Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,262)

Search Parameters:
Keywords = Land Productivity Dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 (registering DOI) - 2 Aug 2025
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 17646 KiB  
Article
An Observational Study of a Severe Squall Line Crossing Hong Kong on 15 March 2025 Based on Radar-Retrieved Three-Dimensional Winds and Flight Data
by Pak-wai Chan, Ying-wa Chan, Ping Cheung and Man-lok Chong
Appl. Sci. 2025, 15(15), 8562; https://doi.org/10.3390/app15158562 (registering DOI) - 1 Aug 2025
Abstract
The present paper reports for the first time the comparison of radar-derived eddy dissipation rate (EDR) and vertical velocity with measurements from six aircraft for an intense squall line crossing Hong Kong. The study objectives are three-fold: (i) to characterise the structural dynamics [...] Read more.
The present paper reports for the first time the comparison of radar-derived eddy dissipation rate (EDR) and vertical velocity with measurements from six aircraft for an intense squall line crossing Hong Kong. The study objectives are three-fold: (i) to characterise the structural dynamics of the intense squall line; (ii) to identify the dynamical change in EDR and vertical velocity during its eastward propagation across Hong Kong with a view to gaining insight into the intensity change of the squall line and the severity of its impact on aircraft flying near it; (iii) to carry out quantitative comparison of EDR and vertical velocity derived from remote sensing instruments, i.e., weather radars and in situ measurements from aircraft, so that the quality of the former dataset can be evaluated by the latter. During the passage of the squall line and taking reference of the radar reflectivity, vertical circulation and the subsiding flow at the rear, it appeared to be weakening in crossing over Hong Kong, possibly due to land friction by terrain and urban morphology. This is also consistent with the maximum gusts recorded by the dense network of ground-based anemometers in Hong Kong. However, from the EDR and the vertical velocity of the aircraft, the weakening trend was not very apparent, and rather severe turbulence was still recorded by the aircraft flying through the squall line into the region with stratiform precipitation when the latter reached the eastern coast of Hong Kong. In general, the radar-based and the aircraft-based EDRs are consistent with each other. The radar-retrieved maximum vertical velocity may be smaller in magnitude at times, possibly arising from the limited spatial and temporal resolutions of the aircraft data. The results of this paper could be a useful reference for the development of radar-based turbulence products for aviation applications. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

27 pages, 6094 KiB  
Article
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
by Junjun Zhi, Chenxu Han, Qiuchen Yan, Wangbing Liu, Likang Zhang, Zuyuan Wang, Xinwu Fu and Haoshan Zhao
Earth 2025, 6(3), 85; https://doi.org/10.3390/earth6030085 (registering DOI) - 1 Aug 2025
Abstract
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and [...] Read more.
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and population) affect simulation outcomes and how the land use spatial configuration impacts the attainment of the carbon-neutrality goal. In this research, 1 km spatial resolution LULC products were employed to meticulously simulate multiple land use scenarios across China at the national level from 2030 to 2060. This was performed by taking into account the dynamic changes in driving factors. Subsequently, an analysis was carried out on the low-carbon land use spatial structure required to reach the carbon-neutrality target. The findings are as follows: (1) When employing the PLUS (Patch—based Land Use Simulation) model to conduct simulations of various land use scenarios in China by taking into account the dynamic alterations in driving factors, a high degree of precision was attained across diverse scenarios. The sustainable development scenario demonstrated the best performance, with kappa, OA, and FoM values of 0.9101, 93.15%, and 0.3895, respectively. This implies that the simulation approach based on dynamic factors is highly suitable for national-scale applications. (2) The simulation accuracy of the PLUS and GeoSOS-FLUS (Systems for Geographical Modeling and Optimization, Simulation of Future Land Utilization) models was validated for six scenarios by extrapolating the trends of influencing factors. Moreover, a set of scenarios was added to each model as a control group without extrapolation. The present research demonstrated that projecting the trends of factors having an impact notably improved the simulation precision of both the PLUS and GeoSOS-FLUS models. When contrasted with the GeoSOS-FLUS model, the PLUS model attained superior simulation accuracy across all six scenarios. The highest precision indicators were observed in the sustainable development scenario, with kappa, OA, and FoM values reaching 0.9101, 93.15%, and 0.3895, respectively. The precise simulation method of the PLUS model, which considers the dynamic changes in influencing factors, is highly applicable at the national scale. (3) Under the sustainable development scenario, it is anticipated that China’s land use carbon emissions will reach their peak in 2030 and achieve the carbon-neutrality target by 2060. Net carbon emissions are expected to decline by 14.36% compared to the 2020 levels. From the perspective of dynamic changes in influencing factors, the PLUS model was used to accurately simulate China’s future land use. Based on these simulations, multi-scenario predictions of future carbon emissions were made, and the results uncover the spatiotemporal evolution characteristics of China’s carbon emissions. This study aims to offer a solid scientific basis for policy-making related to China’s low-carbon economy and high-quality development. It also intends to present Chinese solutions and key paths for achieving carbon peak and carbon neutrality. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 185
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

27 pages, 7520 KiB  
Article
Multifactor Configurational Pathways Driving the Eco-Efficiency of Cultivated Land Utilization in China: A Dynamic Panel QCA
by Zihao Xu, Jialong Duan, Lei Zhan, Chuanmin Yan and Zhigang Huang
Land 2025, 14(8), 1549; https://doi.org/10.3390/land14081549 - 28 Jul 2025
Viewed by 128
Abstract
Cultivated land is fundamental to agricultural production, and the eco-efficiency of cultivated land utilization is widely acknowledged as a crucial indicator for assessing rational land use. Accordingly, this study applies a Super-SBM model with undesirable outputs to evaluate the eco-efficiency of cultivated land [...] Read more.
Cultivated land is fundamental to agricultural production, and the eco-efficiency of cultivated land utilization is widely acknowledged as a crucial indicator for assessing rational land use. Accordingly, this study applies a Super-SBM model with undesirable outputs to evaluate the eco-efficiency of cultivated land utilization (ECLU) across 31 provinces in China utilizing provincial panel data from 2005 to 2023 and further employs dynamic fuzzy-set qualitative comparative analysis to investigate, across spatial and temporal dimensions, how government policy, agricultural technology, socioeconomic conditions, and natural conditions interact to achieve a high ECLU and to elucidate the diverse configurational pathways through which these factors converge to deliver a high ECLU. Our findings demonstrate that the ECLU originates from the joint influence of several factors, and no single factor alone can provide a high level of eco-efficiency. In particular, a high GDP per capita and strong government agricultural expenditure intensity are pivotal for achieving a high ECLU, whereas a low GDP per capita and weak government agricultural expenditure intensity are the core conditions associated with poor eco-efficiency outcomes. We identify three distinct driving pathways that foster a high ECLU: the Economy–Technology–Government Synergistic Pathway, Nature–Economy Dual-Driver Pathway, and Government-Supported Land–Economy Pathway. Between-configuration consistency (BECONS) exhibits no significant temporal effect; however, a constellation of external factors triggered a pronounced, collective reduction in configurational consistency from 2008 to 2014. Regional analysis reveals pronounced heterogeneity: Spatially, the Economy–Technology–Government Synergistic Pathway is concentrated in China’s central and eastern provinces, the Nature–Economy Dual-Driver Pathway clusters mainly in the central belt, and the Government-Supported Land–Economy Pathway predominates in the west. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 208
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

27 pages, 4152 KiB  
Article
Recent Advances in the EAGLE Concept—Monitoring the Earth’s Surface Based on a New Land Characterisation Approach
by Stephan Arnold, Geoffrey Smith, Geir-Harald Strand, Gerard Hazeu, Michael Bock, Barbara Kosztra, Christoph Perger, Gebhard Banko, Tomas Soukup, Nuria Valcarcel Sanz, Stefan Kleeschulte, Julián Delgado Hernández and Emanuele Mancosu
Land 2025, 14(8), 1525; https://doi.org/10.3390/land14081525 - 24 Jul 2025
Viewed by 248
Abstract
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice [...] Read more.
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice of land monitoring on a pan-European level with the formulation of a more consistent and standardised set of modelling criteria. The outcome has been a paradigm shift away from a “paper map”-based world where features are given a single, fixed label to one where features have a rich characterisation which is more informative, flexible and powerful. The approach allows the characteristics to be dynamic so that, over time, a feature may only change part of its description (i.e., a forest can be felled, but it may remain as forestry if replanted) or it can have multiple descriptors (i.e., a forest may be used for both timber production and recreation). The concept proposed by the authors has evolved since 2008 from first drafts to a comprehensive and powerful tool adopted by the European Union’s Copernicus programme. It provides for the semantic decomposition of existing nomenclatures, as well as supports a descriptive approach to the mapping of all landscape features in a flexible and object-oriented manner. In this way, the key move away from classification towards the characterisation of the Earth’s surface represents a novel and innovate approach to handling complex land surface information more suited to the age of distributed databases, cloud computing and object-oriented data modelling. In this paper, the motivation for and technical approach of the EAGLE concept with its matrix and UML model implementation are explained. This is followed by an update of the latest developments and the presentation of a number of experimental and operational use cases at national and European levels, and it then concludes with thoughts on the future outlook. Full article
Show Figures

Figure 1

24 pages, 18590 KiB  
Article
Soil Organic Matter (SOM) Mapping in Subtropical Coastal Mountainous Areas Using Multi-Temporal Remote Sensing and the FOI-XGB Model
by Hao Zhang, Xiaomei Li, Jinming Sha, Jiangning Ouyang and Zhipeng Fan
Remote Sens. 2025, 17(15), 2547; https://doi.org/10.3390/rs17152547 - 22 Jul 2025
Viewed by 185
Abstract
Accurate regional-scale mapping of soil organic matter (SOM) is crucial for land productivity management and global carbon pool monitoring. Current remote sensing inversion of SOM faces challenges, including the underutilization of temporal information and low feature selection efficiency. To address these limitations, this [...] Read more.
Accurate regional-scale mapping of soil organic matter (SOM) is crucial for land productivity management and global carbon pool monitoring. Current remote sensing inversion of SOM faces challenges, including the underutilization of temporal information and low feature selection efficiency. To address these limitations, this study developed an integrated framework combining multi-temporal Landsat imagery, field-measured SOM data, intelligent feature optimization, and machine learning. The framework employs two novel image-processing strategies: the Maximum Annual Bare-Soil Composite (MABSC) method to extract background spectral information and the Multi-temporal Feature Optimization Composite (MFOC) method to capture seasonal and environmental dynamics. These features, along with topographic covariates, were processed using an improved Feature-Optimized and Interpretable XGBoost (FOI-XGB) model for key variable selection and spatial mapping. Validation across two subtropical coastal mountainous regions at different scales in southeastern China demonstrated the framework’s effectiveness and robustness. Key findings include the following: (1) Both the MABSC-derived spectral bands and the MFOC-optimized indices significantly outperformed traditional single-season approaches. Their combined use achieved a moderate SOM inversion accuracy (R2 = 0.42–0.44). (2) The FOI-XGB model substantially outperformed traditional feature selection methods (Pearson, SHAP, and CorrSHAP), achieving significant regional R2 improvements ranging from 9.72% to 88.89%. (3) The optimal model integrating the MABSC-derived features, MFOC-optimized indices, and topographic covariates attained the highest accuracy (R2 up to 0.51). This represents major improvements compared with using topographic covariates alone (R2 increase of up to 160.11%) or the combined spectral features (MABSC + MFOC) alone (R2 increase of up to 15.91%). This study provides a robust, scalable, and practical technical solution for accurate SOM mapping in complex environments, with significant implications for sustainable land management and carbon monitoring. Full article
Show Figures

Figure 1

12 pages, 3056 KiB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Viewed by 169
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 600 KiB  
Article
The Making of the Land Heritage of Religious Missions: A Legacy Between Land Sanctuarization, Ecclesiastical Governmentality, and Territorial (Re)Configurations in Central Africa
by Joël Baraka Akilimali
Heritage 2025, 8(7), 282; https://doi.org/10.3390/heritage8070282 - 18 Jul 2025
Viewed by 324
Abstract
The making of a land patrimony for the benefit of religious missions is profoundly linked to territorial construction in the colonies but is rarely examined from the angle of ecclesiastical governmentality over the ceded lands. This analysis highlights three complementary processes for understanding [...] Read more.
The making of a land patrimony for the benefit of religious missions is profoundly linked to territorial construction in the colonies but is rarely examined from the angle of ecclesiastical governmentality over the ceded lands. This analysis highlights three complementary processes for understanding the role of religious mission land heritage in territorial reconfigurations. First, this article examines the process of “land sanctuarization”, which materializes territorial anchoring through the crystallization of land rights granted to religious missions over customary lands previously presumed to be “vacant”. Next, it explores the formation of an “ecclesiastical dominium”, manifested in the dismantling of state missions and their free transfer, explicit or tacit, to religious missions under concession or agreement regimes. This reveals the exercise of state power over the land heritage of religious missions, positioning them as structuring axes and administrative intermediaries for public services, thus giving rise to an ecclesiastical governmentality that drives territorial production and reconfiguration. Finally, postcolonial dynamics reveal the resurgence of new spatial polarities shaped by the complexity of evolving religious actors along the center–periphery axis of a recomposing territorialization. This study underscores the importance of a transversal approach to better govern the land legacies of religious missions, fostering a pluralistic reterritorialization of postcolonial societies in central Africa. Full article
Show Figures

Figure 1

28 pages, 2931 KiB  
Review
Remote Sensing-Based Phenology of Dryland Vegetation: Contributions and Perspectives in the Southern Hemisphere
by Andeise Cerqueira Dutra, Ankur Srivastava, Khalil Ali Ganem, Egidio Arai, Alfredo Huete and Yosio Edemir Shimabukuro
Remote Sens. 2025, 17(14), 2503; https://doi.org/10.3390/rs17142503 - 18 Jul 2025
Viewed by 432
Abstract
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and [...] Read more.
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and complex spectral signals. Unlike the Northern Hemisphere, these challenges are further compounded in the Southern Hemisphere (SH), where several regions experience year-round moderate temperatures. When combined with irregular rainfall, this leads to highly variable vegetation activity throughout the year. However, LSP dynamics in the SH remain poorly understood. This study presents a review of remote sensing-based phenology research in drylands, integrating (i) a synthesis of global methodological advances and (ii) a systematic analysis of peer-reviewed studies published from 2015 through April 2025 focused on SH drylands. This review reveals a research landscape still dominated by conventional vegetation indices (e.g., NDVI) and moderate-spatial-resolution sensors (e.g., MODIS), though a gradual shift toward higher-resolution sensors such as PlanetScope and Sentinel-2 has emerged since 2020. Despite the widespread use of start- and end-of-season metrics, their accuracy varies greatly, especially in heterogeneous landscapes. Yet, advanced products such as solar-induced chlorophyll fluorescence or the fraction of absorbed photosynthetically active radiation were rarely employed. Gaps remain in the representation of hyperarid zones, grass- and shrub-dominated landscapes, and large regions of Africa and South America. Our findings highlight the need for multi-sensor approaches and expanded field validation to improve phenological assessments in dryland environments. The accurate differentiation of vegetation responses in LSP is essential not only for refining phenological metrics but also for enabling more realistic assessments of ecosystem functioning in the context of climate change and its impact on vegetation dynamics. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 286
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

19 pages, 6796 KiB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Viewed by 230
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
Show Figures

Figure 1

26 pages, 5550 KiB  
Review
Research Advances and Emerging Trends in the Impact of Urban Expansion on Food Security: A Global Overview
by Shuangqing Sheng, Ping Zhang, Jinchuan Huang and Lei Ning
Agriculture 2025, 15(14), 1509; https://doi.org/10.3390/agriculture15141509 - 13 Jul 2025
Viewed by 379
Abstract
Food security constitutes a fundamental pillar of future sustainable development. A systematic evaluation of the impact of urban expansion on food security is critical to advancing the United Nations Sustainable Development Goals (SDGs), particularly “Zero Hunger” (SDG 2). Drawing on bibliographic data from [...] Read more.
Food security constitutes a fundamental pillar of future sustainable development. A systematic evaluation of the impact of urban expansion on food security is critical to advancing the United Nations Sustainable Development Goals (SDGs), particularly “Zero Hunger” (SDG 2). Drawing on bibliographic data from the Web of Science Core Collection, this study employs the bibliometrix package in R to conduct a comprehensive bibliometric analysis of the literature on the “urban expansion–food security” nexus spanning from 1982 to 2024. The analysis focuses on knowledge production, collaborative structures, and thematic research trends. The results indicate the following: (1) The publication trajectory in this field exhibits a generally increasing trend with three distinct phases: an incubation period (1982–2000), a development phase (2001–2014), and a phase of rapid growth (2015–2024). Land Use Policy stands out as the most influential journal in the domain, with an average citation rate of 43.5 per article. (2) China and the United States are the leading contributors in terms of publication output, with 3491 and 1359 articles, respectively. However, their international collaboration rates remain relatively modest (0.19 and 0.35) and considerably lower than those observed for the United Kingdom (0.84) and Germany (0.76), suggesting significant potential for enhanced global research cooperation. (3) The major research hotspots cluster around four core areas: urban expansion and land use dynamics, agricultural systems and food security, environmental and climate change, and socio-economic and policy drivers. These focal areas reflect a high degree of interdisciplinary integration, particularly involving land system science, agroecology, and socio-economic studies. Collectively, the field has established a relatively robust academic network and coherent knowledge framework. Nonetheless, it still confronts several limitations, including geographical imbalances, fragmented research scales, and methodological heterogeneity. Future efforts should emphasize cross-regional, interdisciplinary, and multi-scalar integration to strengthen the systematic understanding of urban expansion–food security interactions, thereby informing global strategies for sustainable development. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

30 pages, 34212 KiB  
Article
Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration
by Pengnan Xiao, Yong Zhou, Jianping Qian, Yujie Liu and Xigui Li
Remote Sens. 2025, 17(14), 2417; https://doi.org/10.3390/rs17142417 - 12 Jul 2025
Viewed by 253
Abstract
The accurate mapping of crop planting patterns is vital for sustainable agriculture and food security, particularly in regions with complex cropping systems and limited cloud-free observations. This research focuses on the Jianghan Plain in southern China, where diverse planting structures and persistent cloud [...] Read more.
The accurate mapping of crop planting patterns is vital for sustainable agriculture and food security, particularly in regions with complex cropping systems and limited cloud-free observations. This research focuses on the Jianghan Plain in southern China, where diverse planting structures and persistent cloud cover make consistent monitoring challenging. We integrated multi-temporal Sentinel-2 and Landsat-8 imagery from 2017 to 2021 on the Google Earth Engine platform and applied a sample migration strategy to construct multi-year training data. A random forest classifier was used to identify nine major planting patterns at a 10 m resolution. The classification achieved an average overall accuracy of 88.3%, with annual Kappa coefficients ranging from 0.81 to 0.88. A spatial analysis revealed that single rice was the dominant pattern, covering more than 60% of the area. Temporal variations in cropping patterns were categorized into four frequency levels (0, 1, 2, and 3 changes), with more dynamic transitions concentrated in the central-western and northern subregions. A multiscale geographically weighted regression (MGWR) model revealed that economic and production-related factors had strong positive associations with crop planting patterns, while natural factors showed relatively weaker explanatory power. This research presents a scalable method for mapping fine-resolution crop patterns in complex agroecosystems, providing quantitative support for regional land-use optimization and the development of agricultural policies. Full article
Show Figures

Figure 1

Back to TopTop