Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = LaBr3(Ce) scintillator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5699 KiB  
Article
Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study
by Evangelia Karali, Christos Michail, George Fountos, Nektarios Kalyvas and Ioannis Valais
Crystals 2024, 14(5), 416; https://doi.org/10.3390/cryst14050416 - 29 Apr 2024
Cited by 2 | Viewed by 2142
Abstract
Cone-beam computed tomography (CBCT) has emerged in recent years as an adequate alternative to mammography and tomosynthesis due to the several advantages over traditional mammography, including its ability to provide 3D images, its reduced radiation dose, and its ability to image dense breasts [...] Read more.
Cone-beam computed tomography (CBCT) has emerged in recent years as an adequate alternative to mammography and tomosynthesis due to the several advantages over traditional mammography, including its ability to provide 3D images, its reduced radiation dose, and its ability to image dense breasts more effectively and conduct more effective breast compressions, etc. Furthermore, CBCT is capable of providing images with high sensitivity and specificity, allowing a more accurate evaluation, even of dense breasts, where mammography and tomosynthesis may lead to a false diagnosis. Clinical and experimental CBCT systems rely on cesium iodine (CsI:Tl) scintillators for X-ray energy conversion. This study comprises an investigation among different novel CBCT detector technologies, consisting either of scintillators (BGO, LSO:Ce, LYSO:Ce, LuAG:Ce, CaF2:Eu, LaBr3:Ce) or semiconductors (Silicon, CZT) in order to define the optimum detector design for a future experimental setup, dedicated to breast imaging. For this purpose, a micro-CBCT system was adapted, using GATE v9.2.1, consisting of the aforementioned various detection schemes. Two phantom configurations were selected: (a) an aluminum capillary positioned at the center of the field of view in order to calculate the system’s spatial resolution and (b) a breast phantom consisting of spheres of different materials, such that their characteristics are close to the breast composition. Breast phantom contrast-to-noise ratios (CNRs) were extracted from the phantom’s tomographic images. The images were reconstructed with filtered back projection (FBP) and ordered subsets expectation-maximization (OSEM) algorithms. The semiconductors acted satisfactorily in low-density matter, while LYSO:Ce, LaBr3:Ce, and LuAG:Ce presented adequate CNRs for all the different spheres’ densities. The energy converters that are presented in this study were evaluated for their performance against the standard CsI:Tl crystal. Full article
(This article belongs to the Special Issue Crystals, Films and Nanocomposite Scintillators Volume III)
Show Figures

Figure 1

18 pages, 6870 KiB  
Article
Gamma-ray Spectroscopy in Low-Power Nuclear Research Reactors
by Oskari V. Pakari, Andrew Lucas, Flynn B. Darby, Vincent P. Lamirand, Tessa Maurer, Matthew G. Bisbee, Lei R. Cao, Andreas Pautz and Sara A. Pozzi
J. Nucl. Eng. 2024, 5(1), 26-43; https://doi.org/10.3390/jne5010003 - 26 Jan 2024
Cited by 4 | Viewed by 3988
Abstract
Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting [...] Read more.
Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting inability to resolve individual pulses. Low-power reactor facilities offer the possibility to study reactor gamma-ray fields, a domain of experiments hitherto poorly explored. In this work, we present gamma-ray spectroscopy experiments performed with various detectors in two reactors: The EPFL zero-power research reactor CROCUS, and the neutron beam facility at the Ohio State University Research Reactor (OSURR). We employed inorganic scintillators (CeBr3), organic scintillators (trans-stilbene and organic glass), and high-purity germanium semiconductors (HPGe) to cover a range of typical—and new—instruments used in gamma-ray spectroscopy. The aim of this study is to provide a guideline for reactor users regarding detector performance, observed responses, and therefore available information in the reactor photon fields up to 2 MeV. The results indicate several future prospects, such as the online (at criticality) monitoring of fission products (like Xe, I, and La), dual-particle sensitive experiments, and code validation opportunities. Full article
Show Figures

Figure 1

14 pages, 12242 KiB  
Article
Optical Photon Propagation Characteristics and Thickness Optimization of LaCl3:Ce and LaBr3:Ce Crystal Scintillators for Nuclear Medicine Imaging
by Stavros Tseremoglou, Christos Michail, Ioannis Valais, Konstantinos Ninos, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Nektarios Kalyvas
Crystals 2024, 14(1), 24; https://doi.org/10.3390/cryst14010024 - 26 Dec 2023
Cited by 4 | Viewed by 2210
Abstract
The present study focuses on the determination of the optimal crystal thickness of LaCl3:Ce and LaBr3:Ce crystal scintillators for Nuclear Medicine Imaging applications. A theoretical model was applied for the estimation of the optical efficiency of the two single-crystal [...] Read more.
The present study focuses on the determination of the optimal crystal thickness of LaCl3:Ce and LaBr3:Ce crystal scintillators for Nuclear Medicine Imaging applications. A theoretical model was applied for the estimation of the optical efficiency of the two single-crystal scintillators in terms of Detector Optical Gain (DOG). The theoretical model was validated against the experimental values of the Absolute Efficiency (AE) of the two crystals, obtained in the energy range 110 kVp–140 kVp. By fitting the theoretical model to these experimental data, the propagation probability per elementary thickness k was determined and DOG was theoretically calculated for crystal thicknesses from 0.005 cm to 2 cm, in the energy range of Nuclear Medicine Imaging. k values for LaCl3:Ce and LaBr3:Ce crystals were significantly higher compared to other single-crystal scintillators. The DOG values of the two crystals may serve as evidence that the LaBr3:Ce crystal exhibits significantly better performance compared to the LaCl3:Ce crystal. With an increase in energy, the optimum thickness increases for both crystals. Additionally, crystal efficiency generally demonstrates a decrease beyond a certain thickness. The aforementioned insights may provide valuable guidance for the design and optimization of crystal scintillators in Nuclear Medicine Imaging systems. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Figure 1

13 pages, 2051 KiB  
Article
Improving the Time Resolution of Large-Area LaBr3:Ce Detectors with SiPM Array Readout
by Maurizio Bonesini, Roberto Bertoni, Andrea Abba, Francesco Caponio, Marco Prata and Massimo Rossella
Condens. Matter 2023, 8(4), 99; https://doi.org/10.3390/condmat8040099 - 17 Nov 2023
Cited by 6 | Viewed by 2306
Abstract
LaBr3:Ce crystals have good scintillation properties for X-ray spectroscopy. Initially, they were introduced for radiation imaging in medical physics with either a photomultiplier or SiPM readout, and they found extensive applications in homeland security and gamma-ray astronomy. We used 1 [...] Read more.
LaBr3:Ce crystals have good scintillation properties for X-ray spectroscopy. Initially, they were introduced for radiation imaging in medical physics with either a photomultiplier or SiPM readout, and they found extensive applications in homeland security and gamma-ray astronomy. We used 1 round LaBr3:Ce crystals to realize compact detectors with the SiPM array readout. The aim was a good energy resolution and a fast time response to detect low-energy X-rays around 100 keV. A natural application was found inside the FAMU experiment, at RIKEN RAL. Its aim is a precise measurement of the proton Zemach radius with impinging muons, to contribute to the solution to the so-called “proton radius puzzle”. Signals to be detected are characteristic X-rays around 130 KeV. A limit for this type of detector, as compared to the ones with a photomultiplier readout, is its poorer timing characteristics due to the large capacity of the SiPM arrays used. In particular, long signal falltimes are a problem in experiments such as FAMU, where a “prompt” background component must be separated from a “delayed” one (after 600 ns) in the signal X-rays to be detected. Dedicated studies were pursued to improve the timing characteristics of the used detectors, starting from hybrid ganging of SiPM cells; then developing a suitable zero pole circuit with a parallel ganging, where an increased overvoltage for the SiPM array was used to compensate for the signal decrease; and finally designing ad hoc electronics to split the 1 detector’s SiPM array into four quadrants, thus reducing the involved capacitances. The aim was to improve the detectors’ timing characteristics, especially falltime, while keeping a good FWHM energy resolution for low-energy X-ray detection. Full article
(This article belongs to the Special Issue High Precision X-ray Measurements 2023)
Show Figures

Figure 1

17 pages, 4756 KiB  
Article
Response of G-NUMEN LaBr3(Ce) Detectors to High Counting Rates
by Elisa Maria Gandolfo, José Roberto Brandao Oliveira, Luigi Campajola, Dimitra Pierroutsakou, Alfonso Boiano, Clementina Agodi, Francesco Cappuzzello, Diana Carbone, Manuela Cavallaro, Irene Ciraldo, Daniela Calvo, Franck Delaunay, Canel Eke, Fabio Longhitano, Nilberto Medina, Mauricio Moralles, Diego Sartirana, Vijay Raj Sharma, Alessandro Spatafora, Dennis Toufen and Paolo Finocchiaroadd Show full author list remove Hide full author list
Instruments 2023, 7(3), 28; https://doi.org/10.3390/instruments7030028 - 16 Sep 2023
Cited by 6 | Viewed by 2228
Abstract
The G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (nuclear matrix element for neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims to explore double-charge exchange [...] Read more.
The G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (nuclear matrix element for neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims to explore double-charge exchange (DCE) reactions in order to obtain crucial information about neutrinoless double beta decay (0νββ). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the de-excitation of the excited states that are populated via DCE reactions with a good energy resolution and detection efficiency, amidst a background composed of the transitions from competing reaction channels with far higher cross sections. To achieve this, G-NUMEN signals will be processed in coincidence with those generated by the detection of reaction ejectiles by the MAGNEX focal plane detector (FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3(Ce) scintillators. Initial tests were conducted on the first detectors of the array, allowing for the determination of their performance at high rates. Full article
Show Figures

Figure 1

15 pages, 9908 KiB  
Article
Improvement of Crystal Identification Accuracy for Depth-of-Interaction Detector System with Peak-to-Charge Discrimination Method
by Kento Miyata, Ryo Ogawara and Masayori Ishikawa
Sensors 2023, 23(10), 4584; https://doi.org/10.3390/s23104584 - 9 May 2023
Cited by 1 | Viewed by 1742
Abstract
In positron emission tomography (PET), parallax errors degrade spatial resolution. The depth of interaction (DOI) information provides the position in the depth of the scintillator interacting with the γ-rays, thus reducing parallax errors. A previous study developed a Peak-to-Charge discrimination (PQD), which can [...] Read more.
In positron emission tomography (PET), parallax errors degrade spatial resolution. The depth of interaction (DOI) information provides the position in the depth of the scintillator interacting with the γ-rays, thus reducing parallax errors. A previous study developed a Peak-to-Charge discrimination (PQD), which can separate spontaneous alpha decay in LaBr3:Ce. Since decay constant of GSO:Ce depends on Ce concentration, the PQD is expected to discriminate GSO:Ce scintillators with different Ce concentration. In this study, the PQD-based DOI detector system was developed, which can be processed online and implemented in PET. A detector was composed of four layers of GSO:Ce crystals and a PS-PMT. The four crystals were obtained from both the top and bottom of ingots with a nominal Ce concentration of 0.5 mol% and 1.5 mol%. The PQD was implemented on the Xilinx Zynq-7000 SoC board with 8ch Flash ADC to gain real-time processing, flexibility, and expandability. The results showed that the mean Figure of Merits in 1D between four scintillators are 1.5, 0.99, 0.91 for layers between 1st–2nd, 2nd–3rd, and 3rd–4th respectively, and the mean Error Rate in 1D between four scintillators are 3.50%, 2.96%, 13.3%, and 1.88% for layers 1, 2, 3, and 4, respectively. In addition, the introduction of the 2D PQDs resulted in the mean Figure of Merits in 2D greater than 0.9 and the mean Error Rate in 2D less than 3% in all layers. Full article
Show Figures

Figure 1

18 pages, 12631 KiB  
Article
Evaluation of Cerium-Doped Lanthanum Bromide (LaBr3:Ce) Single-Crystal Scintillator’s Luminescence Properties under X-ray Radiographic Conditions
by Stavros Tseremoglou, Christos Michail, Ioannis Valais, Konstantinos Ninos, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Nektarios Kalyvas
Appl. Sci. 2023, 13(1), 419; https://doi.org/10.3390/app13010419 - 28 Dec 2022
Cited by 5 | Viewed by 2654
Abstract
In the present study, the response of the crystalline scintillator LaBr3:Ce when excited with X-rays at tube voltages from 50 kVp to 150 kVp was investigated, for possible use in hybrid medical-imaging systems. A single crystal (10 × 10 × 10 [...] Read more.
In the present study, the response of the crystalline scintillator LaBr3:Ce when excited with X-rays at tube voltages from 50 kVp to 150 kVp was investigated, for possible use in hybrid medical-imaging systems. A single crystal (10 × 10 × 10 mm3) was irradiated by X-rays within the aforementioned tube-voltage range, and the absolute efficiency (AE), as well as the detective quantum efficiency for zero spatial-frequency (DQE(0)), were measured. The energy-absorption efficiency (EAE), the quantum-detection efficiency (QDE) and the spectral compatibility with various optical photodetectors were also calculated. The results were compared with the published data for the LaCl3:Ce, Bi4Ge3O12 (BGO), Lu2SiO5:Ce (LSO), and CdWO4 single crystals of equal dimensions. The AE values of the examined crystal were found to be higher than those of the compared crystals across the whole X-ray tube-voltage range. Regarding the EAE, LaBr3:Ce demonstrated a comparatively better performance than the LaCl3:Ce crystal. The emitted-light spectrum of LaBr3:Ce was found to be compatible with various types of photocathodes and silicon photomultipliers. Moreover, the LaBr3:Ce crystal exhibited excellent performance concerning its DQE(0). Considering these properties, the LaBr3:Ce crystal could be considered as a radiation-detector option for hybrid medical-imaging modalities, such as PET/CT and SPECT/CT. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 3263 KiB  
Review
Recent Trends in Elpasolite Single Crystal Scintillators for Radiation Detection
by Taiguang Jin, Shuwei Hao, Yunfei Shang, Zuotao Lei and Chunhui Yang
Crystals 2022, 12(7), 887; https://doi.org/10.3390/cryst12070887 - 22 Jun 2022
Cited by 13 | Viewed by 3898
Abstract
Scintillation detection has attracted great interest in nuclear medicine, nuclear radiation detection, high-energy physics, and non-destructive inspection. The elpasolite crystals with Ce3+ dopants are promising for these endeavors due to their modest light yield and extremely good proportionality when excited by the [...] Read more.
Scintillation detection has attracted great interest in nuclear medicine, nuclear radiation detection, high-energy physics, and non-destructive inspection. The elpasolite crystals with Ce3+ dopants are promising for these endeavors due to their modest light yield and extremely good proportionality when excited by the gamma ray. Moreover, the 6Li and 35Cl isotopes in elpasolite crystals endow them with excellent neutron detection capability. These features allow not only a high energy resolution but also a high detection sensitivity. The elpasolite scintillators also enable the precisely dual detection of gamma/neutron signals through pulse height discrimination (PHD) or pulse shape discrimination (PSD). In this work, we review recent investigations on using the typical elpasolite scintillators, including Ce3+-doped Cs2LiYCl6 (CLYC), Cs2LiLaCl6 (CLLC), and Cs2LiLaBr6 (CLLB), for the monitoring of gamma rays and neutrons. The scintillation properties, detection mechanism, and elpasolite crystal structure are also discussed with the aim of improving high-energy ray detection ability. Full article
(This article belongs to the Special Issue Advances in Optoelectric Functional Crystalline Materials)
Show Figures

Figure 1

15 pages, 4179 KiB  
Article
Evaluation of Various Scintillator Materials in Radiation Detector Design for Positron Emission Tomography (PET)
by Siwei Xie, Xi Zhang, Yibin Zhang, Gaoyang Ying, Qiu Huang, Jianfeng Xu and Qiyu Peng
Crystals 2020, 10(10), 869; https://doi.org/10.3390/cryst10100869 - 25 Sep 2020
Cited by 34 | Viewed by 4929
Abstract
The performance of radiation detectors used in positron-emission tomography (PET) is determined by the intrinsic properties of the scintillators, the geometry and surface treatment of the scintillator crystals and the electrical and optical characteristics of the photosensors. Experimental studies were performed to assess [...] Read more.
The performance of radiation detectors used in positron-emission tomography (PET) is determined by the intrinsic properties of the scintillators, the geometry and surface treatment of the scintillator crystals and the electrical and optical characteristics of the photosensors. Experimental studies were performed to assess the timing resolution and energy resolution of detectors constructed with samples of different scintillator materials (LaBr3, CeBr3, LFS, LSO, LYSO: Ce, Ca and GAGG) that were fabricated into different shapes with various surface treatments. The saturation correction of SiPMs was applied for tested detectors based on a Tracepro simulation. Overall, we tested 28 pairs of different forms of scintillators to determine the one with the best CTR and light output. Two common high-performance silicon photomultipliers (SiPMs) provided by SensL (J-series, 6 mm) or AdvanSiD (NUV, 6 mm) were used for photodetectors. The PET detector constructed with 6 mm CeBr3 cubes achieved the best CTR with a FWHM of 74 ps. The 4 mm co-doped LYSO: Ce, Ca pyramid crystals achieved 88.1 ps FWHM CTR. The 2 mm, 4 mm and 6 mm 0.2% Ce, 0.1% Ca co-doped LYSO cubes achieved 95.6 ps, 106 ps and 129 ps FWHM CTR, respectively. The scintillator crystals with unpolished surfaces had better timing than those with polished surfaces. The timing resolution was also improved by using certain geometric factors, such as a pyramid shape, to improve light transportation in the scintillator crystals. Full article
(This article belongs to the Special Issue Scintillators for Medical Imaging Applications)
Show Figures

Figure 1

10 pages, 4654 KiB  
Article
Growth and Scintillation Properties of Directionally Solidified Ce:LaBr3/AEBr2 (AE = Mg, Ca, Sr, Ba) Eutectic System
by Kyoung Jin Kim, Yuki Furuya, Kei Kamada, Rikito Murakami, Vladimir V. Kochurikhin, Masao Yoshino, Hiroyuki Chiba, Shunsuke Kurosawa, Akihiro Yamaji, Yasuhiro Shoji, Satoshi Toyoda, Hiroki Sato, Yuui Yokota, Yuji Ohashi and Akira Yoshikawa
Crystals 2020, 10(7), 584; https://doi.org/10.3390/cryst10070584 - 6 Jul 2020
Cited by 8 | Viewed by 3794
Abstract
Ce-doped LaBr3/AEBr2 (AE = Mg, Ca, Sr, Ba) eutectics were grown using the Bridgman–Stockbarger (BS) method in quartz ampoules. The eutectics (AE = Mg and Ca) showed optical transparency like optical fiber bundles. A grown Ce-doped LaBr3/MgBr2 [...] Read more.
Ce-doped LaBr3/AEBr2 (AE = Mg, Ca, Sr, Ba) eutectics were grown using the Bridgman–Stockbarger (BS) method in quartz ampoules. The eutectics (AE = Mg and Ca) showed optical transparency like optical fiber bundles. A grown Ce-doped LaBr3/MgBr2 eutectic shows a 355 nm emission ascribed to Ce3+ 4f-5d transition under X-ray excitation. The smaller the ionic size of AE, the higher the light yield of the sample was. The light yield of Ce:LaBr3/MgBr2 was 34,300 photon/MeV, which is higher than Ce:LYSO standard. Scintillation decay time under 662 keV gamma-ray excitation was 18.8 ns. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop