Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Larsen C ice shelf

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 35329 KiB  
Article
Evolution of Iceberg A68 since Its Inception from the Collapse of Antarctica’s Larsen C Ice Shelf Using Sentinel-1 SAR Data
by Shivangini Singh, Shashi Kumar and Navneet Kumar
Sustainability 2023, 15(4), 3757; https://doi.org/10.3390/su15043757 - 18 Feb 2023
Cited by 6 | Viewed by 3315
Abstract
This research focuses on the evolution of the largest iceberg A68 and analyzes the trajectory using Sentinel-1 SAR data. The monitoring began when A68 calved Larsen C Ice shelf on 12 July 2017, and ended on 1 February 2021. A total of 47 [...] Read more.
This research focuses on the evolution of the largest iceberg A68 and analyzes the trajectory using Sentinel-1 SAR data. The monitoring began when A68 calved Larsen C Ice shelf on 12 July 2017, and ended on 1 February 2021. A total of 47 images were analyzed and studied to ascertain the changes in the area, trajectory and the factors that might have influenced said changes. The big size of the iceberg caught the scientific community’s attention when it started moving towards South Georgia Island, a habitat of penguins and seals. The pattern of decrease and increase in the iceberg’s size was analyzed and compared with the surrounding sea ice extent to account for longitudinal stretching and shrinkage. Iceberg’s trajectory was also studied to take into account the underlying seabed and ice rises, and their implication on A68’s maneuverability, giving rise to unique motions in the coastal regime. Two subsequent calving events in the iceberg were distinctly observed in March 2019 and April 2020. Since its inception up to December 2019, its drift was fairly gradual, with the pick up in pace observed upon its entry into open waters and departure from the peninsular region. The decrease in size was also fairly gradual with only two main calving events, as mentioned above. The cold water and sea ice surrounding the iceberg potentially helped maintain a steady state. Post its sojourn into the Southern Ocean, major calving began in December 2020 and continued through January 2021. This study explores the potential of SAR remote sensing in iceberg monitoring and tracking. Full article
Show Figures

Figure 1

28 pages, 3343 KiB  
Article
Antarctic Seabed Assemblages in an Ice-Shelf-Adjacent Polynya, Western Weddell Sea
by Bétina A. V. Frinault, Frazer D. W. Christie, Sarah E. Fawcett, Raquel F. Flynn, Katherine A. Hutchinson, Chloë M. J. Montes Strevens, Michelle L. Taylor, Lucy C. Woodall and David K. A. Barnes
Biology 2022, 11(12), 1705; https://doi.org/10.3390/biology11121705 - 25 Nov 2022
Cited by 2 | Viewed by 3405
Abstract
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting [...] Read more.
Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management. Full article
(This article belongs to the Special Issue Polar Ecosystem: Response of Organisms to Changing Climate)
Show Figures

Figure 1

12 pages, 4600 KiB  
Article
Decadal Scale Variability of Larsen Ice Shelf Melt Captured by Antarctic Peninsula Ice Core
by B. Daniel Emanuelsson, Elizabeth R. Thomas, Jack D. Humby and Diana O. Vladimirova
Geosciences 2022, 12(9), 344; https://doi.org/10.3390/geosciences12090344 - 16 Sep 2022
Cited by 1 | Viewed by 2068
Abstract
In this study, we used the stable water isotope record (δ18O) from an ice core drilled in Palmer Land, southern Antarctic Peninsula (AP). Utilizing δ18O we identified two climate regimes during the satellite era. During the 1979–1998 positive interdecadal [...] Read more.
In this study, we used the stable water isotope record (δ18O) from an ice core drilled in Palmer Land, southern Antarctic Peninsula (AP). Utilizing δ18O we identified two climate regimes during the satellite era. During the 1979–1998 positive interdecadal Pacific oscillation (IPO) phase, a low-pressure system north of the Weddell Sea drove southeasterly winds that are associated with an increase in warm air mass intrusion onto the Larsen shelves, which melted and a decreased sea ice concentration in the Weddell Sea/increase in the Bellingshausen Sea. This climate setting is associated with anomaly low δ18O values (compared with the latter IPO period). There is significantly more melt along the northern AP ice shelf margins and on the Larsen D and southern Larsen C during the 1979–1998 IPO positive phase. The IPO positive climatic setting was coincidental with the Larsen A ice shelf collapse. In contrast, during the IPO negative phase (1999–2011), northerly winds caused a reduction in sea ice in the Bellingshausen Sea/Drake Passage region. Moreover, a Southern Ocean north of the Weddell Sea high-pressure system caused low-latitude warm humid air over the tip and east of the AP, a setting that is associated with increased northern AP snowfall, a high δ18O anomaly, and less prone to Larsen ice shelf melt. Full article
(This article belongs to the Special Issue Water Stable Isotope Signatures in the Ice of Antarctica)
Show Figures

Figure 1

15 pages, 18978 KiB  
Article
Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data
by Faming Gong, Kui Zhang and Shujun Liu
Remote Sens. 2021, 13(12), 2361; https://doi.org/10.3390/rs13122361 - 17 Jun 2021
Cited by 2 | Viewed by 2377
Abstract
The Larsen C Ice Shelf (LCIS) is the largest ice shelf in the Antarctica Peninsula, and its state can be considered to be an indicator of local climate change. The goal of this paper is to invert the rigidity of the LCIS based [...] Read more.
The Larsen C Ice Shelf (LCIS) is the largest ice shelf in the Antarctica Peninsula, and its state can be considered to be an indicator of local climate change. The goal of this paper is to invert the rigidity of the LCIS based on the interferometric synthetic aperture radar (InSAR) technique using Sentinel-1 images. A targeted processing chain is first used to obtain reliable interferometric phase measurements under the circumstance of rapid ice flow. Unfortunately, only the descending data are available, which disallows the corresponding 2-D velocity field to be directly obtained from such measurements. A new approach is thus proposed to estimate the interferometric phase-based 2-D velocity field with the assistance of speckle tracking offsets. This approach establishes an implicit relationship between range and azimuth displacements based on speckle tracking observations. By taking advantage of such a relationship, the equivalent interferometric signals in the azimuth direction are estimated, thereby recovering the interferometric phase-based 2-D ice velocity field of the LCIS. To further investigate the state of the LCIS, the recovered 2-D velocity field is utilized to invert the ice rigidity. The shallow-shelf approximation (SSA) is the core of the reverse model, which is closely dependent on boundary conditions, including kinematic and dynamic conditions. The experimental results demonstrate that the spatial distribution of the rigidity varies approximately from 70 MPa·s1/3 to 300 MPa·s1/3. This rigidity distribution can reproduce a similar ice flow pattern to the observations. Full article
(This article belongs to the Special Issue Geodetic Monitoring for Land Deformation)
Show Figures

Graphical abstract

13 pages, 1609 KiB  
Technical Note
On the Detection and Long-Term Path Visualisation of A-68 Iceberg
by Ludwin Lopez-Lopez, Flavio Parmiggiani, Miguel Moctezuma-Flores and Lorenzo Guerrieri
Remote Sens. 2021, 13(3), 460; https://doi.org/10.3390/rs13030460 - 28 Jan 2021
Cited by 8 | Viewed by 3119
Abstract
The article presents a methodology for examining a temporal sequence of synthetic aperture radar (SAR) images, as applied to the detection of the A-68 iceberg and its drifting trajectory. Using an improved image processing scheme, the analysis covers a period of eighteen months [...] Read more.
The article presents a methodology for examining a temporal sequence of synthetic aperture radar (SAR) images, as applied to the detection of the A-68 iceberg and its drifting trajectory. Using an improved image processing scheme, the analysis covers a period of eighteen months and makes use of a set of Sentinel-1 images. A-68 iceberg calved from the Larsen C ice shelf in July 2017 and is one of the largest icebergs observed by remote sensing on record. After the calving, there was only a modest decrease in the area (about 1%) in the first six months. It has been drifting along the east coast of the Antarctic Peninsula, and is expected to continue its path for more than a decade. It is important to track the huge A-68 iceberg to retrieve information on the physics of iceberg dynamics and for maritime security reasons. Two relevant problems are addressed by the image processing scheme presented here: (a) How to achieve quasi-automatic analysis using a fuzzy logic approach to image contrast enhancement, and (b) The use of ferromagnetic concepts to define a stochastic segmentation. The Ising equation is used to model the energy function of the process, and the segmentation is the result of a stochastic minimization. Full article
(This article belongs to the Special Issue Remote Sensing of the Polar Oceans)
Show Figures

Graphical abstract

12 pages, 2110 KiB  
Article
Clay Mineralogical Characteristics of Sediments Deposited during the Late Quaternary in the Larsen Ice Shelf B Embayment, Antarctica
by Jaewoo Jung, Kyu-Cheul Yoo, Kee-Hwan Lee, Young Kyu Park, Jae Il Lee and Jinwook Kim
Minerals 2019, 9(3), 153; https://doi.org/10.3390/min9030153 - 3 Mar 2019
Cited by 13 | Viewed by 4979
Abstract
Variations in grain size, clay mineral composition, and stable isotopes (δ13C and δ15N) are closely linked to the sedimentary facies that reflect mineralogical and geochemical modification during the retreat and advance of the Larsen ice shelf. A whole round [...] Read more.
Variations in grain size, clay mineral composition, and stable isotopes (δ13C and δ15N) are closely linked to the sedimentary facies that reflect mineralogical and geochemical modification during the retreat and advance of the Larsen ice shelf. A whole round core of marine sediment (EAP13-GC17, 236 cm below the sea floor) was collected on the northwestern Larsen B embayment of the Antarctic Peninsula during a marine geological expedition (the ARA13 Cruise Expedition by the Korea Polar Research Institute, 2013). Four sedimentary facies (U1–U4) were clearly distinguishable: bioturbated sandy mud (open marine, U1), laminated sandy mud (sub–floating ice shelf, U2), sandy clay aggregates (deglacial, U3), and muddy diamictons (sub-glacial, U4), as well as interbedded silty. Clay minerals, including smectite, chlorite, illite, and kaolinite, were detected throughout the core. An increase in the clay mineral ratio of smectite/(illite + chlorite) was clearly observed in the open marine condition, which was strongly indicated by both a heavier isotopic composition of δ13C and δ15N (−24.4‰ and 4.3‰, respectively), and an abrupt increase in 10Be concentration (~30 times). An increase in the average values of the crystal packet thickness of illite (~1.5 times) in U1 also indicated sediments transported in open marine conditions. Based on the clay mineral composition in U1, the sediments are likely to have been transported from the Weddell Sea. The clay mineralogical assessments conducted in this region have significant implications for our understanding of paleodepositional environments. Full article
(This article belongs to the Special Issue Clays and Micro-Organisms: From Nature to Industry)
Show Figures

Figure 1

14 pages, 4073 KiB  
Article
Changes in a Giant Iceberg Created from the Collapse of the Larsen C Ice Shelf, Antarctic Peninsula, Derived from Sentinel-1 and CryoSat-2 Data
by Hyangsun Han, Sungjae Lee, Jae-In Kim, Seung Hee Kim and Hyun-cheol Kim
Remote Sens. 2019, 11(4), 404; https://doi.org/10.3390/rs11040404 - 17 Feb 2019
Cited by 23 | Viewed by 6577
Abstract
The giant tabular iceberg A68 broke away from the Larsen C Ice Shelf, Antarctic Peninsula, in July 2017. The evolution of A68 would have been affected by both the Larsen C Ice Shelf, the surrounding sea ice, and the nearby shallow seafloor. In [...] Read more.
The giant tabular iceberg A68 broke away from the Larsen C Ice Shelf, Antarctic Peninsula, in July 2017. The evolution of A68 would have been affected by both the Larsen C Ice Shelf, the surrounding sea ice, and the nearby shallow seafloor. In this study, we analyze the initial evolution of iceberg A68A—the largest originating from A68—in terms of changes in its area, drift speed, rotation, and freeboard using Sentinel-1 synthetic aperture radar (SAR) images and CryoSat-2 SAR/Interferometric Radar Altimeter observations. The area of iceberg A68A sharply decreased in mid-August 2017 and mid-May 2018 via large calving events. In September 2018, its surface area increased, possibly due to its longitudinal stretching by melting of surrounding sea ice. The decrease in the area of A68A was only 2% over 1.5 years. A68A was relatively stationary until mid-July 2018, while it was surrounded by the Larsen C Ice Shelf front and a high concentration of sea ice, and when its movement was interrupted by the shallow seabed. The iceberg passed through a bay-shaped region in front of the Larsen C Ice Shelf after July 2018, showing a nearly circular motion with higher speed and greater rotation. Drift was mainly inherited from its rotation, because it was still located near the Bawden Ice Rise and could not pass through by the shallow seabed. The freeboard of iceberg A68A decreased at an average rate of −0.80 ± 0.29 m/year during February–November 2018, which could have been due to basal melting by warm seawater in the Antarctic summer and increasing relative velocity of iceberg and ocean currents in the winter of that year. The freeboard of the iceberg measured using CryoSat-2 could represent the returned signal from the snow surface on the iceberg. Based on this, the average rate of thickness change was estimated at −12.89 ± 3.34 m/year during the study period considering an average rate of snow accumulation of 0.82 ± 0.06 m/year predicted by reanalysis data from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The results of this study reveal the initial evolution mechanism of iceberg A68A, which cannot yet drift freely due to the surrounding terrain and sea ice. Full article
(This article belongs to the Special Issue Remote Sensing of Target Detection in Marine Environment)
Show Figures

Graphical abstract

13 pages, 4927 KiB  
Article
A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling
by Jasper M. Wiesenekker, Peter Kuipers Munneke, Michiel R. Van den Broeke and C. J. P. Paul Smeets
Atmosphere 2018, 9(5), 172; https://doi.org/10.3390/atmos9050172 - 5 May 2018
Cited by 28 | Viewed by 5045
Abstract
The southward progression of ice shelf collapse in the Antarctic Peninsula is partially attributed to a strengthening of the circumpolar westerlies and the associated increase in föhn conditions over its eastern ice shelves. We used observations from an automatic weather station at Cabinet [...] Read more.
The southward progression of ice shelf collapse in the Antarctic Peninsula is partially attributed to a strengthening of the circumpolar westerlies and the associated increase in föhn conditions over its eastern ice shelves. We used observations from an automatic weather station at Cabinet Inlet on the northern Larsen C ice shelf between 25 November 2014 and 31 December 2016 to describe föhn dynamics. Observed föhn frequency was compared to the latest version of the regional climate model RACMO2.3p2, run over the Antarctic Peninsula at 5.5-km horizontal resolution. A föhn identification scheme based on observed wind conditions was employed to check for model biases in föhn representation. Seasonal variation in total föhn event duration was resolved with sufficient skill. The analysis was extended to the model period (1979–2016) to obtain a multidecadal perspective of föhn occurrence over Larsen C ice shelf. Föhn occurrence at Cabinet Inlet strongly correlates with near-surface air temperature, and both are found to relate strongly to the location and strength of the Amundsen Sea Low. Furthermore, we demonstrated that föhn occurrence over Larsen C ice shelf shows high variability in space and time. Full article
(This article belongs to the Special Issue Cryosphere in and around Regional Climate Models)
Show Figures

Figure 1

19 pages, 27596 KiB  
Article
Mapping Radar Glacier Zones and Dry Snow Line in the Antarctic Peninsula Using Sentinel-1 Images
by Chunxia Zhou and Lei Zheng
Remote Sens. 2017, 9(11), 1171; https://doi.org/10.3390/rs9111171 - 15 Nov 2017
Cited by 47 | Viewed by 9349
Abstract
Surface snowmelt causes changes in mass and energy balance, and endangers the stabilities of the ice shelves in the Antarctic Peninsula (AP). The dynamic changes of the snow and ice conditions in the AP were observed by Sentinel-1 images with a spatial resolution [...] Read more.
Surface snowmelt causes changes in mass and energy balance, and endangers the stabilities of the ice shelves in the Antarctic Peninsula (AP). The dynamic changes of the snow and ice conditions in the AP were observed by Sentinel-1 images with a spatial resolution of 40 m in this study. Snowmelt detected by the special sensor microwave/imager (SSM/I) is used to study the relationship between summer snowmelt and winter synthetic aperture radar (SAR) backscatter. Radar glacier zones (RGZs) classifications were conducted based on their differences in liquid snow content, snow grain size, and the relative elevations. We developed a practical method based on the simulations of a microwave scattering model to classify RGZs by using Sentinel-1 images in the AP. The summer snowmelt detected by SSM/I and Sentinel-1 data are compared between 2014 and 2015. The SSM/I-derived melting days is used to validate the winter dry snow line (DSL). RGZs derived from Sentinel-1 images suggest that snowmelt expanded from inland of the Larsen C Ice Shelf to the coastal area, whereas an opposite direction was found in the George VI Ice Shelf. The long melting season in the grounding zone of the Larsen C Ice Shelf may result from the adiabatically-dried föhn winds on the east side of the AP. As the uppermost limit of summer snowmelt, DSL was mapped based on the winter Sentinel-1 mosaic of the AP. Compared with the SSM/I-derived melting days, the winter DSL mainly distributed in the areas melted for one to three days in summer. DSL elevations on the Palmer Land increased from south to north. Full article
(This article belongs to the Special Issue Snow Remote Sensing)
Show Figures

Graphical abstract

24 pages, 21980 KiB  
Article
Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity
by Andreas Kääb, Solveig H. Winsvold, Bas Altena, Christopher Nuth, Thomas Nagler and Jan Wuite
Remote Sens. 2016, 8(7), 598; https://doi.org/10.3390/rs8070598 - 15 Jul 2016
Cited by 144 | Viewed by 20919
Abstract
With its temporal resolution of 10 days (five days with two satellites, and significantly more at high latitudes), its swath width of 290 km, and its 10 m and 20 m spatial resolution bands from the visible to the shortwave infrared, the European [...] Read more.
With its temporal resolution of 10 days (five days with two satellites, and significantly more at high latitudes), its swath width of 290 km, and its 10 m and 20 m spatial resolution bands from the visible to the shortwave infrared, the European Sentinel-2 satellites have significant potential for glacier remote sensing, in particular mapping of glacier outlines and facies, and velocity measurements. Testing Level 1C commissioning and ramp-up phase data for initial sensor quality experiences, we find a high radiometric performance, but with slight striping effects under certain conditions. Through co-registration of repeat Sentinal-2 data we also find lateral offset patterns and noise on the order of a few metres. Neither of these issues will complicate most typical glaciological applications. Absolute geo-location of the data investigated was on the order of one pixel at the time of writing. The most severe geometric problem stems from vertical errors of the DEM used for ortho-rectifying Sentinel-2 data. These errors propagate into locally varying lateral offsets in the images, up to several pixels with respect to other georeferenced data, or between Sentinel-2 data from different orbits. Finally, we characterize the potential and limitations of tracking glacier flow from repeat Sentinel-2 data using a set of typical glaciers in different environments: Aletsch Glacier, Swiss Alps; Fox Glacier, New Zealand; Jakobshavn Isbree, Greenland; Antarctic Peninsula at the Larsen C ice shelf. Full article
Show Figures

Graphical abstract

Back to TopTop