Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Li-doped zinc oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3885 KiB  
Article
A Pathway to Circular Economy-Converting Li-Ion Battery Recycling Waste into Graphite/rGO Composite Electrocatalysts for Zinc–Air Batteries
by Reio Praats, Jani Sainio, Milla Vikberg, Lassi Klemettinen, Benjamin P. Wilson, Mari Lundström, Ivar Kruusenberg and Kerli Liivand
Batteries 2025, 11(4), 165; https://doi.org/10.3390/batteries11040165 - 21 Apr 2025
Viewed by 1134
Abstract
Li-ion batteries (LIBs) are one of the most deployed energy storage technologies worldwide, providing power for a wide range of applications—from portable electronic devices to electric vehicles (EVs). The growing demand for LIBs, coupled with a shortage of critical battery materials, has prompted [...] Read more.
Li-ion batteries (LIBs) are one of the most deployed energy storage technologies worldwide, providing power for a wide range of applications—from portable electronic devices to electric vehicles (EVs). The growing demand for LIBs, coupled with a shortage of critical battery materials, has prompted the scientific community to seek ways to improve material utilization through the recycling of end-of-life LIBs. While valuable battery metals are already being recycled on an industrial scale, graphite—a material classified as a critical resource—continues to be discarded. In this study, graphite waste recovered from the recycling of LIBs was successfully upcycled into an active graphite/rGO (reduced graphene oxide) composite oxygen electrocatalyst. The precursor graphite for rGO synthesis was also extracted from LIBs. Incorporating rGO into the graphite significantly enhanced the specific surface area and porosity of the resulting composite, facilitating effective doping with residual metals during subsequent nitrogen doping via pyrolysis. These composite catalysts enhanced both the oxygen reduction and oxygen evolution reactions, enabling their use as air electrode catalyst materials in zinc–air batteries (ZABs). The best-performing composite catalyst demonstrated an impressive power density of 100 mW cm−2 and exceptional cycling stability for 137 h. This research further demonstrates the utilization of waste fractions from LIB recycling to drive advancements in energy conversion technologies. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Graphical abstract

13 pages, 5766 KiB  
Article
First Principles Study of p-Type Transition and Enhanced Optoelectronic Properties of g-ZnO Based on Diverse Doping Strategies
by Kaiqi Bao, Yanfang Zhao, Wei Ding, Yuanbin Xiao and Bing Yang
Nanomaterials 2024, 14(23), 1863; https://doi.org/10.3390/nano14231863 - 21 Nov 2024
Cited by 1 | Viewed by 927
Abstract
By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into [...] Read more.
By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into the effects of strategies such as single-acceptor doping, double-acceptor co-doping, and donor–acceptor co-doping on the properties of g-ZnO. This study found that single-acceptor doping with Li and Ag elements can form shallow acceptor levels, thereby facilitating p-type conductivity. Furthermore, the introduction of the donor element F can compensate for the deep acceptor levels formed by double-acceptor co-doping, transforming them into shallow acceptor levels and modulating the energy band structure. The co-doping strategy involving double-acceptor elements and a donor element further optimizes the properties of g-ZnO, such as reducing the bandgap and enhancing carrier mobility. Additionally, in terms of optical properties, g-Zn14Li2FO15 demonstrates outstanding performance in the visible-light region compared with other doping systems, especially generating a higher absorption peak around the wavelength of 520 nm. These findings provide a theoretical foundation for the application of g-ZnO in optoelectronic devices. Full article
Show Figures

Graphical abstract

19 pages, 19649 KiB  
Article
Reduced Graphene Oxide Embedded with ZnS Nanoparticles as Catalytic Cathodic Material for Li-S Batteries
by Roberto Colombo, Daniele Versaci, Julia Amici, Federico Bella, Maria Laura Para, Nadia Garino, Marco Laurenti, Silvia Bodoardo and Carlotta Francia
Nanomaterials 2023, 13(14), 2149; https://doi.org/10.3390/nano13142149 - 24 Jul 2023
Cited by 18 | Viewed by 4055
Abstract
Lithium-sulfur technology is a strong candidate for the future generation of batteries due to its high specific capacity (1675 mAh g1), low cost, and environmental impact. In this work, we propose a facile and solvent-free microwave synthesis for a composite [...] Read more.
Lithium-sulfur technology is a strong candidate for the future generation of batteries due to its high specific capacity (1675 mAh g1), low cost, and environmental impact. In this work, we propose a facile and solvent-free microwave synthesis for a composite material based on doped (sulfur and nitrogen) reduced graphene oxide embedded with zinc sulfide nanoparticles (SN-rGO/ZnS) to improve the battery performance. The chemical-physical characterization (XRD, XPS, FESEM, TGA) confirmed the effectiveness of the microwave approach in synthesizing the composite materials and their ability to be loaded with sulfur. The materials were then thoroughly characterized from an electrochemical point of view (cyclic voltammetry, galvanostatic cycling, Tafel plot, electrochemical impedance spectroscopy, and Li2S deposition test); the SN-rGO/ZnS/S8 cathode showed a strong affinity towards polysulfides, thus reducing their loss by diffusion and improving redox kinetics, allowing for faster LiPSs conversion. In terms of performance, the composite-based cathode increased the specific capacity at high rate (1 C) from 517 to 648 mAh g1. At the same time, more stable behavior was observed at 0.5 C with capacity retention at the 750th cycle, where it was raised from 32.5% to 48.2%, thus confirming the beneficial effect of the heteroatomic doping process and the presence of zinc sulfide nanoparticles. Full article
(This article belongs to the Special Issue Sulfur Based Nanomaterials for Secondary Batteries)
Show Figures

Figure 1

27 pages, 3869 KiB  
Review
Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade
by Mariuca Gartner, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2023, 28(12), 4674; https://doi.org/10.3390/molecules28124674 - 9 Jun 2023
Cited by 36 | Viewed by 6785
Abstract
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding [...] Read more.
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We mainly followed the results of studies of the last ten years through chemical routes, especially by sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for developing multifunctional materials with various applications. ZnO can be used for the deposition of thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO). Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li, Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells, and photoluminescence applications. Its versatility is the main message of this review. Full article
Show Figures

Figure 1

15 pages, 3618 KiB  
Article
Electrocatalytic Degradation of Rhodamine B Using Li-Doped ZnO Nanoparticles: Novel Approach
by Vanga Ganesh, Bandapelli Ravi Kumar, Thekrayat. H. AlAbdulaal, Ibrahim. S. Yahia, Mohamed Sh. Abdel-wahab, Ramesh Ade, Mai S. A. Hussien and Mohamed Keshway
Materials 2023, 16(3), 1177; https://doi.org/10.3390/ma16031177 - 30 Jan 2023
Cited by 9 | Viewed by 2353
Abstract
In this paper, we discuss the preparation of Li-doped ZnO nanostructures through combustion and report on their structural, morphological, optical, and electrocatalysis properties. X-ray diffraction analyses show that the samples have a structure crystallized into the usual hexagonal wurtzite ZnO structure according to [...] Read more.
In this paper, we discuss the preparation of Li-doped ZnO nanostructures through combustion and report on their structural, morphological, optical, and electrocatalysis properties. X-ray diffraction analyses show that the samples have a structure crystallized into the usual hexagonal wurtzite ZnO structure according to the P63mc space group. The scanning electron microscope images conceal all samples’ nanosphere bundles and aggregates. The reflectance spectra analysis showed that the direct bandgap values varied from 3.273 eV (for pure ZnO, i.e., ZnL1) to 3.256 eV (for high Li-doped ZnO). The measured capacitance concerning frequency has estimated the variation of dielectric constant, dielectric loss, and AC conductivity against AC electric field frequency. The dielectric constant variations and AC conductivity are analyzed and discussed by well-known models such as Koop’s phenomenological theory and Jonscher’s law. The Raman spectra have been recorded and examined for the prepared samples. Rhodamine B was electro-catalytically degraded in all prepared samples, with the fastest time for ZnL5 being 3 min. Full article
(This article belongs to the Special Issue New Advances in Low-Dimensional Materials and Nanostructures II)
Show Figures

Figure 1

23 pages, 38288 KiB  
Article
Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells
by Sunil Chauhan, Ankit Kumar, Soumya Pandit, Anusha Vempaty, Manoj Kumar, Bhim Sen Thapa, Nishant Rai and Shaik Gouse Peera
Membranes 2023, 13(1), 55; https://doi.org/10.3390/membranes13010055 - 2 Jan 2023
Cited by 20 | Viewed by 3078
Abstract
The current study investigated the development and application of lithium (Li)-doped zinc oxide (ZnO)-impregnated polyvinyl alcohol (PVA) proton exchange membrane separator in a single chambered microbial fuel cell (MFC). Physiochemical analysis was performed via FT-IR, XRD, TEM, and AC impedance analysis to characterize [...] Read more.
The current study investigated the development and application of lithium (Li)-doped zinc oxide (ZnO)-impregnated polyvinyl alcohol (PVA) proton exchange membrane separator in a single chambered microbial fuel cell (MFC). Physiochemical analysis was performed via FT-IR, XRD, TEM, and AC impedance analysis to characterize thus synthesized Li-doped ZnO. PVA-ZnO-Li with 2.0% Li incorporation showed higher power generation in MFC. Using coulombic efficiency and current density, the impact of oxygen crossing on the membrane cathode assembly (MCA) area was evaluated. Different amounts of Li were incorporated into the membrane to optimize its electrochemical behavior and to increase proton conductivity while reducing biofouling. When acetate wastewater was treated in MFC using a PVA-ZnO-Li-based MCA, the maximum power density of 6.3 W/m3 was achieved. These observations strongly support our hypothesis that PVA-ZnO-Li can be an efficient and affordable separator for MFC. Full article
(This article belongs to the Special Issue Membranes for Resource Recovery in Bioelectrochemical Systems)
Show Figures

Figure 1

16 pages, 3007 KiB  
Article
Heterogeneous Electro-Fenton-like Designs for the Disposal of 2-Phenylphenol from Water
by Antía Fdez-Sanromán, Rocío Martinez-Treinta, Marta Pazos, Emilio Rosales and María Ángeles Sanromán
Appl. Sci. 2021, 11(24), 12103; https://doi.org/10.3390/app112412103 - 19 Dec 2021
Cited by 10 | Viewed by 3484
Abstract
The hunt for efficient and environmentally friendly degradation processes has positioned the heterogeneous advanced oxidation processes as an alternative more interesting and economical rather than homogenous processes. Hence, the current study lies in investigating the efficiency of different heterogeneous catalysts using transition metals [...] Read more.
The hunt for efficient and environmentally friendly degradation processes has positioned the heterogeneous advanced oxidation processes as an alternative more interesting and economical rather than homogenous processes. Hence, the current study lies in investigating the efficiency of different heterogeneous catalysts using transition metals in order to prevent the generation of iron sludge and to extend the catalogue of possible catalysts to be used in advanced oxidation processes. In this study, nickel and zinc were tested and the ability for radical-generation degradation capacity of both ions as homogeneous was evaluated in the electro-Fenton-like degradation of 2-phenylphenol. In both cases, the degradation profiles followed a first-order kinetic model with the highest degradation rate for nickel (1 mM) with 2-phenylphenol removal level of 90.12% and a total organic reduction near 70% in 2 h. To synthesise the heterogeneous nickel catalyst, this transition metal was fixed on perlite by hydrothermal treatment and in a biochar or carbon nanofibers by adsorption. From the removal results using the three synthesized catalysts, it is concluded that the best catalysts were obtained by inclusion of nickel on biochar or nanofibers achieving in both with removal around 80% before 1 h. Thus, to synthetize a nickel electrocatalyst, nickel doped nanofibers were included on carbon felt. To do this, the amount of carbon black, nickel nanofibers and polytetrafluoroethylene to add on the carbon felt was optimized by Taguchi design. The obtained results revealed that under the optimised conditions, a near-complete removal was achieved after 2 h with high stability of the nickel electrocatalyst that open the applicability of this heterogeneous system to operate in flow systems. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

12 pages, 2984 KiB  
Article
New Approaches to Increasing the Superhydrophobicity of Coatings Based on ZnO and TiO2
by Arsen E. Muslimov, Makhach Kh. Gadzhiev and Vladimir M. Kanevsky
Coatings 2021, 11(11), 1369; https://doi.org/10.3390/coatings11111369 - 8 Nov 2021
Cited by 6 | Viewed by 2780
Abstract
The work presented is devoted to new approaches to increasing the superhydrophobic properties of coatings based on zinc oxide (ZnO) and titanium dioxide (TiO2). There is an innovation in the use of inorganic coatings with a non-polar structure, high melting point, [...] Read more.
The work presented is devoted to new approaches to increasing the superhydrophobic properties of coatings based on zinc oxide (ZnO) and titanium dioxide (TiO2). There is an innovation in the use of inorganic coatings with a non-polar structure, high melting point, and good adhesion to ZnO, in contrast to the traditionally used polymer coatings with low performance characteristics. The maximum superhydrophobicity of the ZnO surface (contact angle of 173°) is achieved after coating with a layer of hematite (Fe2O3). The reason for the abnormally high hydrophobicity is a combination of factors: minimization of the area of contact with water (Cassie state) and the specific microstructure of a coating with a layer of non-polar Fe2O3. It was shown that the coating of ZnO structures with bimodal roughness with a gold (Au) layer that is 60-nm thick leads to an increase in the wetting contact angle from 145° to 168°. For clean surfaces of Au and hematite Fe2O3 films, the contact angle wets at no more than 70°. In the case of titanium oxide coatings, what is new lies in the method of controlled synthesis of a coating with a given crystal structure and a level of doping with nitrogen using plasma technologies. It has been shown that the use of nitrogen plasma in an open atmosphere with different compositions (molecular, atomic) makes it possible to obtain both a hydrophilic (contact angle of 73°) and a highly hydrophobic surface (contact angle of 150°). Full article
(This article belongs to the Special Issue Superhydrophobic and Superoleophobic Surfaces)
Show Figures

Figure 1

14 pages, 3758 KiB  
Article
Stability of Quantum-Dot Light Emitting Diodes with Alkali Metal Carbonates Blending in Mg Doped ZnO Electron Transport Layer
by Hyo-Min Kim, Wonkyeong Jeong, Joo Hyun Kim and Jin Jang
Nanomaterials 2020, 10(12), 2423; https://doi.org/10.3390/nano10122423 - 4 Dec 2020
Cited by 6 | Viewed by 4200
Abstract
We report here the fabrication of highly efficient and long-lasting quantum-dot light emitting diodes (QLEDs) by blending various alkali metal carbonate in magnesium (Mg) doped zinc oxide (ZnO) (MZO) electron transport layer (ETL). Alkali metal carbonates blending in MZO, X2CO3 [...] Read more.
We report here the fabrication of highly efficient and long-lasting quantum-dot light emitting diodes (QLEDs) by blending various alkali metal carbonate in magnesium (Mg) doped zinc oxide (ZnO) (MZO) electron transport layer (ETL). Alkali metal carbonates blending in MZO, X2CO3:MZO, control the band-gap, electrical properties, and thermal stability. This can therefore enhance the operational lifetime of QLEDs. It is found that the conductivity of X2CO3:MZO film can be controlled and the thermal stability of ETLs could be improved by X2CO3 blending in MZO. The inverted red QLEDs (R-QLEDs) with Cs2CO3:MZO, Rb2CO3:MZO, and K2CO3:MZO ETLs exhibited the operational lifetime of 407 h for the R-QLEDs with Cs2CO3:MZO, 620 h with Rb2CO3:MZO and 94 h with K2CO3:MZO ETLs at T95 with the initial luminance of 1000 cd/m2. Note that all red QLEDs showed the high brightness over 150,000 cd/m2. But the R-QLEDs with Na2CO3:MZO and Li2CO3:MZO ETLs exhibited shorter operational lifetime and poor brightness than the R-QLED with pristine MZO ETL. Full article
Show Figures

Graphical abstract

11 pages, 2940 KiB  
Article
ZnO Nanoparticles Anchored on a N-Doped Graphene-Coated Separator for High Performance Lithium/Sulfur Batteries
by Suyu Wang, Fan Gao, Ruina Ma, An Du, Taizhe Tan, Miao Du, Xue Zhao, Yongzhe Fan and Ming Wen
Metals 2018, 8(10), 755; https://doi.org/10.3390/met8100755 - 25 Sep 2018
Cited by 14 | Viewed by 3564
Abstract
Fabrication of a nanocrystalline zinc oxide (ZnO)/nitrogen-doped graphene (NDG) composite using a novel and facile in situ sol-gel technique is demonstrated in this study. A two-dimensional nanostructured morphology with uniform ZnO nanoparticles (average diameter of 10 ± 4 nm) anchored on NDG nanosheets [...] Read more.
Fabrication of a nanocrystalline zinc oxide (ZnO)/nitrogen-doped graphene (NDG) composite using a novel and facile in situ sol-gel technique is demonstrated in this study. A two-dimensional nanostructured morphology with uniform ZnO nanoparticles (average diameter of 10 ± 4 nm) anchored on NDG nanosheets was observed via electron microscopy. The polar heteroatoms on the graphene sheets provided abundant sites for polysulfide absorption. More importantly, the strong chemical interaction between ZnO and polysulfides efficiently hindered the transport of polysulfides. Consequently, the lithium/sulfur (Li/S) battery with the ZnO/NDG composite-coated separator exhibited enhanced performance in terms of discharge capacity and cycling stability compared to the cell with a conventional separator. With the modified separator, the Li/S battery achieved a discharge capacity of 942 mAh·g−1 after the first cycle and exhibited a capacity retention of 90.02% after the 200th charge/discharge test at 0.1 C. These results indicate that suppression of the shuttling of polysulfides efficiently improves the performance of the Li/S battery. Full article
Show Figures

Figure 1

13 pages, 8258 KiB  
Article
Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells
by Chen Xia, Zheng Qiao, Chu Feng, Jung-Sik Kim, Baoyuan Wang and Bin Zhu
Materials 2018, 11(1), 40; https://doi.org/10.3390/ma11010040 - 28 Dec 2017
Cited by 81 | Viewed by 9152
Abstract
Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)—a legacy material in semiconductors but exceptionally novel to solid state ionics—are developed [...] Read more.
Semiconducting-ionic conductors have been recently described as excellent electrolyte membranes for low-temperature operation solid oxide fuel cells (LT-SOFCs). In the present work, two new functional materials based on zinc oxide (ZnO)—a legacy material in semiconductors but exceptionally novel to solid state ionics—are developed as membranes in SOFCs for the first time. The proposed ZnO and ZnO-LCP (La/Pr doped CeO2) electrolytes are respectively sandwiched between two Ni0.8Co0.15Al0.05Li-oxide (NCAL) electrodes to construct fuel cell devices. The assembled ZnO fuel cell demonstrates encouraging power outputs of 158–482 mW cm−2 and high open circuit voltages (OCVs) of 1–1.06 V at 450–550 °C, while the ZnO-LCP cell delivers significantly enhanced performance with maximum power density of 864 mW cm−2 and OCV of 1.07 V at 550 °C. The conductive properties of the materials are investigated. As a consequence, the ZnO electrolyte and ZnO-LCP composite exhibit extraordinary ionic conductivities of 0.09 and 0.156 S cm−1 at 550 °C, respectively, and the proton conductive behavior of ZnO is verified. Furthermore, performance enhancement of the ZnO-LCP cell is studied by electrochemical impedance spectroscopy (EIS), which is found to be as a result of the significantly reduced grain boundary and electrode polarization resistances. These findings indicate that ZnO is a highly promising alternative semiconducting-ionic membrane to replace the electrolyte materials for advanced LT-SOFCs, which in turn provides a new strategic pathway for the future development of electrolytes. Full article
(This article belongs to the Special Issue Zinc Oxide Nanostructures: Synthesis and Characterization)
Show Figures

Figure 1

12 pages, 1001 KiB  
Article
Codoping and Interstitial Deactivation in the Control of Amphoteric Li Dopant in ZnO for the Realization of p-Type TCOs
by Alessandra Catellani and Arrigo Calzolari
Materials 2017, 10(4), 332; https://doi.org/10.3390/ma10040332 - 23 Mar 2017
Cited by 14 | Viewed by 4927
Abstract
We report on first principle investigations about the electrical character of Li-X codoped ZnO transparent conductive oxides (TCOs). We studied a set of possible X codopants including either unintentional dopants typically present in the system (e.g., H, O) or monovalent acceptor groups, based [...] Read more.
We report on first principle investigations about the electrical character of Li-X codoped ZnO transparent conductive oxides (TCOs). We studied a set of possible X codopants including either unintentional dopants typically present in the system (e.g., H, O) or monovalent acceptor groups, based on nitrogen and halogens (F, Cl, I). The interplay between dopants and structural point defects in the host (such as vacancies) is also taken explicitly into account, demonstrating the crucial effect that zinc and oxygen vacancies have on the final properties of TCOs. Our results show that Li-ZnO has a p-type character, when Li is included as Zn substitutional dopant, but it turns into an n-type when Li is in interstitial sites. The inclusion of X-codopants is considered to deactivate the n-type character of interstitial Li atoms: the total Li-X compensation effect and the corresponding electrical character of the doped compounds selectively depend on the presence of vacancies in the host. We prove that LiF-doped ZnO is the only codoped system that exhibits a p-type character in the presence of Zn vacancies. Full article
(This article belongs to the Special Issue Advances in Transparent Conducting Materials)
Show Figures

Figure 1

Back to TopTop