Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fluorescent Hybrid Porous Polymers (HPPs)
2.3. Light Modulation of HPP-1 and HPP-2 Dispersed in Solutions
2.4. Light Modulation of HPP-1 and HPP-2 in the Solid-State Powders
2.5. Fabrication of LED Lamps Based on HPP-1 and HPP-2
3. Results and Discussion
3.1. Synthesis, Porosity, and Fluorescent Properties of HPPs
3.2. Tuning White-Light Emission by Physically Blending HPPs in Solvents
3.3. Tuning White-Light Emission by Physically Blending HPPs in the Solid Powder State
3.4. Fabrication of White Light LED Lamps
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Andrade, B.W.; Forrest, S.R. White Organic Light-Emitting Devices for Solid-State Lighting. Adv. Mater. 2004, 16, 1585–1595. [Google Scholar] [CrossRef]
- Chen, J.; Mukherjee, S.; Li, W.; Zeng, H.; Fischer, R.A. Bespoke crystalline hybrids towards the next generation of white LEDs. Nat. Rev. Mater. 2022, 7, 677–678. [Google Scholar] [CrossRef]
- Jing, Y.-N.; Li, S.-S.; Su, M.; Bao, H.; Wan, W.-M. Barbier Hyperbranching Polymerization-Induced Emission toward Facile Fabrication of White Light-Emitting Diode and Light-Harvesting Film. J. Am. Chem. Soc. 2019, 141, 16839–16848. [Google Scholar] [CrossRef]
- Meretska, M.L.; Vissenberg, G.; Lagendijk, A.; Ijzerman, W.L.; Vos, W.L. Systematic Design of the Color Point of a White LED. ACS Photonics 2019, 6, 3070–3075. [Google Scholar] [CrossRef]
- Sun, B.; Jiang, X.; Yung, K.C.; Fan, J.; Pecht, M.G. A Review of Prognostic Techniques for High-Power White LEDs. IEEE Trans. Power Electron. 2017, 32, 6338–6362. [Google Scholar] [CrossRef]
- Halder, A.; Turunen, J. Spectral coherence of white LEDs. Photonics Res. 2022, 10, 2460–2470. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Jing, Z.; Yung, W.K.C.; Fan, J. Bayesian based lifetime prediction for high-power white LEDs. Expert Sys. Appl. 2021, 185, 115627. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, T.; Yan, L.; Liu, X.; Zheng, J.; Ren, F.-d.; Yang, Y.; Liu, B.; Liu, X.; Xu, B. One-Step Synthesis of White-Light-Emitting Carbon Dots for White LEDs with a High Color Rendering Index of 97. Adv. Sci. 2023, 10, 2206386. [Google Scholar] [CrossRef]
- Song, B.-G.; Kim, Y.-K. Hybrid Nanoparticle Layers Toward Enhanced Luminescence of Phosphor Plates for White LEDs. ACS Appl. Mater. Interfaces 2020, 12, 24971–24977. [Google Scholar] [CrossRef]
- Onal, A.; Eren, G.O.; Melikov, R.; Kaya, L.; Nizamoglu, S. Quantum Dot Enabled Efficient White LEDs for Wide Color Gamut Displays. Adv. Mater. Technol. 2023, 8, 2201799. [Google Scholar] [CrossRef]
- Bai, H.; Jin, X.; Ma, X.; Zhao, Y.; Wang, H.; Yu, J.; Ding, L.; Wei, C.; Zhou, H.; Chen, W. Efficient preparation strategy of high quantum yield multicolor CDs for warm white LED. Chem. Eng. J. 2024, 488, 150980. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Jiao, G.; Guan, C.; Bai, C.; Wei, B.; Ma, F.; Zhang, L. CTAB passivates and stabilizes Cu-doped CsPb(Br/I)3 quantum dots for applications in white-LEDs. J. Alloys Compd. 2025, 1010, 178191. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yu, Y.; Ye, F.; Feng, Z.; Huang, Z.; Liu, X.; Zhou, X. Spectrally flat white light emission based on red-yellow-green-blue dye-loaded metal-organic frameworks. Opt. Mater. 2019, 89, 209–213. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Q.; Xu, N.; Zhou, W.; Yuan, J.; Xu, Z. White light generation by regulating hydrogen bond-sensitive ESPT of naphthalimide dyes. Chin. Chem. Lett. 2024, 35, 108348. [Google Scholar] [CrossRef]
- Findlay, N.J.; Bruckbauer, J.; Inigo, A.R.; Breig, B.; Arumugam, S.; Wallis, D.J.; Martin, R.W.; Skabara, P.J. An Organic Down-Converting Material for White-Light Emission from Hybrid LEDs. Adv. Mater. 2014, 26, 7290–7294. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, B.; Xie, X.; Sun, Y.; Duan, L.; Li, J. Remarkable solution and solid-state color-tunable luminescence of diethylamino-coumarin derivatives and application in warm-white LEDs. J. Lumin. 2023, 259, 119819. [Google Scholar] [CrossRef]
- Das, S.; Manam, J. Fluorescein isothiocyanate and rhodamine B dye encapsulated mesoporous SiO2 for applications of blue LED excited white LED. Opt. Mater. 2018, 79, 259–263. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Q.; Liu, Y.; Fu, X.; Zhao, Y.; Cai, J.; Yin, X.; Hou, L. Durable and recyclable conjugated microporous polymer mediated controlled radical polymerization under white LED light irradiation. Polym. Chem. 2021, 12, 6714–6723. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, X.; Ramachandran, S.; Wang, X.; Boonsin, R.; Khendriche, Y.; Valleix, R.; Roblin, J.-P.; Boyer, D.; Chadeyron, G.; et al. 2,2′-Bipyrimidine as a Building Block for the Design of Emissive Conjugated Polymers for Hybrid LED Lighting. ACS Appl. Polym. Mater. 2020, 2, 5581–5591. [Google Scholar] [CrossRef]
- Yuan, W.; Shu, L.; Xu, J.; Hua, C.; Huang, J. Constructing Strategy for Realizing White-Light-Emitting of Organic Aggregates Based on Self-Assembling Conjugated Polymer Nanobowls. ACS Macro Lett. 2025, 14, 51–56. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, M.; Meng, S.; Zhao, H.; Wang, J.; Wu, Y.; Li, J.; Miao, Y.; Wang, H. Engineering linkers to regulate solid-state emission of spirodifluorene-based conjugated porous polymers for white light-emitting devices. Polym. Chem. 2024, 15, 2583–2589. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, J.-J.; Liu, S.-Q.; Zhou, H.; Sun, Y.-J.; Pan, Y.-Z.; Ni, J.; Yang, J.-S. A Trichromatic and White-Light-Emitting MOF Composite for Multi-Dimensional and Multi-Response Ratiometric Luminescent Sensing. Chem. Eur. J. 2018, 24, 9555–9564. [Google Scholar] [CrossRef]
- Mu, H.; Jiang, Y.; Xie, H. Electroluminescence performance of the blue, white and green-red organic light emitting diodes treated by in-situ heating. J. Lumin. 2018, 203, 554–567. [Google Scholar] [CrossRef]
- Guo, K.; Chen, C.; Sun, C.; Peng, C.; Yang, L.; Cai, M.; Zhang, X.; Wei, B. Use of space interlayer in phosphorescent organic light-emitting diodes to improve efficiency and reduce efficiency roll-off. J. Phys. D Appl. Phys. 2016, 49, 235105. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ganesh Kumar, B.; Melikov, R.; Mohammadi Aria, M.; Bahmani Jalali, H.; Nizamoglu, S. Quantum dot white LEDs with high luminous efficiency. Optica 2018, 5, 793–802. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Huang, H.; Cao, X.; Chen, X.; Cao, D. Porous organic polymers as a platform for sensing applications. Chem. Soc. Rev. 2022, 51, 2031–2080. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X.; et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165. [Google Scholar] [CrossRef]
- Yu, S.-B.; Lin, F.; Tian, J.; Yu, J.; Zhang, D.-W.; Li, Z.-T. Water-soluble and dispersible porous organic polymers: Preparation, functions and applications. Chem. Soc. Rev. 2022, 51, 434–449. [Google Scholar] [CrossRef]
- Bonillo, B.; Sprick, R.S.; Cooper, A.I. Tuning Photophysical Properties in Conjugated Microporous Polymers by Comonomer Doping Strategies. Chem. Mater. 2016, 28, 3469–3480. [Google Scholar] [CrossRef]
- Sun, R.; Feng, S.; Wang, D.; Liu, H. Fluorescence-Tuned Silicone Elastomers for Multicolored Ultraviolet Light-Emitting Diodes: Realizing the Processability of Polyhedral Oligomeric Silsesquioxane-Based Hybrid Porous Polymers. Chem. Mater. 2018, 30, 6370–6376. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, Z.; Feng, S.; Wang, D.; Liu, H. A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg2+ ions. Polym. Chem. 2022, 13, 2320–2330. [Google Scholar] [CrossRef]
- Shariatdoust, M.S.; Frencken, A.L.; Khademi, A.; Alizadehkhaledi, A.; van Veggel, F.C.J.M.; Gordon, R. Harvesting Dual-Wavelength Excitation with Plasmon-Enhanced Emission from Upconverting Nanoparticles. ACS Photonics 2018, 5, 3507–3512. [Google Scholar] [CrossRef]
- Mencaroni, L.; Zaykov, A.; Carlotti, B.; Elisei, F.; Bastien, G.; Germani, R.; Havlas, Z.; Spalletti, A.; Michl, J. Uncovering intramolecular singlet fission at the root of the dual fluorescence of 1,4-bis(p-nitro-β-styryl)benzene in solution. Chem. Sci. 2025, 16, 15129–15140. [Google Scholar] [CrossRef]
- Yu, C.; Cheng, C.; Liu, Z.; Ni, Z.; Zhao, Z.; Lu, H.; Hao, E.; Jiao, L. A novel boron-stereogenic fluorophore with dual-state circular polarization luminescence via a self-dispersing strategy. Chem. Sci. 2025, 16, 7971–7980. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Xu, T.; She, M.; Chen, J.; Jia, X.; Liu, P.; Liu, X.; Li, J. Red emissive carbon dots as a fluorescent sensor for fast specific monitoring and imaging of polarity in living cells. J. Mater. Chem. A 2023, 11, 2679–2689. [Google Scholar] [CrossRef]
- Wang, F.; Wang, K.; Cao, D.; Guan, R.; Zhang, H. Gram-Scale Preparation of Long-Wavelength Emitting Fluorescent Tunable Carbon Dots for WLEDs. ACS Mater. Lett. 2025, 7, 193–201. [Google Scholar] [CrossRef]
- Arellano-Morales, A.; Molina-González, J.; Desirena, H.; Bujdud-Perez, J.M.; Calixto, S. High CRI in phosphor-in-doped glass under near-ultraviolet excitation for warm white light-emitting diode. J. Lumin. 2021, 229, 117684. [Google Scholar] [CrossRef]
- Liang, S.; Dang, P.; Li, G.; Molokeev, M.S.; Wei, Y.; Wei, Y.; Lian, H.; Shang, M.; Al Kheraif, A.A.; Lin, J. Controllable two-dimensional luminescence tuning in Eu2+,Mn2+ doped (Ca,Sr)9Sc(PO4)7 based on crystal field regulation and energy transfer. J. Mater. Chem. C 2018, 6, 6714–6725. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, Z.; Liu, S.; Chen, S.; Xing, G.; Wang, W.; Dang, P.; Al Kheraif, A.A.; Li, G.; Lin, J. Highly Efficient Green-to-Yellowish-Orange Emitting Eu2+-Doped Pyrophosphate Phosphors with Superior Thermal Quenching Resistance for w-LEDs. Adv. Opt. Mater. 2020, 8, 1901859. [Google Scholar] [CrossRef]
- Li, B.; Devakumar, B.; Jin, L.; Sun, L.; Huang, X. Synthesis, energy transfer and photoluminescence properties of thermal-stable multicolour-emitting Ca3Gd(AlO)3(BO3)4:Tb3+,Eu3+ phosphors. J. Lumin. 2018, 204, 386–393. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Zhu, Z.; Luo, J.; Wu, Z.; Wang, Z. High-efficient, spherical and thermal-stable carbon dots@silica fluorescent composite as rare earth-free phosphors for white LED. Ceram. Int. 2020, 46, 14706–14712. [Google Scholar] [CrossRef]
- Feng, J.; Chen, L.; Xie, J.; Zhang, Q.; Yu, Y.; Luo, L.; Tang, Q.; Zhou, J.; Li, J. Interrupting the long-range energy migration among Eu3+ by the introduction of unequivalent [NaO8] units to achieve both high quenching concentration and quantum yield in NaY2Ga2InGe2O12. Mater. Today Chem. 2024, 36, 101979. [Google Scholar] [CrossRef]
- Shi, L.; Han, Y.-j.; Wang, S.; Jiao, J.-m.; Chang, S.-h.; Mu, Z.-f.; Mao, Z.-y.; Wang, D.-j.; Zhang, Z.-w.; Lu, X.-l. Synthesis and photoluminescence properties of high thermal stability Mn4+ in orthorhombic SrLa2Mg2W2O12 red phosphor for warm w-LEDs. J. Mater. Sci. Mater. Electron. 2020, 31, 4677–4686. [Google Scholar] [CrossRef]
- Osborne, R.A.; Cherepy, N.J.; Bleier, P.S.; Gaume, R.M.; Payne, S.A. Phosphor Ceramic Composite for Tunable Warm White Light. Materials 2024, 17, 3187. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, F.; Feng, K.; Wang, J.; Lu, Q.; Wang, X.; Zhan, Z.; Chen, W.; Liu, Z.; Zhang, Z.; et al. Rare earth Nd3+-doped organic-inorganic hybrid perovskite quantum dots for white LED. J. Lumin. 2025, 277, 120876. [Google Scholar] [CrossRef]
- Jia, Z.; Xie, X.; Guo, Z.; Kou, Z. High-CRI warm white OLEDs based on TADF-Doped Exciplex Co-host Structure enabled by efficient reverse intersystem crossing. Org. Electron. 2025, 141, 107229. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, B.; Yan, Q.; Wang, Y.; Jia, J.; Jia, H.; Xu, B.; Wong, W.-Y. Tunable white light emission of a large area film-forming macromolecular complex with a high color rendering index. Opt. Mater. Express 2018, 8, 3635–3652. [Google Scholar] [CrossRef]
CHPP-2 (mg/mL) | λex (nm) | 3:1 | 2:1 | 1:1 | 1:2 | 1:3 |
---|---|---|---|---|---|---|
0.3 | 365 | (0.20, 0.22) | (0.24, 0.27) | (0.24, 0.25) | (0.21, 0.20) | (0.23, 0.22) |
400 | (0.21, 0.21) | (0.25, 0.28) | (0.27, 0.30) | (0.24, 0.25) | (0.27, 0.30) | |
0.4 | 365 | (0.21, 0.24) | (0.22, 0.23) | (0.21, 0.22) | (0.25, 0.25) | (0.26, 0.25) |
400 | (0.21, 0.22) | (0.23, 0.24) | (0.24, 0.25) | (0.28, 0.34) | (0.30, 0.37) | |
0.5 | 365 | (0.24, 0.27) | (0.24, 0.28) | (0.26, 0.27) | (0.25, 0.25) | (0.26, 0.26) |
400 | (0.24, 0.27) | (0.25, 0.28) | (0.28, 0.32) | (0.27, 0.32) | (0.29, 0.36) |
λex (nm) | Ethanol | Methanol | THF | Toluene | Petroleum Ether | n-Hexane |
---|---|---|---|---|---|---|
365 | (0.26, 0.27) | (0.22, 0.24) | (0.26, 0.21) | (0.25, 0.21) | (0.20, 0.15) | (0.28, 0.25) |
λex (nm) | 2:1 | 1:1 | 1:2 | 1:3 | 1:4 |
---|---|---|---|---|---|
365 | (0.19, 0.14) | (0.22, 0.17) | (0.26, 0.21) | (0.32, 0.29) | (0.35, 0.30) |
380 | (0.21, 0.17) | (0.28, 0.26) | (0.33, 0.33) | (0.35, 0.36) | (0.36, 0.37) |
390 | (0.23, 0.21) | (0.30, 0.32) | (0.34, 0.39) | (0.35, 0.42) | (0.36, 0.43) |
Sample | CRI | CCT Values (K) | CIE | Material Type | Ref. |
---|---|---|---|---|---|
L30 | 88 | 2369 | (0.35, 0.37) | Inorganic | [37] |
CBPO: Eu | 92.6 | 4044 | (0.34, 0.32) | Inorganic | [39] |
Ca3Gd(AlO)3(BO3)4:Tb/Eu | 85.3 | 4329 | (0.37, 0.38) | Inorganic | [40] |
CD@SiO2 | 89.1 | 4850 | (0.35, 0.37) | Inorganic QD | [41] |
CSSPO | 88 | 3122 | (0.45, 0.44) | Inorganic | [38] |
SrLa2Mg2W2O12:Mn | 29.5 | 1159 | (0.73, 0.267) | Inorganic | [43] |
KSF/YAG | 92.6 | 2716 | (0.45, 0.40) | Inorganic | [44] |
NaY2Ga2InGe2O12:Eu | 93 | 4823 | (0.35, 0.35) | Inorganic | [42] |
FAPbBr:Nd | / | 5263 | (0.33, 0.36) | Organic–Inorganic | [45] |
CTAB-PQDs | / | 6000 | (0.32, 0.33) | Inorganic | [12] |
TADF/ExCi | 95 | / | (0.46, 0.43) | Organic–Inorganic | [46] |
o/m/p-CDs | 90 | 3473 | (0.33, 0.36) | Organic | [11] |
PS-GMA | 95.2 | 5306 | (0.35, 0.34) | Organic Polymer | [47] |
POSS-based HPPs | 89.9 | 2858 | (0.42, 0.36) | Organic porous polymer | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Q.; Lv, Z.; Feng, S.; Wang, D.; Liu, H. Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs. Polymers 2025, 17, 2558. https://doi.org/10.3390/polym17182558
Huo Q, Lv Z, Feng S, Wang D, Liu H. Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs. Polymers. 2025; 17(18):2558. https://doi.org/10.3390/polym17182558
Chicago/Turabian StyleHuo, Qiming, Zhuo Lv, Shengyu Feng, Dengxu Wang, and Hongzhi Liu. 2025. "Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs" Polymers 17, no. 18: 2558. https://doi.org/10.3390/polym17182558
APA StyleHuo, Q., Lv, Z., Feng, S., Wang, D., & Liu, H. (2025). Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs. Polymers, 17(18), 2558. https://doi.org/10.3390/polym17182558