Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = LTE antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5625 KiB  
Article
Compact Frequency-Agile and Mode-Reconfigurable Antenna for C-Band, Sub-6-GHz-5G, and ISM Applications
by Esraa Mousa Ali, Wahaj Abbas Awan, Anees Abbas, Syed Mujahid Abbas and Heba G. Mohamed
Micromachines 2025, 16(6), 724; https://doi.org/10.3390/mi16060724 - 19 Jun 2025
Viewed by 628
Abstract
This article presents the design and evaluation of a compact-sized antenna targeting heterogenous applications working in the C-band, 5G-sub-6GHz, and the ISM band. The antenna offers frequency reconfigurability along with multi-operational modes ranging from wideband to dual-band and tri-band. A compact-sized antenna is [...] Read more.
This article presents the design and evaluation of a compact-sized antenna targeting heterogenous applications working in the C-band, 5G-sub-6GHz, and the ISM band. The antenna offers frequency reconfigurability along with multi-operational modes ranging from wideband to dual-band and tri-band. A compact-sized antenna is designed initially to cover a broad bandwidth that ranges from 4 GHz to 7 GHz. Afterwards, various multiband antennas are formed by loading various stubs. Finally, the wideband antenna along with multi-stub loaded antennas are combined to form a single antenna. Furthermore, PIN diodes are loaded between the main radiator and stubs to activate the stubs on demand, which consequently generates various operational modes. The last stage of the design is optimization, which helps in achieving the desired bandwidths. The optimized antenna works in the wideband mode covering the C-band, Wi-Fi 6E, and the ISM band. Meanwhile, the multiband modes offer the additional coverage of the LTE, LTE 4G, ISM lower band, and GSM band. The various performance parameters are studied and compared with measured results to show the performance stability of the proposed reconfigurable antenna. In addition, an in-depth literature review along with comparison with proposed antenna is performed to show its potential for targeted applications. The utilization of FR4 as a substrate of the antenna along with its compact size of 15 mm × 20 mm while having multiband and multi-mode frequency reconfigurability makes it a strong candidate for present as well as for future smart devices and electronics. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

17 pages, 3364 KiB  
Article
Ultra-Wideband Antenna Design for 5G NR Using the Bezier Search Differential Evolution Algorithm
by Georgios Korompilis, Achilles D. Boursianis, Panagiotis Sarigiannidis, Zaharias D. Zaharis, Katherine Siakavara, Maria S. Papadopoulou, Mohammad Abdul Matin and Sotirios K. Goudos
Technologies 2025, 13(4), 133; https://doi.org/10.3390/technologies13040133 - 1 Apr 2025
Cited by 1 | Viewed by 483
Abstract
As the energy crisis is leading to energy shortages and constant increases in prices, green energy and renewable energy sources are trending as a viable solution to this problem. One of the most rapidly expanding green energy methods is RF (RadioFrequency) energy harvesting, [...] Read more.
As the energy crisis is leading to energy shortages and constant increases in prices, green energy and renewable energy sources are trending as a viable solution to this problem. One of the most rapidly expanding green energy methods is RF (RadioFrequency) energy harvesting, as RF energy and its corresponding technologies are constantly progressing, due to the introduction of 5G and high-speed telecommunications. The usual system for RF energy harvesting is called a rectenna, and one of its main components is an antenna, responsible for collecting ambient RF energy. In this paper, the optimization process of an ultra-wideband antenna for RF energy harvesting applications was studied, with the main goal of broadening the antenna’s operational bandwidth to include 5G New Radio. For this purpose, the Bezier Search Differential Evolution Algorithm (BeSD) was used along with a novel CST-Matlab API, to manipulate the degrees of freedom of the antenna, while searching for the optimal result, which would satisfy all the necessary dependencies to make it capable of harvesting RF energy in the target frequency band. The BeSD algorithm was first tested with benchmark functions and compared to other widely used algorithms, which it successfully outperformed, and hence, it was selected as the optimizer for this research. All in all, the optimization process was successful by producing an ultra-wideband optimal antenna operating from 1.4 GHz to 3.9 GHz, which includes all vastly used telecommunication technologies, like GSM (1.8 GHz), UMTS (2.1 GHz), Wi-Fi (2.4 GHz), LTE (2.6 GHz), and 5G NR (3.5 GHz). Its ultra-wideband properties and the rest of the characteristics that make this design suitable for RF energy harvesting are proven by its S11 response graph, its impedance response graph, its efficiency on the targeted technologies, and its omnidirectionality across its band of operation. Full article
Show Figures

Figure 1

17 pages, 5906 KiB  
Article
Specific Absorption Rate Analysis of Wideband Multiple-Input Multiple-Output Antennas for Upper Mid-Band LTE 46/47 and n102 Future Generation Applications
by Muhammad Zahid and Yasar Amin
Telecom 2025, 6(2), 22; https://doi.org/10.3390/telecom6020022 - 31 Mar 2025
Viewed by 722
Abstract
The design of wideband multi-port multiple-input multiple-output (MIMO) antennas and their optimization are very important for next-generation smartphones with the increase in massive connectivity. This paper offers the design, simulation, measurement, and specific absorption rate (SAR) analysis of a Pi-shaped ten-element MIMO antenna [...] Read more.
The design of wideband multi-port multiple-input multiple-output (MIMO) antennas and their optimization are very important for next-generation smartphones with the increase in massive connectivity. This paper offers the design, simulation, measurement, and specific absorption rate (SAR) analysis of a Pi-shaped ten-element MIMO antenna system for use in the upper mid-band, covering LTE 46 (5.15–5.925 GHz), LTE 47 (5.855–5.925 GHz), and n102 (5.925–6.425 GHz), thus meeting a good fractional bandwidth of 32.7% with a maximum peak gain of 2.89 dBi. Hence, it is well suited for high-isolation (<−10 dB), compactness, and wideband (4.7–6.5 GHz) applications suitable for the current communication system needs. The overall size of the proposed system is 125 mm × 70 mm, with a planar dielectric material Rogers RT/5880. Designing the proposed antenna with multiple units entails the preservation of the spatial features of the antenna alongside the reduction of the mutual coupling for adjacent elements by using a decoupling structure. Due to the high accuracy of the positioning elements and precise geometric transformations, the antenna system provides high-performance analysis based on reflection coefficients, radiation patterns, and each antenna’s averaged efficiency values (76.12–91.57%). Full article
Show Figures

Figure 1

22 pages, 7551 KiB  
Article
Dual-Band Single-Layered Frequency Selective Surface Filter for LTE Band with Angular Stability
by Vartika Dahima, Ranjan Mishra and Ankush Kapoor
Telecom 2025, 6(1), 18; https://doi.org/10.3390/telecom6010018 - 7 Mar 2025
Viewed by 1544
Abstract
This study presents an innovative Dual-Band Frequency Selective Surface (FSS) designed for LTE applications, offering an effective solution for minimizing Passive Inter-Modulation (PIM) in contemporary wireless communication systems at the base station. The proposed passband FSS filter is designed to deliver optimal dual-band [...] Read more.
This study presents an innovative Dual-Band Frequency Selective Surface (FSS) designed for LTE applications, offering an effective solution for minimizing Passive Inter-Modulation (PIM) in contemporary wireless communication systems at the base station. The proposed passband FSS filter is designed to deliver optimal dual-band filtering characteristics with consistent stability over incidence angles up to 80°. Corresponding to antenna systems requirements, the proposed method gives resonant frequencies at 1.9 and 2.1 GHz which operate in the LTE band with bandwidths of 40 and 60 MHz, respectively. Moreover, the proposed design is analyzed to establish the optimal range for each resonant frequency by examining the parametric effects. The suggested FSS-based filter consists of a single-layer structure with the dimension of the unit cell of 0.33λ1 × 0.33λ1 where λ1 is the wavelength of low frequency, which delivers desired reflection and transmission coefficients using RT/Duroid 5880 with a thickness of 0.508 mm. The designed filter is validated through measurements of a fabricated prototype, demonstrating its practicality and performance. Simulations carried out with Equivalent Circuit Modeling (ECM) are demonstrated by measurements from a constructed 4 × 4 array prototype, showing a robust alignment with experimental findings. This work emphasizes an asymmetric FSS design that improves frequency selectivity and angular stability for the desired LTE dual band and also depicts the future possibilities for tuneable models and broader applications to meet the demands of modern wireless communication. Full article
Show Figures

Figure 1

13 pages, 7430 KiB  
Article
A Circularly Polarized Microstrip Antenna with Dual Circular Polarization Using a 90° Hybrid Coupler and Proximity-Coupled Feeding for LTE 43 5G Applications
by Atyaf H. Mohammed, Falih M. Alnahwi and Yasir I. A. Al-Yasir
Appl. Sci. 2024, 14(24), 11877; https://doi.org/10.3390/app142411877 - 19 Dec 2024
Cited by 4 | Viewed by 2624
Abstract
This paper presents a circularly polarized (CP) microstrip antenna with dual circular polarization that is fed using a 3 dB 90° hybrid coupler to ensure dual-CP radiation. The proximity-coupled structure is used as a feeding technique to obtain a larger operational bandwidth that [...] Read more.
This paper presents a circularly polarized (CP) microstrip antenna with dual circular polarization that is fed using a 3 dB 90° hybrid coupler to ensure dual-CP radiation. The proximity-coupled structure is used as a feeding technique to obtain a larger operational bandwidth that covers the standard LTE 43 of the 5G mid-band applications (3.6–3.8 GHz). The antenna was fabricated on an FR4 dielectric substrate with overall dimensions of 66.1 × 35 × 1.6 mm3. A circular patch was formed as a radiating element, with four identical slits that were etched on the patch to guarantee the presence of CP radiation at the required mid-band of the 5G frequency range. The measured impedance bandwidth (BW) of this antenna was 10.6% (3.46–3.85 GHz), while the 3 dB axial ratio bandwidth (ARBW) was 8.2% along the range (3.50–3.80 GHz). The measured average gain was about 1.3 dBi along the antenna impedance bandwidth. Full article
(This article belongs to the Special Issue Signal Processing and Communication for Wireless Sensor Network)
Show Figures

Figure 1

39 pages, 20241 KiB  
Article
Simulation and Design of Three 5G Antennas
by Keyu Li, Dongsheng Wu, Dapeng Chu and Lanlan Ping
Appl. Sci. 2024, 14(17), 8032; https://doi.org/10.3390/app14178032 - 8 Sep 2024
Cited by 2 | Viewed by 2627
Abstract
In the context of 5G networks, this paper investigates microstrip array antennas and mobile terminal MIMO array antennas. It introduces two innovative designs and, based on these, develops and fabricates a mobile terminal antenna. The first of these designs, a 4 × 4 [...] Read more.
In the context of 5G networks, this paper investigates microstrip array antennas and mobile terminal MIMO array antennas. It introduces two innovative designs and, based on these, develops and fabricates a mobile terminal antenna. The first of these designs, a 4 × 4 microstrip array antenna operating in the LTE band 42 (3.4–3.6 GHz), is researched and fabricated and an innovative approach, combining embedded and coaxial feeding methods, is proposed and employed. Measurement results indicate a bandwidth of 373 MHz (3.321–3.694 GHz), achieving a relative bandwidth of 10.7%. The antenna exhibits a high gain of 12.7 dBi, with an undistorted radiation pattern, demonstrating excellent directional characteristics. The second of these designs, a “loop-slot” MIMO antenna designed for 5G mobile devices with metal frames, is investigated. By opening slots in the metal frame and integrating them into the antenna’s feeding structure, the decoupling principle is analyzed from the perspective of characteristic mode theory. This design shares resonant modes between the loop and slot antennas, allowing for the overlapping placement of the two antenna units. Experimental results confirm an isolation level exceeding 21 dB, with significantly reduced dimensions. Finally, an eight-unit MIMO antenna is designed and fabricated for 5G mobile devices with metal frames. Continuous optimization of the “loop-slot” module layout and unit spacing leads to a compact and miniaturized antenna structure. Measurement results show an isolation level exceeding 17 dB, radiation efficiency ranging from 65.8% to 73.7%, and an envelope correlation coefficient (ECC) below 0.03. Finally, an analysis of specific absorption rate (SAR) demonstrates excellent MIMO performance in terms of human body radiation exposure. Full article
Show Figures

Figure 1

17 pages, 6231 KiB  
Article
Design of Miniaturized and Wideband Four-Port MIMO Antenna Pair for WiFi
by Yao Hu, Yongshun Wang, Lijun Zhang and Mengmeng Li
Micromachines 2024, 15(7), 850; https://doi.org/10.3390/mi15070850 - 29 Jun 2024
Cited by 1 | Viewed by 1249
Abstract
A miniaturized and wideband four-port multiple-input multiple-output (MIMO) antenna pair for Wi-Fi mobile terminals application is proposed. The proposed antenna pair consists of four multi-branch antenna elements arranged orthogonally, with an overall size of 40 × 40 × 3.5 mm3 and each [...] Read more.
A miniaturized and wideband four-port multiple-input multiple-output (MIMO) antenna pair for Wi-Fi mobile terminals application is proposed. The proposed antenna pair consists of four multi-branch antenna elements arranged orthogonally, with an overall size of 40 × 40 × 3.5 mm3 and each antenna element size of 15.2 × 3.5 mm × 0.8 mm3. The performance of the proposed antenna shows the advantages of a wide frequency band, low mutual coupling, high efficiency, and a compact structure. The wideband characteristics of the antenna elements are achieved through multi-mode resonance. The suppression of coupling is accomplished by strategically positioning the four compact antenna elements to ensure their maximum radiation directions are orthogonal, thus eliminating the need for an additional decoupling structure. In this paper, the proposed antenna is optimized in terms of the parameters then simulated and measured. The simulated results illustrate that an impedance bandwidth of the antenna is about 15% (5.06~5.88 GHz) with S11 < −10 dB, excellent port isolation exceeds 20 dB between all ports, a high radiation efficiency ranges from 51.2% to 89.9%, the maximum gain is 4.5 dBi, and the ECCs are less than 0.04. The measured results show that the −10 dB impedance bandwidth of the antenna is about 13% (5.13~5.80 GHz), the isolation between the antenna elements is better than 21 dB, the radiation efficiency ranges from 51.8% to 92.3%, the maximum gain is 5.3 dBi, and the ECCs are less than 0.05. The proposed four-port MIMO antenna works on the 5G LTE band 46 and Wi-Fi 6E operating bands. As a mobile terminal antenna, the proposed design scheme demonstrates excellent performance and applicability, fulfilling the requirements for 5G mobile terminal applications. Full article
Show Figures

Figure 1

13 pages, 4312 KiB  
Communication
A Compact Linear Microstrip Patch Beamformer Antenna Array for Millimeter-Wave Future Communication
by Muhammad Asfar Saeed, Emenike Raymond Obi and Augustine O. Nwajana
Sensors 2024, 24(13), 4068; https://doi.org/10.3390/s24134068 - 22 Jun 2024
Cited by 5 | Viewed by 2328
Abstract
5/6G is anticipated to address challenges such as low data speed and high latency in current cellular networks, particularly as the number of users overwhelms 4G and LTE capabilities. This paper proposes a microstrip patch antenna array comprising six radiating patches and utilizing [...] Read more.
5/6G is anticipated to address challenges such as low data speed and high latency in current cellular networks, particularly as the number of users overwhelms 4G and LTE capabilities. This paper proposes a microstrip patch antenna array comprising six radiating patches and utilizing a microstrip line feeding technique to facilitate the compact design crucial for 5G implementation. ROGER 3003, chosen for its advanced and environmentally friendly features, serves as the dielectric material, ensuring suitability for 5G and B5G applications. The designed antenna, evaluated at a resonating frequency of 28.8 GHz with a −10 dB impedance bandwidth of 1 GHz, offers a high gain of 9.19 dBi. Its compact array, cost-effectiveness, and broad impedance and radiation coverage position it as a viable candidate for 5G and future communication applications. Full article
(This article belongs to the Special Issue Antenna Array Design for Wireless Communications)
Show Figures

Figure 1

14 pages, 5587 KiB  
Article
Combined Shark-Fin Rooftop Antenna for LTE, WLAN and BeiDou Applications
by Lingrong Shen, Wei Luo, Youming Miao and Gui Liu
Electronics 2024, 13(7), 1324; https://doi.org/10.3390/electronics13071324 - 1 Apr 2024
Cited by 2 | Viewed by 1939
Abstract
This paper presents rooftop automobile antennas designed for Long-Term Evolution (LTE), Wireless Local Area Network (WLAN) and navigation system applications. The proposed antennas are housed within a shark-fin structure on the car’s roof, and comprise a main antenna and a diversity antenna. The [...] Read more.
This paper presents rooftop automobile antennas designed for Long-Term Evolution (LTE), Wireless Local Area Network (WLAN) and navigation system applications. The proposed antennas are housed within a shark-fin structure on the car’s roof, and comprise a main antenna and a diversity antenna. The main antenna and diversity antenna combine for spatial diversity, receiving and processing the same signal to optimize signal quality. To accommodate the limited space within the shark-fin housing, various miniaturization and multiband techniques are utilized. The hexagonal substrate is more closely fitted to the shape of the shark fin, thus making full use of the space of the shark-fin shell. The main antenna and the diversity antenna are perpendicular to each other, which saves the space of the overall antenna and improves the utilization rate of the overall antenna space. The proposed main antenna, compactly sized at 50 mm × 20 mm × 1.59 mm, maintains a VSWR value below 2 across the frequency range of 1.19–2.8 GHz, enabling support for LTE bands 1, 2, 3, 4, 7, 11, 15, 16, 34, 39, 40, and 41, as well as WLAN 2400 bands. The diversity antenna maintains a VSWR value below 2 across the frequency range of 1.5–2.6 GHz, which can cover BeiDou B1-1, LTE 1, 2, 3, 4, 7, 11, 15, 16, 34, 39, and 40, and WLAN 2400 bands. The main antenna and the diversity antenna both demonstrate favorable radiation patterns on the azimuth plane. Simulation and measurement results exhibit a high level of agreement. Full article
Show Figures

Figure 1

17 pages, 6545 KiB  
Article
Metamaterial Inspired Varactor-Tuned Antenna with Frequency Reconfigurability and Pattern Diversity
by Jiahao Zhang, Buyun Wang, Sen Yan, Wei Li and Guy A. E. Vandenbosch
Sensors 2024, 24(6), 1956; https://doi.org/10.3390/s24061956 - 19 Mar 2024
Cited by 1 | Viewed by 2962
Abstract
A metamaterial-inspired varactor-tuned antenna with frequency reconfigurability and pattern diversity is designed. Two different versions of a reconfigurable structure are integrated into a single antenna to excite two different orthogonal patterns, which realizes pattern diversity for MIMO applications. The outer annular Composite Right-/Left-Handed [...] Read more.
A metamaterial-inspired varactor-tuned antenna with frequency reconfigurability and pattern diversity is designed. Two different versions of a reconfigurable structure are integrated into a single antenna to excite two different orthogonal patterns, which realizes pattern diversity for MIMO applications. The outer annular Composite Right-/Left-Handed Transmission Line (CRLH-TL) works at the 1 mode and provides a broadside pattern, and the inner circular radiator loaded with split ring resonators (SRR) operates at the 0 mode and radiates an omnidirectional pattern, which realizes pattern diversity. By using surface-mounted varactors, the operating frequencies for the two radiation patterns can be tuned over a wide frequency range, from 1.7 GHz to 2.2 GHz, covering the 1.71–2.17 GHz LTE band, and a low mutual coupling between the two radiators is achieved. The antenna has also been prototyped. The measured results are in good agreement with the simulation results, verifying the proposed concept. The dual-mode MIMO system equipped with the proposed antenna elements is discussed within the context of a 3-D channel model, and it shows a superior array compactness and spectral efficiency (SE) performance compared to scenarios with single-mode elements. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

23 pages, 13515 KiB  
Article
Underlay Loosely Coupled Model for Public Safety Networks Based on Device-to-Device Communication
by Wajdi Elleuch
Telecom 2024, 5(1), 122-144; https://doi.org/10.3390/telecom5010007 - 1 Feb 2024
Cited by 3 | Viewed by 1659
Abstract
In several emergency situations, during natural or human-caused disasters, frontline responders need to be able to communicate and collaborate to properly carry out relief missions. Some countries build their national Public Safety Mobile Broadband based on cellular LTE technology to provide fast, safe, [...] Read more.
In several emergency situations, during natural or human-caused disasters, frontline responders need to be able to communicate and collaborate to properly carry out relief missions. Some countries build their national Public Safety Mobile Broadband based on cellular LTE technology to provide fast, safe, and secure emergency services. However, in several emergency situations, cellular antennas can be overloaded or partially damaged in a manner that affects group communication services. In the last few years, direct device-to-device (D2D) communications have been proposed by the 3GPP as an underlay of long-term evolution (LTE) networks based on proximity, reuse, and hop gains. This paper focuses on a loosely coupled model based on direct D2D communication in a public safety context. Many scenarios related to user membership and network management are detailed. Both the “less cost” and “optimized tree” approaches are proposed and implemented, and their performance is evaluated in terms of the network update number and the resulting average Channel Quality Indicator (CQI). Other optimization approaches, with different CQI thresholds and optimization interval parameters, are simulated to compare their performance with the “optimized tree” approach. By conducting simulations that combine a CQI threshold = 1 and optimization interval = 2 s, it becomes possible to keep an average CQI level close to the “optimized tree” approach, while the costs related to network updates significantly decrease by almost 35%. Other simulations are also carried out to measure the bandwidth required by the control messages between the server and active users. It was found that both inbound and outbound traffic on the server side can be well supported with LTE and 5G networks. Full article
(This article belongs to the Special Issue Joint Application of Telecom and Internet Services)
Show Figures

Figure 1

8 pages, 2766 KiB  
Proceeding Paper
Design Implementation of Trapezoidal Notch Band Monopole Antenna for LTE, ISM, Wi-MAX and WLAN Communication Applications
by Gubbala Kishore Babu, Singam Aruna and Kethavathu Srinivasa Naik
Eng. Proc. 2023, 59(1), 145; https://doi.org/10.3390/engproc2023059145 - 5 Jan 2024
Cited by 2 | Viewed by 935
Abstract
This article analyses & describes a trapezoidal dual-band monopole antenna. The notch band monopole disables 4.4–5.7 GHz commercial communication equipment. The basic type operates at 2.5–4.4 GHz with a 500 MHz marginal bandwidth and 5.7–7 GHz with a 1000 MHz bandwidth. Present research [...] Read more.
This article analyses & describes a trapezoidal dual-band monopole antenna. The notch band monopole disables 4.4–5.7 GHz commercial communication equipment. The basic type operates at 2.5–4.4 GHz with a 500 MHz marginal bandwidth and 5.7–7 GHz with a 1000 MHz bandwidth. Present research optimises multiband trapezoidal antennas. Trapezoidal antennas improve multi-band wireless antennas. GSM, LTE, Wi-Fi, and 5G frequency bands start design. Inefficient and space-wasting, traditional antennas lack frequency range. Benefits of trapezoids: changing trapezoidal element sizes and angles enables the antenna to transmit many frequencies, sloping trapezium sides allow impedance changes without networks or tuning, numerical calculation and electromagnetic modelling optimise the trapezoidal antenna’s performance throughout the communication band, impedance matching, gain, and radiation efficiency provide transmission reliability, and broadband trapezoidal forms eliminate band-specific antennas & switches. Simplified antenna integration makes modern devices cheaper and simpler. In multiband applications, trapezoidal antennas outperform normal antennas. The antenna fits numerous wireless communication devices and systems due to its modest size and wide band coverage. The redesigned structure with notch increases operating band bandwidth and notches application bands between 4.4–5.7 GHz. By modifying trapezoidal geometry, we generate selective impedance transition notches to target crucial interference frequencies. Modern wireless communication systems with complicated interference situations can trust its careful engineering to provide good efficiency and radiation patterns across a wide frequency band while actively rejecting interfering signal. The peak realized gains obtained at 2.5 GHz is 2.4 dB, at 3.4 GHz it is 3.5 GHz and at 5.8 GHz it is 4.7 dB. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

10 pages, 7107 KiB  
Proceeding Paper
M-Shaped Conformal Antenna with FSS Backing for Gain Enhancement
by Madhavi Devi Lanka and Subbarao Chalasani
Eng. Proc. 2023, 59(1), 143; https://doi.org/10.3390/engproc2023059143 - 4 Jan 2024
Cited by 4 | Viewed by 1280
Abstract
A frequency selective surface (FSS) integrated conformal antenna is modelled and analytical study is presented in this article. A novel antenna design known as the “M-shaped Conformal Antenna with FSS Backing for Gain Improvement” makes use of both the conformal structure and FSS [...] Read more.
A frequency selective surface (FSS) integrated conformal antenna is modelled and analytical study is presented in this article. A novel antenna design known as the “M-shaped Conformal Antenna with FSS Backing for Gain Improvement” makes use of both the conformal structure and FSS technology to increase gain. The geometric shape of the M-shaped antenna, which might resemble the letter “M” or a collection of M-shaped parts, is what gives it its name. This structure can be created to alter the antenna’s resonance frequency, increase bandwidth, or adjust the emission pattern. The radiation pattern of the antenna may be precisely controlled by combining an M-shaped construction with an FSS. You may customize the radiation pattern to concentrate energy in particular directions or sectors, boosting gain and coverage, when necessary, by modifying the FSS’s geometry and physical characteristics. The combination of features makes it extremely ideal for a variety of applications where optimum gain is a crucial need, such as aerospace, communications, and radar arrays. It also enables fine control of the radiation pattern, frequency-selective gain, and interference elimination. The designed antenna consists of an M-shaped model on the visible sideways along with a complement split ring resonator and a defective ground structure on the bottom side. Antenna resonating at wideband cover several lower band wireless communication applications like Bluetooth, Wireless Fidelity (Wi-Fi), Manufacturing Communication and Pharma, Long Term Evolution-LTE, advanced 5G, and Wireless LAN with impedance bandwidth of 65%. The FSS beneath the antenna structure acts as reflector and providing additional gain and efficiency improvement of 22% and 12%, respectively. The prototype measurement supporting the simulation results with good matching in reflection coefficient and gain. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

17 pages, 7785 KiB  
Article
Design for SAW Antenna-Plexers with Improved Matching Inductance Circuits
by Min-Yuan Yang and Ruey-Beei Wu
Micromachines 2024, 15(1), 89; https://doi.org/10.3390/mi15010089 - 30 Dec 2023
Cited by 1 | Viewed by 2242
Abstract
This study designs antenna-plexers, including a surface acoustic wave (SAW) extractor and an upper- and mid-high band (UHB + MHB) diplexer, for LTE 4G and 5G bands using carrier aggregation. The SAW extractor combines a bandpass filter (BPF) and a band-stop filter (BSF) [...] Read more.
This study designs antenna-plexers, including a surface acoustic wave (SAW) extractor and an upper- and mid-high band (UHB + MHB) diplexer, for LTE 4G and 5G bands using carrier aggregation. The SAW extractor combines a bandpass filter (BPF) and a band-stop filter (BSF) in a single unit that consists of eight modified Butterworth–van Dyke (mBVD) resonators that resonate in parallel with an inductor and SAW resonators. This BSF behaves as a high-pass filter at frequencies lower than the designed WIFI band and as a capacitor at higher frequencies. The SAW extractor meets product specifications in the frequency range 0.7 to 2.7 GHz. The UHB + MHB diplexer, which is composed of a microwave filter, a SAW filter, and a simple matching inductor, uses frequency response methods to create an RF component for 2.4 GHz + WIFI 6E applications. The design uses a SAW’s interdigital transducer (IDT) structure, and the experimental results are in agreement with the simulation results, so the design is feasible. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

19 pages, 4843 KiB  
Article
A Robust Timing Synchronization Algorithm Based on PSSS for LTE-V2X
by Ju Zhang, Bin Chen, Jiahui Qiu, Lingfan Zhuang, Zhiyuan Wang and Liu Liu
Computers 2024, 13(1), 12; https://doi.org/10.3390/computers13010012 - 30 Dec 2023
Viewed by 2562
Abstract
In recent years, Long-Term Evolution Vehicle-to-Everything (LTE-V2X) communication technology has received extensive attention. Timing synchronization is a crucial step in the receiving process, addressing Timing Offsets (TOs) resulting from random propagation delays, sampling frequency mismatches between the transmitter and receiver or a combination [...] Read more.
In recent years, Long-Term Evolution Vehicle-to-Everything (LTE-V2X) communication technology has received extensive attention. Timing synchronization is a crucial step in the receiving process, addressing Timing Offsets (TOs) resulting from random propagation delays, sampling frequency mismatches between the transmitter and receiver or a combination of both. However, the presence of high-speed relative movement between nodes and a low antenna height leads to a significant Doppler frequency offset, resulting in a low Signal-to-Noise Ratio (SNR) for received signals in LTE-V2X communication scenarios. This paper aims to investigate LTE-V2X technology with a specific focus on time synchronization. The research centers on the time synchronization method utilizing the Primary Sidelink Synchronization Signal (PSSS) and conducts a comprehensive analysis of existing algorithms, highlighting their respective advantages and disadvantages. On this basis, a robust timing synchronization algorithm for LTE-V2X communication scenarios is proposed. The algorithm comprises three key steps: coarse synchronization, frequency offset estimation and fine synchronization. Enhanced robustness is achieved through algorithm fusion, optimal decision threshold design and predefined frequency offset values. Furthermore, a hardware-in-the-loop simulation platform is established. The simulation results demonstrate a substantial performance improvement for the proposed algorithm compared to existing methods under adverse channel conditions characterized by high frequency offsets and low SNR. Full article
(This article belongs to the Special Issue Vehicular Networking and Intelligent Transportation Systems 2023)
Show Figures

Figure 1

Back to TopTop