Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = LED light color

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6444 KB  
Article
Development of Photo-Active Chitosan-Based Films with Riboflavin for Enhanced Antimicrobial Food Packaging Applications
by Jessica Genovese, Daniele Maria Martins, Tiziana Silvetti, Milena Brasca, Daniela Fracassetti, Gigliola Borgonovo, Stefania Mazzini and Sara Limbo
Molecules 2025, 30(21), 4166; https://doi.org/10.3390/molecules30214166 - 23 Oct 2025
Viewed by 10
Abstract
This study reports the development of chitosan-based (CS) films incorporating riboflavin (RF) as a natural photosensitizer to create sustainable, light-activated antimicrobial packaging materials. The films were prepared by solvent casting, and their photochemical behavior under blue LED light (450 nm) was investigated, including [...] Read more.
This study reports the development of chitosan-based (CS) films incorporating riboflavin (RF) as a natural photosensitizer to create sustainable, light-activated antimicrobial packaging materials. The films were prepared by solvent casting, and their photochemical behavior under blue LED light (450 nm) was investigated, including RF photodegradation kinetics and structural changes in the film-forming solution analyzed by 1H NMR spectroscopy. Mechanical, thermal, optical, and barrier properties were also characterized to assess packaging suitability. Upon illumination, CS/RF films generated reactive oxygen species, particularly singlet oxygen (1O2), leading to visible color changes and significant antimicrobial activity against Pseudomonas fluorescens. Bacterial growth was reduced by up to 97% after 120 min of irradiation (0.92 J cm−2), with efficacy observed at both room temperature and 4 °C. The incorporation of RF did not alter the films’ mechanical properties, while thermal stability was preserved, optical transparency was modulated, and excellent oxygen barrier performance was maintained, although water vapor permeability remained moderate. These findings demonstrate that CS/RF films combine functionality and sustainability, offering a promising strategy for extending food shelf life through light-activated antimicrobial action. Validation under real storage conditions is recommended to confirm their potential in diverse food systems. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Graphical abstract

21 pages, 2446 KB  
Article
Near-Infrared Excited Mn4+- and Nd3+-Doped Y2SiO5 Luminescent Material with Flower-like Morphology for Plant-Centric Lighting Applications
by Liza Rani Deka, Marta Michalska-Domańska, Shubhra Mishra, D. S. Kshatri, M. C. Rao, Neeraj Verma and Vikas Dubey
Molecules 2025, 30(21), 4161; https://doi.org/10.3390/molecules30214161 - 22 Oct 2025
Viewed by 141
Abstract
Confronted with increasing global food demands, diminishing arable land, and climate volatility, controlled-environment agriculture with advanced red and far-red LED lighting can enhance photosynthesis and optimize plant growth. This investigation reports the generation of a Mn4+/Nd3+ co-doped Y2SiO [...] Read more.
Confronted with increasing global food demands, diminishing arable land, and climate volatility, controlled-environment agriculture with advanced red and far-red LED lighting can enhance photosynthesis and optimize plant growth. This investigation reports the generation of a Mn4+/Nd3+ co-doped Y2SiO5 phosphor with a Nd3+ concentration ranging from 0.1 to 2.5 mol% via a solid-state synthesis method, aiming to enhance red and far-red emission for plant cultivation LEDs. For the Y2SiO5:Mn4+ (1 mol%), Nd3+ (2 mol%) phosphor, the phase integrity, nanostructured morphology, elemental mapping, and vibrational characteristics were examined using XRD, Rietveld analysis, FTIR, SEM, and EDX. Nd3+ ions act as near-infrared excitation mediators, ensuring efficient Nd3+ → Mn4+ energy transfer upon 808 nm excitation, and this leads to pronounced red photoluminescence from Mn4+ ions that covers the range of 640–710 nm, exhibiting strong emission peaks centered at 650nm, 663nm, and 685nm, coinciding with the absorption band of phytochromes and chlorophyll. The optimal emission intensity was accomplished for a Nd3+ doping concentration of 2 mol%, beyond which concentration quenching occurred. The material produced a strong, concentrated deep red emission with CIE coordinates near (0.73, 0.27) and a high color purity of 98.96%, making it well-suited for photosynthetic activation. A phosphor-integrated red pc-LED was fabricated, and Tulsi plants were grown under this LED during the winter in Meghalaya, a period critical for plant growth due to the low ambient light. Over a 30-day period, the plants exhibited enhanced height and leaf development, demonstrating the practical potential of Mn4+/Nd3+ co-doped Y2SiO5 for energy-efficient, wavelength-optimized horticultural lighting. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 1471 KB  
Article
Developing Biodegradable Films from Mango (Mangifera indica) Starch and Extract: A Rheological and Physical Study
by Santander E. Lastra-Ripoll, Luis Mieles-Gómez, David Ramirez-Brewer, Ronald Marsiglia-Fuentes, Somaris E. Quintana and Luis A. García-Zapateiro
Gels 2025, 11(10), 825; https://doi.org/10.3390/gels11100825 - 14 Oct 2025
Viewed by 295
Abstract
The development of biodegradable films with antioxidant properties offers a promising approach to food preservation. This study focused on creating and characterising mango starch-based films enriched with mango peel extract (MPE) at concentrations of 0, 1, and 2%, using peels from mangoes ( [...] Read more.
The development of biodegradable films with antioxidant properties offers a promising approach to food preservation. This study focused on creating and characterising mango starch-based films enriched with mango peel extract (MPE) at concentrations of 0, 1, and 2%, using peels from mangoes (Mangifera indica var. Corazon) at organoleptic maturity, obtained as residual byproducts (peel and seed) for active food packaging applications. An MPE extraction yield of 35.57 ± 2.74% was achieved using ultrasound-assisted extraction (UAE), confirming its rich phenolic content and antioxidant activity as a natural alternative to synthetic preservatives. Rheological analysis revealed that the films exhibited pseudoplastic behavior, with complex viscosity reducing as angular frequency increased. Incorporating MPE at concentrations up to 1% enhanced the films’ viscoelastic properties, while a 2% addition significantly altered their frequency and temperature dependence. The rheological modeling showed that the fractional Maxwell model with two springpots described the films more accurately than the generalized Maxwell model. This approach offered a clearer understanding of their viscoelastic response, especially under changes in frequency and temperature. Mechanical characterization indicated that adding MPE improved film strength while reducing solubility. Although film thickness remained unchanged, increasing MPE concentration led to greater opacity and darker coloration. These changes offer advantages in food packaging by enhancing UV protection and reducing oxidative degradation. Crucially, the incorporation of MPE significantly increased the phenolic content and antioxidant capacity of the films, as confirmed by ABTS assays. These findings strongly support the potential of MPE-based films for active packaging, providing a sustainable and functional alternative for preserving light-sensitive food products. Among the tested formulations, films with 1% MPE demonstrated the most effective balance of rheological stability, mechanical strength, and antioxidant capacity. Full article
(This article belongs to the Special Issue Nature Polymer Gels for Food Packaging)
Show Figures

Figure 1

15 pages, 2497 KB  
Article
Colored Shade Nets and LED Lights at Different Wavelengths Increase the Production and Quality of Canada Goldenrod (Solidago canadensis L.) Flower Stems
by Fabíola Villa, Luciana Sabini da Silva Murara, Giordana Menegazzo da Silva, Edvan Costa da Silva, Larissa Hiromi Kiahara Sackser, Laís Romero Paula, Mateus Lopes Borduqui Cavalcante and Daniel Fernandes da Silva
Plants 2025, 14(20), 3119; https://doi.org/10.3390/plants14203119 - 10 Oct 2025
Viewed by 359
Abstract
Canada goldenrod (Solidago canadensis L.), a short-day plant commonly cultivated as a cut flower, depends on proper lighting management to obtain long stems and higher commercial value. Thus, this study aimed to determine the effect of modifying the light spectrum through the [...] Read more.
Canada goldenrod (Solidago canadensis L.), a short-day plant commonly cultivated as a cut flower, depends on proper lighting management to obtain long stems and higher commercial value. Thus, this study aimed to determine the effect of modifying the light spectrum through the installation of light-emitting diodes (LEDs) and the use of colored shade nets on the production and quality of Canada goldenrod stems. The treatments used were colored shade nets and different LED lighting treatments. Production per plant and productivity per square meter were determined. Twenty stems were selected and evaluated for: stem length; inflorescence length and width; number of floral ramets per inflorescence; number of leaves; stem base diameter (mm); and fresh stem biomass (g). Canada goldenrod plants require an extension of the light period with artificial lighting to produce higher-quality stems, regardless of whether the bulbs emit red or white light. The use of nets with 50% red and white shading promoted higher production and elongation of Canada goldenrod stems, with a production that reached up to 4.2 floral stems per plant and 100.3 floral stems per square meter using the red shade net and white LED. These floral stems were of high commercial standard, with a length of up to 81.35 cm with the red shade net and red LED, and were 31 cm in diameter for the inflorescences, approximately, under black or white shade nets and white or red LEDs. More robust floral stems with greater biomass were observed using any shade net color and LED lamps. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

14 pages, 3021 KB  
Article
An Experimental Investigation into the Influence of Colored Lighting on Perceived Spatial Impressions
by Heejin Lee and Eunsil Lee
Buildings 2025, 15(19), 3511; https://doi.org/10.3390/buildings15193511 - 28 Sep 2025
Viewed by 416
Abstract
The present study investigates the psychological impact of lighting color on spatial impressions within indoor settings, drawing on Mehrabian and Russell’s PAD model. The purpose of this study is to explore potential variations in spatial impressions, encompassing affectivity, tranquility, and thermality, across six [...] Read more.
The present study investigates the psychological impact of lighting color on spatial impressions within indoor settings, drawing on Mehrabian and Russell’s PAD model. The purpose of this study is to explore potential variations in spatial impressions, encompassing affectivity, tranquility, and thermality, across six different lighting colors (i.e., red, green, blue, yellow, orange, and purple). A controlled laboratory experiment was conducted with 101 participants, utilizing a color-changing LED lighting fixture to expose participants to actual lighting conditions rather than simulated images. The findings revealed significant differences in spatial impressions among the six lighting colors, indicating that the choice of lighting color has an impact on how people perceive space impressions. Blue lighting elicited the most favorable affective responses, while red lighting was perceived most negatively. Although purple lighting yielded the highest tranquility mean, it was not statistically different from other cool hues and was also associated with sleepiness and dullness. By incorporating secondary colors and employing real-time lighting exposure, this study offers a novel contribution to existing research on color and lighting. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

12 pages, 6526 KB  
Article
Synthesis, Characterization and Optical Behavior of Nanocrystalline CoWO4
by Reni Iordanova, Maria Gancheva, Iovka Koseva, Georgi Avdeev and Petar Ivanov
Molecules 2025, 30(19), 3843; https://doi.org/10.3390/molecules30193843 - 23 Sep 2025
Viewed by 316
Abstract
Nanocrystalline CoWO4 sampled were synthesized using a simple mechanochemical approach and a solid-state reaction, respectively. The formation of nanocrystalline CoWO4 was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The optical properties of the obtained samples were explored by diffuse [...] Read more.
Nanocrystalline CoWO4 sampled were synthesized using a simple mechanochemical approach and a solid-state reaction, respectively. The formation of nanocrystalline CoWO4 was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The optical properties of the obtained samples were explored by diffuse reflectance UV–visible (DRS) and photoluminescence (PL) techniques. A milling speed of 850 rpm led to the direct synthesis of monoclinic CoWO4 with a short reaction time (1 h). The complete reaction did not occur in the solid-state synthesis. The obtained samples had monoclinic crystal systems with different lattice parameters. The average crystallite sizes of CoWO4 were in the range of 20 to 180 nm. The TEM investigation showed that the morphology of the CoWO4 particles differed depending on the preparation conditions. The values of the determined optical bandgap of CoWO4 were the range of 1.89 to 2.18 eV, according to diffusion reflectance spectroscopy in the ultraviolet-to-visible range. Broader blue–green emission spectra with peaks at 430 nm were observed for samples prepared via both routes. The CIE color coordinates of the CoWO4 samples lay in the blue and purple regions. The quantum yields of the CoWO4 samples synthesized after 1 h and 5 h milling times at 850 rom were 0.34 and 0.67%, respectively. This study proposes an affordable mechanochemical approach for blue–green phosphors that could possibly be used in various light-emitting diodes (LEDs). Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 3887 KB  
Article
Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs
by Qiming Huo, Zhuo Lv, Shengyu Feng, Dengxu Wang and Hongzhi Liu
Polymers 2025, 17(18), 2558; https://doi.org/10.3390/polym17182558 - 22 Sep 2025
Viewed by 471
Abstract
The development of a straightforward strategy for preparing organic fluorescent materials, fine-tuning white-light emission, and subsequently constructing white light-emitting diodes (LEDs) is of great significance. Herein, we report on the modulation of white-light emission and the fabrication of white LEDs using polyhedral oligomeric [...] Read more.
The development of a straightforward strategy for preparing organic fluorescent materials, fine-tuning white-light emission, and subsequently constructing white light-emitting diodes (LEDs) is of great significance. Herein, we report on the modulation of white-light emission and the fabrication of white LEDs using polyhedral oligomeric silsesquioxane (POSS)-based fluorescent hybrid porous polymers (HPPs) through simple physical blending. Two HPPs, namely HPP-1 and HPP-2, which emit blue and red light, respectively, were synthesized via the efficient Heck reactions of octavinylsilsesquioxane with 4,4′-dibromobiphenyl and 1,3,6,8-tetrabromopyrene. By physically doping of HPP-1 and HPP-2 in variable ratios in solvent suspensions, it was discovered that white-light emission is significantly influenced by the concentrations of the materials and the excitation wavelength. Similar findings were also observed in the solid-state physical doping. An ideal white light emission with a CIE coordinate of (0.33, 0.33) can be achieved when excited at 380 nm with a mass ratio of HPP-1 to HPP-2 of 1:2. Finally, the two HPPs were dispersed in polysiloxane matrices, and a white LED with a CIE coordinate of (0.42, 0.36) was obtained. The LED exhibited a color rendering index of up to 90 and a correlated color temperature of 2858 K, realizing warm white light emission. This simple and convenient white-light regulation strategy holds great promise for application in the development of novel white LEDs based on organic fluorescent porous materials. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Graphical abstract

14 pages, 3698 KB  
Article
Active Gaze Guidance and Pupil Dilation Effects Through Subject Engagement in Ophthalmic Imaging
by David Harings, Niklas Bauer, Damian Mendroch, Uwe Oberheide and Holger Lubatschowski
J. Eye Mov. Res. 2025, 18(5), 45; https://doi.org/10.3390/jemr18050045 - 19 Sep 2025
Viewed by 446
Abstract
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning [...] Read more.
Modern ophthalmic imaging methods such as optical coherence tomography (OCT) typically require expensive scanner components to direct the light beam across the retina while the patient’s gaze remains fixed. This proof-of-concept experiment investigates whether the patient’s natural eye movements can replace mechanical scanning by guiding the gaze along predefined patterns. An infrared fundus camera setup was used with nine healthy adults (aged 20–57) who completed tasks comparing passive viewing of moving patterns to actively tracing them by drawing using a touchpad interface. The active task involved participant-controlled target movement with real-time color feedback for accurate pattern tracing. Results showed that active tracing significantly increased pupil diameter by an average of 17.8% (range 8.9–43.6%; p < 0.001) and reduced blink frequency compared to passive viewing. More complex patterns led to greater pupil dilation, confirming the link between cognitive load and physiological response. These findings demonstrate that patient driven gaze guidance can stabilize gaze, reduce blinking, and naturally dilate the pupil. These conditions might enhance the quality of scannerless OCT or other imaging techniques benefiting from guided gaze and larger pupils. There could be benefits for children and people with compliance issues, although further research is needed to consider cognitive load. Full article
(This article belongs to the Special Issue Eye Tracking and Visualization)
Show Figures

Figure 1

21 pages, 1167 KB  
Article
The Influence of Horse Age, High-Pressure Technique and Various Heat Treatment Methods on the Quality of Horse Meat
by Renata Stanisławczyk, Jagoda Żurek, Mariusz Rudy, Marian Gil, Anna Krajewska and Dariusz Dziki
Molecules 2025, 30(18), 3749; https://doi.org/10.3390/molecules30183749 - 15 Sep 2025
Viewed by 419
Abstract
The aim of this study was to demonstrate the effect of horse age, high-pressure cooking, and various heat-treatment methods on the quality of horse meat. The research material consisted of samples of the longissimus thoracis muscle obtained from 14 horse carcasses from two [...] Read more.
The aim of this study was to demonstrate the effect of horse age, high-pressure cooking, and various heat-treatment methods on the quality of horse meat. The research material consisted of samples of the longissimus thoracis muscle obtained from 14 horse carcasses from two age groups. Samples of the longissimus thoracis muscle were subjected to traditional cooking (TC), sous-vide cooking (S-V), high-pressure cooking (HHP), HHP + TC, and HHP + S-V. The chemical composition, physicochemical properties, color parameters, pigment levels, texture parameters, and sensory properties of the meat were determined. Exposing horsemeat samples to high pressureand in combination with various heat treatment methods resulted in a color change, increasing the lightness (L*) and decreasingthe metmyoglobin (Mb•O2) level. It was found that the combination of treatments used in both age groups resulted in an increase in texture parameters of horse meat samples compared to the control sample (p < 0.05). The use of the HHP, HHP + TC, and HHP + S-V techniques led to a significant increase in the TBARS index in both age groups to a level above 2 mg MDA/kg compared to the control samples. Exposing horse meat to TC and the combination of HHP + TC and HHP + S-V resulted in increased weight loss, which ranged from 42.91% to 48.56%. Full article
Show Figures

Figure 1

16 pages, 3247 KB  
Article
A Study on Light Preference in Gilts via Behavioral Pattern Analysis
by Shaojuan Ge, Haiyun Ma, Xiusong Li, Yaqiong Zeng, Baoming Li, Hao Wang and Weichao Zheng
Animals 2025, 15(17), 2620; https://doi.org/10.3390/ani15172620 - 7 Sep 2025
Viewed by 540
Abstract
The rational design of artificial lighting systems in pig housing can enhance animal welfare, thereby boosting gilt health and reproductive performance while improving economic metrics for swine farms. To identify the optimal light environments for gilts under artificial illumination, we conducted self-selection-based photic [...] Read more.
The rational design of artificial lighting systems in pig housing can enhance animal welfare, thereby boosting gilt health and reproductive performance while improving economic metrics for swine farms. To identify the optimal light environments for gilts under artificial illumination, we conducted self-selection-based photic preference testing, ultimately providing actionable insights for welfare-centric precision lighting protocols in modern pig production. In this study, a dynamic multi-chromatic self-selection system was developed, integrating programmable RGBW-LED arrays for spectral control, inter-compartment access channels for autonomous gilt movement, and real-time image recognition technology to investigate light color preferences. Twenty-four gilts (nulliparous female pigs) were housed for five weeks in pens with white, yellow, green, blue, or red light (100 lux), and they were given free access to all of the chromatic zones through inter-compartment channels. A YOLOv8n-based deep learning framework was used to quantify their spatiotemporal distribution, activity levels, and eating behavior. The key findings were the following: (1) a significant preference for green light environments (21.29 ± 3.77% distribution proportion) (p < 0.05), peaking at 6:00–13:00 and 18:00–20:00; (2) the average activity was the highest in a white light environment (25.49 ± 0.77%), significantly exceeding yellow (22.69 ± 0.63%) and green light (21.55 ± 0.61%) (p < 0.05); and (3) the daily feed consumption under green light was the lowest, significantly lower than that under white, blue, and red light (p < 0.05). The findings from this study offer insights into the light environment preferences of gilts, which could improve animal welfare. Full article
Show Figures

Figure 1

19 pages, 6051 KB  
Article
Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement
by Krzysztof Skarżyński and Tomasz Krzysztoń
Sensors 2025, 25(17), 5533; https://doi.org/10.3390/s25175533 - 5 Sep 2025
Viewed by 1266
Abstract
LED strips are increasingly used as lighting sources in public and private spaces. However, traditional photometric methods, such as integrating spheres, are unsuitable for measuring their light parameters, often resulting in significant errors and requiring expensive instrumentation or calibration. These errors are typically [...] Read more.
LED strips are increasingly used as lighting sources in public and private spaces. However, traditional photometric methods, such as integrating spheres, are unsuitable for measuring their light parameters, often resulting in significant errors and requiring expensive instrumentation or calibration. These errors are typically caused by non-uniform illumination of the internal surface or improper internal geometry, especially when measuring LED sources. This article presents the development of a low-cost integrating device specifically designed to measure LED strips’ light parameters. The device is a compact cube with a volume of less than 1.0 m3. It was tested against alternative methods using an integrating sphere and a goniophotometer in a professional photometric laboratory. The verification results confirmed its effectiveness. The device showed the maximum relative error of luminous flux measurement to be around 5% compared with the accurate, expensive goniophotometric method. For colorimetric measurements, the maximum Correlated Color Temperature (CCT) absolute error was about 35 K for an LED strip with a CCT of 4000 K, indicating a difference imperceptible to the human eye. These results demonstrate the device’s proper relevance in the research and development of LED strip-based lighting equipment to improve lighting equipment quality and control processes. The device is easy to replicate, significantly reducing production and transportation costs, making it an excellent solution for companies and research units seeking a cost-effective method for LED strip measurements. Additionally, the device can measure other light sources or luminaires with reasonably small sizes emitting light in only one hemisphere. The device is the basis of a patent application. Full article
(This article belongs to the Special Issue Recent Advances in Optoelectronic Materials and Device Engineering)
Show Figures

Graphical abstract

24 pages, 3065 KB  
Article
Effects of Long-Term Urban Light Pollution and LED Light Color Temperature on the Behavior of a Holarctic Amphipod Gammarus lacustris Sars, 1863
by Yana Ermolaeva, Maria Maslennikova, Dmitry Golubets, Arina Lavnikova, Natalia Kulbachnaya, Sofya Biritskaya, Anastasia Solodkova, Ivan Kodatenko, Artem Guliguev, Diana Rechile, Kirill Salovarov, Anastasia Olimova, Darya Kondratieva, Anna Solomka, Alyona Slepchenko, Alexandr Bashkirtsev, Dmitry Karnaukhov and Eugene Silow
Hydrobiology 2025, 4(3), 23; https://doi.org/10.3390/hydrobiology4030023 - 3 Sep 2025
Viewed by 803
Abstract
Light pollution is becoming more widespread every year, accompanied by the active use of LED lighting. Currently, the ability of organisms to adapt to this pollution and the potential impact of LED lighting of different color temperatures and intensities on organisms remains poorly [...] Read more.
Light pollution is becoming more widespread every year, accompanied by the active use of LED lighting. Currently, the ability of organisms to adapt to this pollution and the potential impact of LED lighting of different color temperatures and intensities on organisms remains poorly understood. In this study, we aimed to find out how long-term light pollution affects the behavior of amphipods Gammarus lacustris, and to compare their locomotor activity under different lighting conditions, taking into account the factor of shelter from light. The response of individuals was compared in group and individual experiments under daylight, without light, warm and cold LED light up to 30 lx. The individuals were from two populations: the first is not exposed to light pollution (lake No. 14), while the second is affected (the Angara River within the city of Irkutsk). The locomotor activity of amphipods was assessed in daylight, without light, warm and cold light of 2–2.5 lx and 10–11 lx in the presence and absence of shelters from light. As a result of the experiments, adaptive changes in the reaction of G. lacustris to warm light were identified in individuals from the Angara River. The importance of LED light color temperature and warm light intensity in determining amphipod response to light was also confirmed. It was found that warm and cold light have different effects on the behavior of G. lacustris, and the presence of shelters from light can reduce the negative impact of light pollution in natural conditions. Full article
Show Figures

Figure 1

25 pages, 1697 KB  
Article
Evaluation of Quality Parameters in Canned Pork Enriched with 1% Freeze-Dried Cell-Free Supernatant of Lacticaseibacillus paracasei B1 and Reduced Sodium Nitrite Content
by Paulina Kęska, Miroslava Kačániová, Joanna Stadnik, Karolina Wójciak and Dorota Zielińska
Foods 2025, 14(17), 3080; https://doi.org/10.3390/foods14173080 - 1 Sep 2025
Viewed by 757
Abstract
The search for natural alternatives to sodium nitrite in meat products is driven by concerns about consumer health and the need to maintain product quality and safety. In this study, the effect of sodium nitrite reduction on the quality parameters of canned pork [...] Read more.
The search for natural alternatives to sodium nitrite in meat products is driven by concerns about consumer health and the need to maintain product quality and safety. In this study, the effect of sodium nitrite reduction on the quality parameters of canned pork meat with 1% lyophilized cell-free supernatant (CFS) from L. paracasei B1, during 30 days of storage, was assessed. Reduction of sodium nitrite content led to measurable changes in the color, texture, and oxidative stability of canned pork; however, the presence of 1% CFS helped preserve color, alleviated the negative impact on textural parameters, and limited lipid oxidation, thereby counteracting the typical consequences of nitrite reduction. Among the tested variants, S_75, containing 75% of the standard nitrite dose, showed the best overall balance between color retention, textural integrity, and oxidative stability. Samples without nitrite (S_0) exhibited a noticeable increase in lightness (L*) and decrease in redness (a*) over time, accompanied by a shift towards yellow-brown hues (b*, C*, H°). Importantly, the total color difference (ΔE) was least pronounced in the S_75 variant, with values of approximately 2.5 after 1 day and 2.7 after 30 days, which was markedly lower than in S_50 (ΔE ≈ 6.0 and 3.9) and S_0 (ΔE ≈ 7.9 and 8.5), thereby confirming superior color retention and overall stability during storage. Texture analysis showed that initial hardness and chewiness were higher in nitrite-free samples (S_0), suggesting that the complete omission of nitrite may negatively affect product structure. Nevertheless, all variants softened during storage, and samples with higher nitrite content, particularly S_75, retained better elasticity and cohesiveness. Lipid oxidation, expressed as TBARS values, progressed fastest in samples completely depleted of nitrite (S_0), increasing from 0.31 mg MDA/kg (day 1) to 1.35 mg MDA/kg (day 30), which confirms the antioxidant role of sodium nitrite. Interestingly, the presence of 1% CFS in the variants with reduced nitrite content partially mitigated this effect, as TBARS values in S_75 increased only from 0.29 to 0.46 mg MDA/kg, and, in S_50, from 0.45 to 0.66 mg MDA/kg, compared to the nitrite-free variant. This suggests that CFS may also have contributed to antioxidant protection. Fatty acid profiles remained relatively consistent across methods. Microbiological analysis revealed no significant differences between groups. These results demonstrate that partial nitrite reduction combined with CFS is effective, highlighting the potential of CFS as a promising functional additive in clean label meat preservation. Furthermore, reducing the sodium nitrite content in canned pork products may contribute to improved consumer health by reducing exposure to potentially harmful nitrosamine precursors. Full article
Show Figures

Figure 1

6 pages, 310 KB  
Proceeding Paper
Simulated Attacks and Defenses Using Traffic Sign Recognition Machine Learning Models
by Chu-Hsing Lin, Chao-Ting Yu and Yan-Ling Chen
Eng. Proc. 2025, 108(1), 11; https://doi.org/10.3390/engproc2025108011 - 1 Sep 2025
Viewed by 489
Abstract
Physically simulated attack experiments were conducted using LED lights of different colors, the You Look Only Once (YOLO) v5 model, and the German Traffic Sign Recognition Benchmark (GTSRB) dataset. We attacked and interfered with the traffic sign detection model and tested the model’s [...] Read more.
Physically simulated attack experiments were conducted using LED lights of different colors, the You Look Only Once (YOLO) v5 model, and the German Traffic Sign Recognition Benchmark (GTSRB) dataset. We attacked and interfered with the traffic sign detection model and tested the model’s recognition performance when it was interfered with by LED lights. The model’s accuracy in identifying objects was calculated with the interference. We conducted a series of experiments to test the interference effects of colored lighting. The attack with different colored lights caused a certain degree of interference to the machine learning model, which affected the self-driving vehicle’s ability to recognize traffic signs. It caused the self-driving system to fail to detect the existence of the traffic sign or commit recognition errors. To defend from this attack, we fed back the traffic signs into the training dataset and re-trained the machine learning model. This enabled the machine learning model to resist related attacks and avoid disturbance. Full article
Show Figures

Figure 1

25 pages, 7796 KB  
Article
Time-Dependent Optothermal Performance Analysis of a Flexible RGB-W LED Light Engine
by Md Shafiqul Islam and Mehmet Arik
Micromachines 2025, 16(9), 1007; https://doi.org/10.3390/mi16091007 - 31 Aug 2025
Viewed by 707
Abstract
The wide application of light emitting diodes (LEDs) in lighting systems has necessitated the inclusion of spectral tunability by using multi-color LED chips. Since the lighting requirement depends on the specific application, it is very important to have flexibility in terms of the [...] Read more.
The wide application of light emitting diodes (LEDs) in lighting systems has necessitated the inclusion of spectral tunability by using multi-color LED chips. Since the lighting requirement depends on the specific application, it is very important to have flexibility in terms of the driving conditions. While many applications use single or rather white color, some recent applications require multi-spectral lighting systems especially for agricultural or human-medical treatment applications. These systems are underexplored and pose specific challenges. In this paper, a mixture of red, green, blue, white (RGB-W) LED chips was used to develop a compact light engine specifically for agricultural applications. A computational study was performed to understand the optical distribution. Later, attention was turned into development of prototype light engines followed by experimental validation for both the thermal and optical characteristics. Each LED string was driven separately at different current levels enabling an option for obtaining an infinite number of colors for numerous applications. Each LED string on the developed light engine was driven at 300 mA, 500 mA, 700 mA, and 900 mA current levels, and the optical and thermal parameters were recorded simultaneously. A set of computational models and an experimental study were performed to understand the optical and thermal characteristics simultaneously. Full article
Show Figures

Figure 1

Back to TopTop