Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = MACE (metal-assisted chemical etching)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5489 KiB  
Article
Pd-Decorated SnO2 Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing
by Tiejun Fang, Tianyang Mo, Xianwu Xu, Hongwei Tao, Hongbo Wang, Bingjun Yu and Zhi-Jun Zhao
Sensors 2025, 25(3), 655; https://doi.org/10.3390/s25030655 - 23 Jan 2025
Cited by 3 | Viewed by 1268
Abstract
The development of reliable, highly sensitive hydrogen sensors is crucial for the safe implementation of hydrogen-based energy systems. This paper proposes a novel way to enhance the performance of hydrogen sensors through integrating Pd-SnO2 nanofilms on the substrate with silicon nanowires (SiNWs). [...] Read more.
The development of reliable, highly sensitive hydrogen sensors is crucial for the safe implementation of hydrogen-based energy systems. This paper proposes a novel way to enhance the performance of hydrogen sensors through integrating Pd-SnO2 nanofilms on the substrate with silicon nanowires (SiNWs). The samples were fabricated via a simple and cost-effective process, mainly consisting of metal-assisted chemical etching (MaCE) and electron beam evaporation. Structural and morphological characterizations were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results showed that, compared to those without SiNW structure or decorative Pd nanoparticles, the Pd-decorated SnO2 nanofilm integrated on the SiNW substrates exhibited significantly improved hydrogen sensing performance, achieving a response time of 9 s at 300 °C to 1.5% H2 and a detection limit of 1 ppm. The enhanced performance can be primarily attributed to the large surface area provided by SiNWs, the efficient hydrogen spillover effect facilitated by Pd nanoparticles, and the abundant oxygen vacancies present on the surface of the SnO2 nanofilm, as well as the Schottky barrier formed at the heterojunction interface between Pd and SnO2. This study demonstrates a promising approach for developing high-performance H2 sensors characterized by ultrafast response times and ultralow detection limits. Full article
(This article belongs to the Special Issue Recent Development of Flexible Tactile Sensors and Their Applications)
Show Figures

Figure 1

2 pages, 150 KiB  
Abstract
Superoxide Dismutase Determination on Silver Nanostructured Substrates through Surface-Enhanced Photoluminescence
by Anastasia Kanioura, Georgia Geka, Ioannis Kochylas, Vlassis Likodimos, Spiros Gardelis, Anastasios Dimitriou, Nikolaos Papanikolaou, Sotirios Kakabakos and Panagiota Petrou
Proceedings 2024, 104(1), 19; https://doi.org/10.3390/proceedings2024104019 - 28 May 2024
Viewed by 595
Abstract
Oxidative stress is defined by an imbalance between the generation of reactive oxygen species and the biological system’s ability to neutralize them. This condition is commonly linked to various pathological conditions [1]. Superoxide dismutase (SOD) is a widely used enzyme to [...] Read more.
Oxidative stress is defined by an imbalance between the generation of reactive oxygen species and the biological system’s ability to neutralize them. This condition is commonly linked to various pathological conditions [1]. Superoxide dismutase (SOD) is a widely used enzyme to assess oxidative stress, and various techniques have been developed for its detection in biological samples such as blood, urine, and saliva [2]. Surface-enhanced photoluminescence (PL) is a particularly sensitive method, offering minimal interference from the sample matrix [3]. In this work, silver nanostructured surfaces were implemented as substrates for the immunochemical determination of SOD in synthetic saliva through PL. The substrates were prepared using a single-step metal-assisted chemical etching method (MACE), resulting in the formation of silicon nanowires decorated with silver dendrites of approximately 1.5 μm in height [4]. For SOD detection, a three-step competitive immunoassay configuration was followed. Briefly, SOD was immobilized onto the substrates and then the functionalized substrates were incubated with mixtures of SOD with anti-SOD primary antibody, prepared either in assay buffer or synthetic saliva. Then, a solution of biotinylated anti-species specific antibody was added, followed by a reaction with streptavidin labelled with the fluorescent dye Rhodamine Red-X, and the signal was determined through an in-house developed optical set-up. The developed method presents similar or slightly lower sensitivity (detection limit 0.05 μg/mL) compared to the literature; however, it does not require labor-intensive sample pretreatment steps [5,6]. The aforementioned findings demonstrate the capability of the developed method to detect superoxide dismutase in natural saliva, in order to evaluate the oxidative stress status of an organism. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
3 pages, 317 KiB  
Abstract
Surface Enhanced Raman Scattering (SERS) for the Detection of Oxidative Stress Markers Using Si Nanowires (SiNWs)/Ag Nanostructures Fabricated by Metal Assisted Chemical Etching (MACE)
by Ioannis Kochylas, Anastasia Kanioura, Georgia Geka, Vlassios Likodimos, Spiros Gardelis, Anastasios Dimitriou, Nikolaos Papanikolaou, Sotirios Kakabakos and Panagiota Petrou
Proceedings 2024, 97(1), 170; https://doi.org/10.3390/proceedings2024097170 - 9 Apr 2024
Viewed by 1277
Abstract
In this work, silicon nanowires were constructed by metal-assisted chemical etching and decorated with silver nanoparticles and used as substrates for the SERS determination of oxidative stress markers, namely glutathione, malondialdehyde and catalase. The assays were sensitive, with detection limits of 50 and [...] Read more.
In this work, silicon nanowires were constructed by metal-assisted chemical etching and decorated with silver nanoparticles and used as substrates for the SERS determination of oxidative stress markers, namely glutathione, malondialdehyde and catalase. The assays were sensitive, with detection limits of 50 and 3.2 nM for glutathione and malondialdehyde, respectively, and 0.5 μg/mL for catalase, indicating the capability of the proposed substrates to be implemented for the determination of various oxidative stress markers. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

15 pages, 13225 KiB  
Article
Application of p and n-Type Silicon Nanowires as Human Respiratory Sensing Device
by Elham Fakhri, Muhammad Taha Sultan, Andrei Manolescu, Snorri Ingvarsson and Halldor Gudfinnur Svavarsson
Sensors 2023, 23(24), 9901; https://doi.org/10.3390/s23249901 - 18 Dec 2023
Cited by 9 | Viewed by 2054
Abstract
Accurate and fast breath monitoring is of great importance for various healthcare applications, for example, medical diagnoses, studying sleep apnea, and early detection of physiological disorders. Devices meant for such applications tend to be uncomfortable for the subject (patient) and pricey. Therefore, there [...] Read more.
Accurate and fast breath monitoring is of great importance for various healthcare applications, for example, medical diagnoses, studying sleep apnea, and early detection of physiological disorders. Devices meant for such applications tend to be uncomfortable for the subject (patient) and pricey. Therefore, there is a need for a cost-effective, lightweight, small-dimensional, and non-invasive device whose presence does not interfere with the observed signals. This paper reports on the fabrication of a highly sensitive human respiratory sensor based on silicon nanowires (SiNWs) fabricated by a top-down method of metal-assisted chemical-etching (MACE). Besides other important factors, reducing the final cost of the sensor is of paramount importance. One of the factors that increases the final price of the sensors is using gold (Au) electrodes. Herein, we investigate the sensor’s response using aluminum (Al) electrodes as a cost-effective alternative, considering the fact that the electrode’s work function is crucial in electronic device design, impacting device electronic properties and electron transport efficiency at the electrode–semiconductor interface. Therefore a comparison is made between SiNWs breath sensors made from both p-type and n-type silicon to investigate the effect of the dopant and electrode type on the SiNWs respiratory sensing functionality. A distinct directional variation was observed in the sample’s response with Au and Al electrodes. Finally, performing a qualitative study revealed that the electrical resistance across the SiNWs renders greater sensitivity to breath than to dry air pressure. No definitive research demonstrating the mechanism behind these effects exists, thus prompting our study to investigate the underlying process. Full article
(This article belongs to the Special Issue Nanomaterials for Sensor Applications)
Show Figures

Figure 1

10 pages, 2899 KiB  
Article
Fabrication of Silicon Nanowires by Metal-Assisted Chemical Etching Combined with Micro-Vibration
by Weiye Huang, Junyi Wu, Wenxin Li, Guojin Chen, Changyong Chu, Chao Li, Yucheng Zhu, Hui Yang and Yan Chao
Materials 2023, 16(15), 5483; https://doi.org/10.3390/ma16155483 - 5 Aug 2023
Cited by 4 | Viewed by 1702
Abstract
In this work, we design a micro-vibration platform, which combined with the traditional metal-assisted chemical etching (MaCE) to etch silicon nanowires (SiNWs). The etching mechanism of SiNWs, including in the mass-transport (MT) and charge-transport (CT) processes, was explored through the characterization of SiNW’s [...] Read more.
In this work, we design a micro-vibration platform, which combined with the traditional metal-assisted chemical etching (MaCE) to etch silicon nanowires (SiNWs). The etching mechanism of SiNWs, including in the mass-transport (MT) and charge-transport (CT) processes, was explored through the characterization of SiNW’s length as a function of MaCE combined with micro-vibration conditions, such as vibration amplitude and frequency. The scanning electron microscope (SEM) experimental results indicated that the etching rate would be continuously improved with an increase in amplitude and reached its maximum at 4 μm. Further increasing amplitude reduced the etching rate and affected the morphology of the SiNWs. Adjusting the vibration frequency would result in a maximum etching rate at a frequency of 20 Hz, and increasing the frequency will not help to improve the etching effects. Full article
Show Figures

Figure 1

12 pages, 5461 KiB  
Article
Reduction of Nitroaromatics by Gold Nanoparticles on Porous Silicon Fabricated Using Metal-Assisted Chemical Etching
by Ling-Yi Liang, Yu-Han Kung, Vincent K. S. Hsiao and Chih-Chien Chu
Nanomaterials 2023, 13(11), 1805; https://doi.org/10.3390/nano13111805 - 5 Jun 2023
Cited by 6 | Viewed by 2065
Abstract
In this study, we investigated the use of porous silicon (PSi) fabricated using metal-assisted chemical etching (MACE) as a substrate for the deposition of Au nanoparticles (NPs) for the reduction of nitroaromatic compounds. PSi provides a high surface area for the deposition of [...] Read more.
In this study, we investigated the use of porous silicon (PSi) fabricated using metal-assisted chemical etching (MACE) as a substrate for the deposition of Au nanoparticles (NPs) for the reduction of nitroaromatic compounds. PSi provides a high surface area for the deposition of Au NPs, and MACE allows for the fabrication of a well-defined porous structure in a single step. We used the reduction of p-nitroaniline as a model reaction to evaluate the catalytic activity of Au NPs on PSi. The results indicate that the Au NPs on the PSi exhibited excellent catalytic activity, which was affected by the etching time. Overall, our results highlighted the potential of PSi fabricated using MACE as a substrate for the deposition of metal NPs for catalytic applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles)
Show Figures

Figure 1

12 pages, 2787 KiB  
Article
Purification of Organosilicon Waste Silicon Powder with Hydrometallurgy
by Liping Zhao, Zuyu Li, Fengshuo Xi, Shaoyuan Li, Wenhui Ma, Jijun Wu and Kuixian Wei
Metals 2023, 13(5), 950; https://doi.org/10.3390/met13050950 - 14 May 2023
Cited by 8 | Viewed by 2449
Abstract
Waste silicon powder produced during the production process of organosilicon materials is a major environmental concern that can lead to pollution and resource wastage. As a result, it is crucial to find efficient ways of recovering and utilizing this waste material. In this [...] Read more.
Waste silicon powder produced during the production process of organosilicon materials is a major environmental concern that can lead to pollution and resource wastage. As a result, it is crucial to find efficient ways of recovering and utilizing this waste material. In this study, the morphology of waste silicon powder was systematically studied, and an optimized purification method was proposed based on a hydrometallurgical process and phase analysis. The complex composition of waste silicon powder presents a significant challenge during its recycling. However, the results of this study showed that metal-assisted chemical etching (MACE), followed by mixed acid system leaching, is the most effective method for removing impurities from the material. The superior order of different acid systems for removing metallic impurities was HCl < HF < HF + HCl < HF + H2O2 < CuACE. It is worth noting that CuACE treatment has a remarkable ability to remove more than 95% of Fe through hydrometallurgy. Full article
Show Figures

Figure 1

13 pages, 6144 KiB  
Article
Enhanced Photoluminescence of R6G Dyes from Metal Decorated Silicon Nanowires Fabricated through Metal Assisted Chemical Etching
by Ioannis Kochylas, Anastasios Dimitriou, Maria-Athina Apostolaki, Maria-Christina Skoulikidou, Vlassios Likodimos, Spiros Gardelis and Nikolaos Papanikolaou
Materials 2023, 16(4), 1386; https://doi.org/10.3390/ma16041386 - 7 Feb 2023
Cited by 12 | Viewed by 2439
Abstract
In this study, we developed active substrates consisting of Ag-decorated silicon nanowires on a Si substrate using a single-step Metal Assisted Chemical Etching (MACE) process, and evaluated their performance in the identification of low concentrations of Rhodamine 6G using surface-enhanced photoluminescence spectroscopy. Different [...] Read more.
In this study, we developed active substrates consisting of Ag-decorated silicon nanowires on a Si substrate using a single-step Metal Assisted Chemical Etching (MACE) process, and evaluated their performance in the identification of low concentrations of Rhodamine 6G using surface-enhanced photoluminescence spectroscopy. Different structures with Ag-aggregates as well as Ag-dendrites were fabricated and studied depending on the etching parameters. Moreover, the addition of Au nanoparticles by simple drop-casting on the MACE-treated surfaces can enhance the photoluminescence significantly, and the structures have shown a Limit of Detection of Rhodamine 6G down to 1012 M for the case of the Ag-dendrites enriched with Au nanoparticles. Full article
Show Figures

Figure 1

13 pages, 3911 KiB  
Article
The Array of Si Nanowires Covered with Ag Nanoparticles by ALD: Fabrication Process and Optical Properties
by Kristina Prigoda, Anna Ermina, Vladimir Bolshakov, Denis Nazarov, Ilya Ezhov, Oleksiy Lutakov, Maxim Maximov, Vladimir Tolmachev and Yuliya Zharova
Coatings 2022, 12(11), 1748; https://doi.org/10.3390/coatings12111748 - 15 Nov 2022
Cited by 9 | Viewed by 2339
Abstract
In this work, we proposed a method for creating an Ag/Si composite structure consisting of an array of vertical silicon nanowires (SiNWs) decorated with silver nanoparticles (AgNPs). A two-stage metal-assisted chemical etching of Si was used to obtain the SiNW array, and atomic [...] Read more.
In this work, we proposed a method for creating an Ag/Si composite structure consisting of an array of vertical silicon nanowires (SiNWs) decorated with silver nanoparticles (AgNPs). A two-stage metal-assisted chemical etching of Si was used to obtain the SiNW array, and atomic layer deposition was used to fabricate the AgNPs. A uniform distribution of AgNPs along the SiNW height was achieved. The measured characteristics by spectroscopic ellipsometry directly established the presence of AgNPs deposited on the SiNWs. The height of the sublayers and the fractions of Si and Ag in them were determined using the multilayer model and the effective Bruggeman medium approximation in the interpretation of the experimental data. For AgNP layers deposited on an Si wafer surface, the thickness (from 2.3 to 7.8 nm) and complex dielectric functions were verified within the framework of the Drude–Lorentz model. The optical properties of Ag/SiNW structures with complex spatial geometry were simulated in the COMSOL Multiphysics software. The expected localization of the electric field on the surface and near the AgNP was observed as a result of the plasmon resonance excitation. The calculated enhancement factor reached 1010, which indicates the possibility of using such structures as substrates for surface-enhanced Raman scattering. Full article
(This article belongs to the Special Issue Atomic Layer Deposition of Oxide Thin Films)
Show Figures

Graphical abstract

16 pages, 2519 KiB  
Article
Luminescent Silicon Nanowires as Novel Sensor for Environmental Air Quality Control
by Dario Morganti, Maria José Lo Faro, Antonio Alessio Leonardi, Barbara Fazio, Sabrina Conoci and Alessia Irrera
Sensors 2022, 22(22), 8755; https://doi.org/10.3390/s22228755 - 12 Nov 2022
Cited by 7 | Viewed by 2975
Abstract
Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand. In this [...] Read more.
Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand. In this scenario, the attention dedicated to workplace safety monitoring has led to the developing and improving of new sensors. Despite technological advancements, sensors based on nanostructured materials are difficult to introduce into the manufacturing flow due to the high costs of the processes and the approaches that are incompatible with the microelectronics industry. The synthesis of a low-cost ultra-thin silicon nanowires (Si NWs)-based sensor is here reported, which allows us the detection of various dangerous gases such as acetone, ethanol, and the ammonia test as a proof of concept in a nitrogen-based mixture. A modified metal-assisted chemical etching (MACE) approach enables to obtain ultra-thin Si NWs by a cost-effective, rapid and industrially compatible process that exhibit an intense light emission at room temperature. All these gases are common substances that we find not only in research or industrial laboratories, but also in our daily life and can pose a serious danger to health, even at small concentrations of a few ppm. The exploitation of the Si NWs optical and electrical properties for the detection of low concentrations of these gases through their photoluminescence and resistance changes will be shown in a nitrogen-based gas mixture. These sensing platforms give fast and reversible responses with both optical and electrical transductions. These high performances and the scalable synthesis of Si NWs could pave the way for market-competitive sensors for ambient air quality monitoring. Full article
(This article belongs to the Special Issue Advanced Materials and Interfaces for Optoelectronic Sensors)
Show Figures

Figure 1

23 pages, 5199 KiB  
Article
CoO, Cu, and Ag Nanoparticles on Silicon Nanowires with Photocatalytic Activity for the Degradation of Dyes
by Olda Alexia Cárdenas Cortez, José de Jesús Pérez Bueno, Yolanda Casados Mexicano, Maria Luisa Mendoza López, Carlos Hernández Rodríguez, Alejandra Xochitl Maldonado Pérez, David Cruz Alejandre, Coraquetzali Magdaleno López, María Reina García Robles, Goldie Oza, José Germán Flores López and Hugo Ruiz Silva
Sustainability 2022, 14(20), 13361; https://doi.org/10.3390/su142013361 - 17 Oct 2022
Cited by 7 | Viewed by 2298
Abstract
Photocatalytic semiconductors require maintaining stability and pursuing higher efficiencies. The studied systems were silicon nanowires (SiNWs), silicon nanowires with cobalt oxide nanoparticles (SiNWs-CoONPs), and silicon nanowires with copper nanoparticles (SiNWs-CuNPs). SiNWs were [...] Read more.
Photocatalytic semiconductors require maintaining stability and pursuing higher efficiencies. The studied systems were silicon nanowires (SiNWs), silicon nanowires with cobalt oxide nanoparticles (SiNWs-CoONPs), and silicon nanowires with copper nanoparticles (SiNWs-CuNPs). SiNWs were synthesized by metal-assisted chemical etching (MACE) from silicon wafers keeping the remaining silver nanoparticles for all three sample types. The nanowires were about 23–30 µm in length. CoONPs and CuNPs were deposited on SiNWs by the autocatalytic reduction processes (electroless). There were many factors in the process that affect the resulting structures and degradation efficiencies. This work shows the degradation of methyl orange (MO) together with the chemisorption of methylene blue (MB), and rhodamine 6G (Rh6G) by direct illumination with visible radiation. The MO degradation kinetics were in the sequence SiNWs-CuNPs (88.9%) > SiNWs (85.3%) > SiNWs-CoONPs (49.3%), with the SiNWs-CuNPs having slightly faster kinetics. However, SiNWs-CoONPs have slow degradation kinetics. The chemisorptions of MB and Rh6G were SiNWs-CuNPs (87.2%; 86.88%) > SiNWs (86%; 87%) > SiNWs-CoONPs (17.3%; 12%), showing dye desorptions together with lower chemisorption capacities. This work shows iridescence in optical microscopy images by the visible light interference caused by the spaces between the nanowire bundles. Full article
(This article belongs to the Special Issue Frontiers in Nanomaterials Utilization in Water Treatment)
Show Figures

Figure 1

12 pages, 3219 KiB  
Article
Photocatalytic Activity of Silicon Nanowires Decorated with PbS Nanoparticles Deposited by Pulsed Laser Deposition for Efficient Wastewater Treatment
by Faisal K. Algethami, Khaled Trabelsi, Anouar Hajjaji, Mohamed B. Rabha, Lotfi Khezami, Mohamed R. Elamin, Brahim Bessais and My Ali El Khakani
Materials 2022, 15(14), 4970; https://doi.org/10.3390/ma15144970 - 17 Jul 2022
Cited by 12 | Viewed by 2113
Abstract
The present work aims to study the photocatalytic properties of nanohybrids composed of silicon nanowires (SiNWs) decorated with PbS nanoparticles (NPs). The elaborated material was intended to be utilized in wastewater treatment. The SiNWs were elaborated from the Metal Assisted Chemical Etching route [...] Read more.
The present work aims to study the photocatalytic properties of nanohybrids composed of silicon nanowires (SiNWs) decorated with PbS nanoparticles (NPs). The elaborated material was intended to be utilized in wastewater treatment. The SiNWs were elaborated from the Metal Assisted Chemical Etching route (MACE), while the PbS NPs were deposited at room temperature onto SiNWs using the pulsed laser deposition (PLD) technique. The influence of decorating SiNWs (having different lengths) with PbS-NPs on their structural, morphological, optoelectronic, and photocatalytic properties was scrutinized. PbS/SiNWs nanohybrids exhibited enhanced photocatalytic degradation towards Black Amido (BA) dye for 20 µm SiNWs length and 0.2% of BA volume concentration. These optimized conditions may insinuate that this nanocomposite-like structure is a promising efficient photocatalytic systems contender, cost-effective, and recyclable for organic compound purification from wastewaters. Full article
(This article belongs to the Special Issue Advanced Materials and Photoreactors for Environmental Applications)
Show Figures

Figure 1

16 pages, 4469 KiB  
Article
Fabrication and Characterization of a Self-Powered n-Bi2Se3/p-Si Nanowire Bulk Heterojunction Broadband Photodetector
by Xuan Wang, Yehua Tang, Wanping Wang, Hao Zhao, Yanling Song, Chaoyang Kang and Kefan Wang
Nanomaterials 2022, 12(11), 1824; https://doi.org/10.3390/nano12111824 - 26 May 2022
Cited by 8 | Viewed by 2499
Abstract
In the present study, vacuum evaporation method is used to deposit Bi2Se3 film onto Si nanowires (NWs) to form bulk heterojunction for the first time. Its photodetector is self-powered, its detection wavelength ranges from 390 nm to 1700 nm and [...] Read more.
In the present study, vacuum evaporation method is used to deposit Bi2Se3 film onto Si nanowires (NWs) to form bulk heterojunction for the first time. Its photodetector is self-powered, its detection wavelength ranges from 390 nm to 1700 nm and its responsivity reaches its highest value of 84.3 mA/W at 390 nm. In comparison to other Bi2Se3/Si photodetectors previously reported, its infrared detection length is the second longest and its response speed is the third fastest. Before the fabrication of the photodetector, we optimized the growth parameter of the Bi2Se3 film and the best Bi2Se3 film with atomic steps could finally be achieved. The electrical property measurement conducted by the physical property measurement system (PPMS) showed that the grown Bi2Se3 film was n-type conductive and had unique topological insulator properties, such as a metallic state, weak anti-localization (WAL) and linear magnetic resistance (LMR). Subsequently, we fabricated Si NWs by the metal-assisted chemical etching (MACE) method. The interspace between Si NWs and the height of Si NWs could be tuned by Ag deposition and chemical etching times, respectively. Finally, Si NWs fabricated with the Ag deposition time of 60 s and the etching time of 10 min was covered by the best Bi2Se3 film to be processed for the photodetector. The primary n-Bi2Se3/p-Si NWs photodetector that we fabricated can work in a self-powered mode and it has a broadband detection range and fast response speed, which indicates that it can serve as a promising silicon-based near- and mid-infrared photodetector. Full article
Show Figures

Figure 1

11 pages, 2877 KiB  
Article
Wafer-Scale Fabrication and Transfer of Porous Silicon Films as Flexible Nanomaterials for Sensing Application
by Han Lu, Mingliang Jin, Zongbao Zhang, Sujuan Wu and Lingling Shui
Nanomaterials 2022, 12(7), 1191; https://doi.org/10.3390/nano12071191 - 2 Apr 2022
Cited by 12 | Viewed by 2932
Abstract
Flexible sensors are highly advantageous for integration in portable and wearable devices. In this work, we propose and validate a simple strategy to achieve whole wafer-size flexible SERS substrate via a one-step metal-assisted chemical etching (MACE). A pre-patterning Si wafer allows for PSi [...] Read more.
Flexible sensors are highly advantageous for integration in portable and wearable devices. In this work, we propose and validate a simple strategy to achieve whole wafer-size flexible SERS substrate via a one-step metal-assisted chemical etching (MACE). A pre-patterning Si wafer allows for PSi structures to form in tens of microns areas, and thus enables easy detachment of PSi film pieces from bulk Si substrates. The morphology, porosity, and pore size of PS films can be precisely controlled by varying the etchant concentration, which shows obvious effects on film integrity and wettability. The cracks and self-peeling of Psi films can be achieved by the drying conditions after MACE, enabling transfer of Psi films from Si wafer to any substrates, while maintaining their original properties and vertical alignment. After coating with a thin layer of silver (Ag), the rigid and flexible PSi films before and after transfer both show obvious surface-enhanced Raman scattering (SERS) effect. Moreover, flexible PSi films SERS substrates have been demonstrated with high sensitivity (down to 2.6 × 10−9 g/cm2) for detection of methyl parathion (MPT) residues on a curved apple surface. Such a method provides us with quick and high throughput fabrication of nanostructured materials for sensing, catalysis, and electro-optical applications. Full article
Show Figures

Graphical abstract

12 pages, 1924 KiB  
Article
Optimization of Metal-Assisted Chemical Etching for Deep Silicon Nanostructures
by Rabia Akan and Ulrich Vogt
Nanomaterials 2021, 11(11), 2806; https://doi.org/10.3390/nano11112806 - 22 Oct 2021
Cited by 10 | Viewed by 3118
Abstract
High-aspect ratio silicon (Si) nanostructures are important for many applications. Metal-assisted chemical etching (MACE) is a wet-chemical method used for the fabrication of nanostructured Si. Two main challenges exist with etching Si structures in the nanometer range with MACE: keeping mechanical stability at [...] Read more.
High-aspect ratio silicon (Si) nanostructures are important for many applications. Metal-assisted chemical etching (MACE) is a wet-chemical method used for the fabrication of nanostructured Si. Two main challenges exist with etching Si structures in the nanometer range with MACE: keeping mechanical stability at high aspect ratios and maintaining a vertical etching profile. In this work, we investigated the etching behavior of two zone plate catalyst designs in a systematic manner at four different MACE conditions as a function of mechanical stability and etching verticality. The zone plate catalyst designs served as models for Si nanostructures over a wide range of feature sizes ranging from 850 nm to 30 nm at 1:1 line-to-space ratio. The first design was a grid-like, interconnected catalyst (brick wall) and the second design was a hybrid catalyst that was partly isolated, partly interconnected (fishbone). Results showed that the brick wall design was mechanically stable up to an aspect ratio of 30:1 with vertical Si structures at most investigated conditions. The fishbone design showed higher mechanical stability thanks to the Si backbone in the design, but on the other hand required careful control of the reaction kinetics for etching verticality. The influence of MACE reaction kinetics was identified by lowering the oxidant concentration, lowering the processing temperature and by isopropanol addition. We report an optimized MACE condition to achieve an aspect ratio of at least 100:1 at room temperature processing by incorporating isopropanol in the etching solution. Full article
(This article belongs to the Special Issue Silica and Silicon Based Nanostructures)
Show Figures

Graphical abstract

Back to TopTop