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Abstract: The present work aims to study the photocatalytic properties of nanohybrids composed
of silicon nanowires (SiNWs) decorated with PbS nanoparticles (NPs). The elaborated material was
intended to be utilized in wastewater treatment. The SiNWs were elaborated from the Metal Assisted
Chemical Etching route (MACE), while the PbS NPs were deposited at room temperature onto SiNWs
using the pulsed laser deposition (PLD) technique. The influence of decorating SiNWs (having
different lengths) with PbS-NPs on their structural, morphological, optoelectronic, and photocatalytic
properties was scrutinized. PbS/SiNWs nanohybrids exhibited enhanced photocatalytic degradation
towards Black Amido (BA) dye for 20 µm SiNWs length and 0.2% of BA volume concentration. These
optimized conditions may insinuate that this nanocomposite-like structure is a promising efficient
photocatalytic systems contender, cost-effective, and recyclable for organic compound purification
from wastewaters.

Keywords: silicon nanowires; PbS nanoparticles; pulsed laser deposition; photocatalytic degradation

1. Introduction

The first 1D nanostructures synthesized were carbon nanotubes, discovered in 1991 by
Iijima [1]. Following this singular discovery, researchers became interested in synthesizing
and characterizing other 1D structures, including nano-sticks, nanoribbons, and nanowires
(NWs). Silicon nanowires (SiNWs) were discovered in 1964 by chemical vapor deposition
(CVD) of Si on gold aggregates [2]. Silicon nanowires play an essential role in the race
for miniaturization of future electronic components, allowing a higher integration density,
which would multiply the functions of devices. These applications concern a wide field of
science and technology. SiNWs entice global investigation concern owing to their attractive
characteristics and usage in various domains, i.e., electronics, diagnostics, solar cells,
photovoltaics, catalysis, batteries, analytical chemistry, molecular sensing, etc. [3–11]. The
SiNWs were elaborated by the Ag-assisted chemical etching technique (Ag-ACE) [12], and
the PbS nanoparticles were deposited by pulsed laser deposition [13–15]. On the other
hand, semiconductor-mediated photocatalysis is a widely adopted procedure [16–20] to
degrade dyes and organic contaminants in wastewater, especially those decorated with
nanoparticles [21,22]. It is our belief that the photodegradation effectiveness of dyes by
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PbS/SiNWs nanohybrids is reported first in this work. Amido Black is preferred as a typical
dye molecule because it is usually utilized in staining proteins and is highly toxic. The
present study evaluated the photocatalytic performance of the PbS/SiNWs nanohybrids by
changing the SiNWs lengths and exposure time to UV irradiation for a fixed and varied
dye concentration. Scanning Electron Microscopy (SEM, TESCAN VEGA3) and energy-
dispersive X-ray spectroscopy (EDS) were accomplished to examine the nanostructured
morphology and the elemental analysis of the PbS/SiNWs nanohybrids. TEM images
were conveyed with an FEI Tecnai G20 microscope working at 200 kV and supplied with
a LaB6 filament. Reflectivity measurements and spectral absorption were performed
using a Perkin-Elmer Lambda 950 UV-visible-NIR spectrophotometer. A WCT-120 Silicon
Wafer Lifetime Tester was exploited to consider the transient photoconductance and derive
the carrier minority lifetime. Ultimately, a photochemical reactor equipped with a 15 W
ultraviolet lamp was used for photocatalysis operation.

2. Elaboration of Silicon Nanowires Decorated with PbS Nanoparticles
2.1. Silicon Cleaning

In all our experimental studies, we used 1 × 1 cm2 (100) oriented boron-doped Si
wafers having a resistivity of 0.01–0.02 Ω.cm and a thickness of 450 µm. Each substrate
undergoes a preliminary chemical cleaning called “CP4 chemical pickling”. During this
step, the substrates are first immersed for one minute in a solution composed of nitric
acid, hydrofluoric acid, and acetic acid (64% HNO3, 16% HF, and 20% CH3COOH) to
remove the surface layer, which contains a high density of structural defects caused by
the cutting. The samples are then rinsed thoroughly with deionized water and dried.
The CP4 solution allows anisotropic etching of Si. Indeed, this acid mixture attacks all
crystallographic directions at the same speed. The reaction mechanism of this etching
starts with the oxidation of Si by nitric acid (HNO3); the fluoride ions coming from the
dissociation of HF react with Si to produce water-soluble hexafluoro-silicic acid (H2SiF6).

2.2. Elaboration of Silicon Nanowires

The metal-assisted etching technique requires the deposition of metallic NPs on the
previously cleaned Si substrates [23,24]. The choice of the metallic NPs (Ag, Pt, Au, etc.) and
the control of the deposition parameters (deposition time and temperature, concentration
of the catalytic solution) are crucial in determining the morphology of the Si nanostructures
formed after the etching step. In this work, silver nitrate (AgNO3) was dissociated in an
aqueous HF solution to provide Ag+ ions according to the following total reaction:

AgNO3 → Ag+ + NO3 (1)

The Ag+ ions are reduced to metallic Ag and spontaneously deposit on the Si surface
without any electrical energy input by this Electroless Metal Deposition (EMD) method.
After an optimization study, the cleaned Si substrates are immersed, during the first step, in
an aqueous solution of HF and AgNO3. The Ag deposition time, the solution temperature,
and the HF/AgNO3 concentration are fixed at 1 min, 25 ◦C, and 4.8/0.02 M, respectively.
To achieve the SiNWs, the Ag-NPs covered Si substrates are dipped in a polypropylene
Teflon beaker containing an (HF/H2O2: 4.8/0.2 M) solution. This immersion enabled us
to achieve quasi-vertical grooves; it was performed for four different durations (20 min,
30 min, 40 min, and 50 min) to produce various SiNWs lengths. Figure 1 illustrates the
experimental setup of the Ag-ACE technique.
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Figure 1. Scheme of the Ag-ACE experimental set-up.

2.3. Silicon Nanowires Decorated with PbS Nanoparticles Deposited by PLD

The PLD of PbS films was performed by using a KrF excimer laser (wavelength = 248 nm,
pulse duration = 14 ns, repetition rate = 20 Hz, pulse energy = 120 mJ, and laser spot
area = 3.4 mm2), which was focused on a rotating PbS pellet at an incident angle of 45◦. It
interacted with a target and produced ejected species with very high kinetic energy. The
laser was focused by a lens (focal length: 75 cm) on the target at a frequency of 20 Hz. The
deposition of the PbS NPs was performed at room temperature on SiNWs and a quartz
substrate. The substrates were placed on a rotating substrate holder (to ensure uniform
surface ablation) parallel to the target at 7.9 cm from it. Before ablation, the deposition
chamber was pumped under air vacuum to 510−6 Torr by a molecular turbopump, under a
He pressure of 50 mTorr. The deposition rate was about 0.03 nm/pulse. The fixed number
of laser pulses was NLp = 1000 so that the effective assumed total thickness of PbS was
about 30 nm. Figure 2 shows the XRD patterns of PLD-PbS films deposited on intrinsic
Si substrates under a He pressure of 50 mTorr. The XRD peaks are annotated owing to
the standard XRD peaks associated to the crystallographic plans of PbS powder (JCPDS
card N◦ 05-592). First, all the XRD peaks agree with the fingerprint of PbS, confirming the
polycrystalline nature of the films even if they were PLD-deposited at room-temperature.
Second, one can notice that at a background He pressure of 50 mTorr, the PLD-PbS films
exhibit a preferential (200) orientation. It was previously demonstrated that the preferential
orientation depends on the He background pressure [13]. In fact, the highly energetic aspect
of the laser ablated species provides a higher surface diffusivity to atoms, which would
favor the crystallization of PbS without any additional heating of the substrate. On the
other hand, no other peaks associated with PbO, PbO2, PbSO3, PbSO4, etc. were observed,
confirming thereby the pure PbS cubic phase of the films.



Materials 2022, 15, 4970 4 of 12Materials 2022, 15, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. XRD diagram of PbS crystals PLD-deposited at room temperature on intrinsic (100) ori-
ented silicon. 

2.4. Microstructure and Morphology of PbS/SiNWs Nanohybrids 
Figure 3 shows that silicon nanowires (SiNWs) decorated with PbS nanoparticles 

(etch time between 20–50 min) are vertically aligned.  

 
Figure 3. Cross-sectional SEM images showing SiNWs on which 30 nm PbS films were deposited 
for different etching times (a) 20 min, (b) 30 min, (c) 40 min, (d) 50 min. 

Obviously, the etching time variation from 20 to 50 min results in a gradual increase 
in the NWs length from approximately 3.3 µm to 8.3 µm. Figure 4 illustrates the length of 
the SiNWs as a function of etching time. It is worth noting that the Si dissolution regime 
follows a linear trend for an etching time in the range of 20–50 min. 

(a) (b) 

(c) (d) 

Figure 2. XRD diagram of PbS crystals PLD-deposited at room temperature on intrinsic (100)
oriented silicon.

2.4. Microstructure and Morphology of PbS/SiNWs Nanohybrids

Figure 3 shows that silicon nanowires (SiNWs) decorated with PbS nanoparticles (etch
time between 20–50 min) are vertically aligned.
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Figure 3. Cross-sectional SEM images showing SiNWs on which 30 nm PbS films were deposited for
different etching times (a) 20 min, (b) 30 min, (c) 40 min, (d) 50 min.

Obviously, the etching time variation from 20 to 50 min results in a gradual increase
in the NWs length from approximately 3.3 µm to 8.3 µm. Figure 4 illustrates the length of
the SiNWs as a function of etching time. It is worth noting that the Si dissolution regime
follows a linear trend for an etching time in the range of 20–50 min.
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Figure 4. Length of Si NWs as a function of Ag-assisted chemical etching time.

Figure 5 depicts a magnified SEM surface image of the PbS/SiNWs nanohybrids
and the corresponding EDX spectrum. The elements Pb, S, Ag, Si, and O were detected,
confirming the purity of the PbS films. However, the SiNWs still contain Ag residue even
after Ag etching at the end of the SiNWs formation (Table 1).

Materials 2022, 15, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 4. Length of Si NWs as a function of Ag-assisted chemical etching time. 

Figure 5 depicts a magnified SEM surface image of the PbS/SiNWs nanohybrids and 
the corresponding EDX spectrum. The elements Pb, S, Ag, Si, and O were detected, con-
firming the purity of the PbS films. However, the SiNWs still contain Ag residue even 
after Ag etching at the end of the SiNWs formation (Table 1).  

 
Figure 5. SEM surface image of 20 min MACE SiNWs decorated with PbS NPs. 

Table 1. Concentration of chemical compositions determined from the EDX spectrum. 

Element Line Type Apparent  
Concentration 

k Ratio wt% wt% Sigma Atomic % 

C K series 5.71 0.05708 10.83 0.14 24.15 
O K series 7.19 0.06297 6.46 0.05 10.81 
Si K series 112.41 1.03086 61.64 0.25 58.77 
S K series 3.46 0.03667 2.39 0.07 2 

Ag L series 17.76 0.17758 15.61 0.21 3.88 
Pb M series 3.09 0.02972 3.07 0.26 0.4 

Total    100  100 
  

0 10 20 30 40 50

0

2

4

6

8

Le
ng

th
 (m

m
)

 Etching time (min)

Figure 5. SEM surface image of 20 min MACE SiNWs decorated with PbS NPs.

Table 1. Concentration of chemical compositions determined from the EDX spectrum.

Element Line Type Apparent
Concentration k Ratio wt% wt% Sigma Atomic %

C K series 5.71 0.05708 10.83 0.14 24.15
O K series 7.19 0.06297 6.46 0.05 10.81
Si K series 112.41 1.03086 61.64 0.25 58.77
S K series 3.46 0.03667 2.39 0.07 2

Ag L series 17.76 0.17758 15.61 0.21 3.88
Pb M series 3.09 0.02972 3.07 0.26 0.4

Total 100 100
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2.5. Optoelectronic and Microstructural Properties of PbS/SiNWs Nanohybrids

Figure 6 depicts the reflectivity of PbS/SiNWs nanohybrids versus etching time.
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Figure 6. Reflectivity spectrum of a PbS NPs film (NLP = 1000) deposited by PLD on different
SiNWs substrates.

PbS/SiNWS nanohybrid reflectivity decreases sharply compared to the single-crystal
Si substrate alone. The reflectivity minimum varies between 5.8 and 6.5% in the wavelength
range 620–650 nm. The SiNWs seem to act as an effective anti-reflection coating due to light
absorption increase due to the enlargement of the specific surface area. The latter recreates
a significant role in photocatalysis, leading to increased catalytic activity, which will be
demonstrated later. The Si wafer electronic properties (before and after treatment with
PbS NPs) were quantified by measuring the effective minority carrier lifetime before and
after forming the PbS/SiNWs nanohybrids. Figure 7 shows the evolution of the minority
carrier lifetime (τeff). If we assume that the Si bulk is not affected by the PbS/SiNWs surface
treatment, only the minority carrier related to the surface of the Si substrate is concerned.
The value of surface recombination rate (Seff) can be determined from the effective lifetime
(τeff) utilizing the below expression (2) [25,26]:

1
τeff

=
1

τbulk
+

2S
W

(2)

where τbulk and W are the lifetime of the bulk and the Si substrate thickness, respectively,
if all samples are supposed to have relatively high values of τbulk compared to τS, the
effective surface recombination is then reduced to Equation (3):

1
τeff

= Se f f =
W

2 τeff
(3)
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The lifetime measurements are performed at a carrier injection rate (∆n) = 2 × 1014 cm−3.
The effective lifetime value (τeff) of the minority carriers of the untreated Si substrate is
equal to 2.53 µs, and it decreases to 1.66 µs for SiNWs (50 min) decorated with PbS NPs.
SiNWs present a sizeable internal surface full of defects; this may explain the degradation
of the lifetime after the formation of the SiNWs. Some Ag-NPs residues can also affect the
value of τeff [27].

For a better characterization of the nanostructural state of the PbS/SiNWs nanohybrid,
transmission electron microscopy (TEM) observations were carried out on the prepared
sample (Figure 8). The uniform morphology and size observed from Figure 8 are due to
the ideal method used in this investigation.
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3. Photocatalytic Application of the PbS/SiNWs Nanohybrids

This experiment aims to study the efficacy of PbS/SiNWs nanohybrids for Photocatal-
ysis application. The photochemical reactor is equipped with a 15 W ultraviolet lamp, as
illustrated in Figure 9. The 1 × 1 cm2 PbS/SiNWs/Si substrate is immersed in 10 mL of
aqueous Black Amido (BA) solution.
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Figure 10. UV–Visible spectra of the BA-dye. 

Figure 11 presents the UV-visible spectra for different volume concentration (0.2%, 
0.4%, 0.6%, and 0.8%) of the Black Amido solution. After photocatalytic activity (Figure 
10), we observed insignificant degradation for 0.2%, 0.6%, and 0.8% of BA-dye volume 
concentration. However, for 0.4% the peaks at 619 and 330 nm disappear revealing a com-
plete degradation of the BA-dye in the solution.  

Figure 9. Photochemical reactor.

Then the dye solutions were exposed to UV irradiation at different times to reach the
total degradation of the BA-dye. Later the solutions were analyzed using a UV-visible spec-
trophotometer. First, the effect of the SiNWs’ lengths (20, 30, 40 µm) on their photocatalytic
performances while using the same BA-dye solution was investigated. Figure 9 presents
the UV-visible spectra of the initial solution of Black Amido before photocatalysis. From
Figure 10, a prominent peak at the ultraviolet region corresponding to a low energy π→ π∗
transition of the aromatic benzene group can be observed [28,29]. Another spectral band
peaking at 619 nm is due to the presence of the azo group.
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Figure 10. UV–Visible spectra of the BA-dye.

Figure 11 presents the UV-visible spectra for different volume concentration (0.2%,
0.4%, 0.6%, and 0.8%) of the Black Amido solution. After photocatalytic activity (Figure 10),
we observed insignificant degradation for 0.2%, 0.6%, and 0.8% of BA-dye volume concen-
tration. However, for 0.4% the peaks at 619 and 330 nm disappear revealing a complete
degradation of the BA-dye in the solution.
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Figure 11. UV−Visible spectra of BA-dye for different volume concentration (0.2% 0.4% 0.6%,
and 0.8%).

Figure 12 displays the UV-visible spectra of Black Amido solution in the presence of
PbS/SiNWs for different degradation times. This figure illustrates a slight degradation
effect during the 30 min UV exposure time accompanied by the PbS/SiNWs nanohybrids
(20 min). However, starting from 4 h, the peaks at 619 and 330 nm decrease within
UV exposure time, leading to a significant reduction in absorbance. A quasi-complete
degradation of BA-dye is observed after 7 h.
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Figure 12. UV−visible spectra of BA-dye of volume concentration 0.4% in the presence of PbS/SiNWs
nanohybrids (20 min) as a catalyst.

The obtained results prove that the PbS/SiNWs are a good candidate for an efficient
photocatalyst for wastewater treatment. In addition, the effect of PbS/SiNWs nanohybrids
(20 min) on the photocatalytic activity for different volume concentrations of BA-dye
was tested and shown in Figure 13. We noticed a complete degradation in the BA-dye
for a volume concentration of 0.4% during 7 h exposure time. In fact, as the initial dye
concentration rises, the number of adsorbed dye molecules on the surface of the PbS-SiNWs
increases. Therefore, dye molecules occupy more and more active sites on the surface
PbS-SiNWs catalyst. At a certain critical dye concentration most of active sites are occupied,
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leading to the degradation of most of dye. Beyond this critical concentration, active sites
are saturated, and the un-adsorbed molecules control the photodegradation kinetics, thus
reducing the reaction rate and then delaying the degradation process.
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catalyst for different volume concentration (0.2% 0.4% 0.6%, and 0.8%).

The effect of SiNWs length catalyst on the photocatalytic activity, degradation of a
fixed concentration of BA-dye solution was carried out using 20, 30, 40, and 50 min of
SiNWs etching time formation for a period of 7 h. It was found through this experiment
that SiNWs of 20 min yields better photocatalytic degradation compared to other samples.
This result may be due to the rise of the specific surface area, which plays a significant
role in photocatalysis activity. Figure 14 depicts the evolution of the constant kinetic k of
PbS/SiNWs (20, 30, 40, and 50 min).
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Figure 14 shows the PbS/SiNWs sample kinetics curve for 20, 30, 40, and 50 min SiNWs
etching time formation. The reaction rate constant k is calculated using the first-order
reaction rate constant. Knowing that the higher k is, the faster the reaction rate is. The results
show that the reaction rate constant k of PbS/SiNWs sample for 20 is 5.7 × 10−3 min−1,
which is 3 times higher than PbS/SiNWs sample for 50 (1.9 × 10−3 min−1) and 1.6 higher
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than PbS/SiNWs sample for 40 (3.5 × 10−3 min−1) and 1.3 higher than PbS/SiNWs sample
for 30 (4.5 × 10−3 min−1).

4. Conclusions

This work investigated the effect of Si-NWs construction and their decoration us-
ing PbS nanoparticles on the optical, optoelectronic, and photodegradation properties.
PbS-nanoparticles decorating SiNWs were applied for wastewater treatment. It has been
attested that the PbS/SiNWs nanohybrids decrease the reflectivity, passivate the surface of
the silicon substrate, and enhance the lifetime of the minority carriers. For photocatalytic
application, the PbS/SiNWs nanohybrids exhibited promising photocatalytic activity. Al-
most total degradation of BA-dye was achieved in the presence of PbS/SiNWs nanohybrids
catalyst under a UV irradiation period of 420 min. This result indicates that the PbS/SiNWs
are an excellent candidate for the efficient degradation of organic dyes in wastewater.
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