.; Hara, T.; Koizumi, N.; Yamada, M. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents. Appl. Catal. A-Gen. 2007, 317, 97–104. [Google Scholar] [CrossRef]
- Mochizuki, T.; Hara, T.; Koizumi, N.; Yamada, M. Novel preparation method of highly active Co/SiO2 catalyst for Fischer-Tropsch synthesis with chelating agents. Catal. Lett. 2007, 113, 165–169. [Google Scholar] [CrossRef]
- Jos van Dillen, A.; Terörde, R.J.A.M.; Lensveld, D.J.; Geus, J.W.; de Jong, K.P. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 2003, 216, 257–264. [Google Scholar] [CrossRef]
- Villagran-Olivares, A.C.; Barroso, M.N.; López, C.A.; Llorca, J.; Abello, M.C. Chelating agent effects in the synthesis of supported Ni nanoparticles as catalysts for hydrogen production. Appl. Catal. A-Gen. 2021, 622, 118219. [Google Scholar] [CrossRef]
- Bambal, A.S.; Guggilla, V.S.; Kugler, E.L.; Gardner, T.H.; Dadyburjor, D.B. Poisoning of a silica-supported cobalt catalyst due to presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effects of chelating agent. Ind. Eng. Chem. Res. 2014, 53, 5846–5857. [Google Scholar] [CrossRef]
- Shi, L.; Tao, K.; Kawabata, T.; Shimamura, T.; Zhang, X.J.; Tsubaki, N. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Co/SiO2 catalysts for Fischer-Tropsch synthesis. ACS Catal. 2011, 1, 1225–1233. [Google Scholar] [CrossRef]
- Gorboletova, G.G.; Metlin, A.A. Standard Thermodynamic functions of Co2+ complexation with glycine and L-histidine in aqueous solution. J. Phys. Chem. 2016, 90, 334–338. [Google Scholar] [CrossRef]
- Hao, Q.-Q.; Hu, M.; Xie, Z.-X.; Ma, X.; Wang, W.; Ren, H.-P. Impact of coordination features of Co(II)-glycine complex on the surface sites of Co/SiO2 for Fischer-Tropsch synthesis. Catalysts 2020, 10, 1295. [Google Scholar] [CrossRef]
- Chen, J.-Q.; Li, Y.-Z.; Hao, Q.-Q.; Chen, H.; Liu, Z.-T.; Dai, C.; Zhang, J.; Ma, X.; Liu, Z.-W. Controlled direct synthesis of single- to multiple-layer MWW zeolite. Natl. Sci. Rev. 2021, 8, nwaa236. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.-T.; Zhao, D.-Y.; Hao, Q.-Q.; Luo, Q.-X.; Zhang, J.; Chen, H.; Sun, M.; Xu, L.; Ma, X. Gemini surfactant-directed facile pillaring of two-dimensional zeolites with enhanced catalytic activity in Friedel-Crafts alkylation. Ind. Eng. Chem. Res. 2020, 59, 16312–16320. [Google Scholar] [CrossRef]
- Ravishankar, R.; Li, M.M.; Borgna, A. Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer-Tropsch synthesis. Catal. Today 2005, 106, 149–153. [Google Scholar] [CrossRef]
- Bräuer, P.; Situmorang, O.; Ng, P.L.; D’Agostino, C. Effect of Al content on the strength of terminal silanol species in ZSM-5 zeolite catalysts: A quantitative DRIFTS study without the use of molar extinction coefficients. Phys. Chem. Chem. Phys. 2018, 20, 4250–4262. [Google Scholar] [CrossRef]
- Al-Khattaf, S.; D’Agostino, C.; Akhtar, M.N.; Al-Yassir, N.; Tan, N.Y.; Gladden, L.F. The effect of coke deposition on the activity and selectivity of the HZSM-5 zeolite during ethylbenzene alkylation reaction in the presence of ethanol. Catal. Sci. Technol. 2014, 4, 1017–1027. [Google Scholar] [CrossRef]
- Luo, Q.-X.; Guo, L.-P.; Yao, S.-Y.; Bao, J.; Liu, Z.-T.; Liu, Z.-W. Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. J. Catal. 2019, 369, 143–156. [Google Scholar] [CrossRef]
Catalysts | Co Size (nm) | Reduction Degree b (RD, %) | Co Dispersion c (D, %) | |
---|---|---|---|---|
d(Co3O4) a | d(Co)H d | |||
Co3O4(G) | 12.1 | --- | --- | --- |
Co3O4(N) | 34.5 | --- | --- | --- |
Co/MCM-22 | 20.0 | 21.4 | 67.0 | 3.0 |
Co-MCM-22(1) | 13.4 | 14.9 | 82.1 | 5.3 |
Co-MCM-22(2) | 18.5 | 20.4 | 87.3 | 4.1 |
Co-MCM-22(1)-500 | 19.5 | 19.7 | 86.2 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.-P.; Xie, Z.-X.; Tian, S.-P.; Ding, S.-Y.; Ma, Q.; Zhao, Y.-Z.; Zhang, Z.; Fu, J.-J.; Hao, Q.-Q. Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules 2024, 29, 1283. https://doi.org/10.3390/molecules29061283
Ren H-P, Xie Z-X, Tian S-P, Ding S-Y, Ma Q, Zhao Y-Z, Zhang Z, Fu J-J, Hao Q-Q. Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules. 2024; 29(6):1283. https://doi.org/10.3390/molecules29061283
Chicago/Turabian StyleRen, Hua-Ping, Zhi-Xia Xie, Shao-Peng Tian, Si-Yi Ding, Qiang Ma, Yu-Zhen Zhao, Zhe Zhang, Jiao-Jiao Fu, and Qing-Qing Hao. 2024. "Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance" Molecules 29, no. 6: 1283. https://doi.org/10.3390/molecules29061283
APA StyleRen, H. -P., Xie, Z. -X., Tian, S. -P., Ding, S. -Y., Ma, Q., Zhao, Y. -Z., Zhang, Z., Fu, J. -J., & Hao, Q. -Q. (2024). Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer–Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules, 29(6), 1283. https://doi.org/10.3390/molecules29061283