Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Kalanchoe blossfeldiana

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1331 KiB  
Article
Bufadienolide Penetration Through the Skin Membrane and Antiaging Properties of Kalanchoe spp. Juices in Dermal Applications
by Anna Hering, Krzysztof Cal, Mariusz Kowalczyk, Alina Kastsevich, Yahor Ivashchanka, J. Renata Ochocka and Justyna Stefanowicz-Hajduk
Molecules 2025, 30(4), 802; https://doi.org/10.3390/molecules30040802 - 9 Feb 2025
Viewed by 1068
Abstract
Skin aging is accelerated by inflammation processes generated by oxidative stress and external factors such as UV radiation. Plants belonging to the genus Kalanchoe that are rich sources of antioxidants could potentially strengthen the skin barrier if used as ingredients in cosmetic formulations. [...] Read more.
Skin aging is accelerated by inflammation processes generated by oxidative stress and external factors such as UV radiation. Plants belonging to the genus Kalanchoe that are rich sources of antioxidants could potentially strengthen the skin barrier if used as ingredients in cosmetic formulations. However, their use is limited due to the contents of bufadienolides, known cardiotoxins. This study aimed to establish a semi-quantitative profile of bufadienolides in the juices of K. blossfeldiana, K. daigremontiana, and K. pinnata using UHPLC combined with charged aerosol detection (CAD) and high-resolution mass spectrometry (HR-MS). Additionally, the study determined the ability of bufadienolides to penetrate the skin barrier using the Bronaugh Diffusion Cell Apparatus and Strat-M membrane. The study also assessed the ferric and molybdenum-reducing powers, as well as the radical scavenging capabilities of these plants juices using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) methods. The in vitro antihyaluronidase and antityrosinase activities and sun protection factor (SPF) were evaluated spectrophotometrically, indicating moderate capability to inhibit the skin enzymes, but low SPF protection for all analyzed juices. The semi-qualitative analysis demonstrated the presence of bufadienolides occurring in two juices from K. daigremontiana and K. pinnata, with the highest contents of 1,3,5-bersaldegenin-orthoacetate, bryophyllin-A/bryotoxin-C, bersaldegenin-acetate/bryophyllin-C, and diagremontianin. After passing through the skin model, no bufadienolide compounds were present in the subcutaneous filtrate. Antiradical and reduction assays revealed the antioxidant potential of K. blossfeldiana and K. pinnata. These results indicate that Kalanchoe juices have antiaging potential and appear safe for dermal applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

19 pages, 4721 KiB  
Article
Antiaging Properties of Kalanchoe blossfeldiana Ethanol Extract—Ex Vivo and In Vitro Studies
by Justyna Stefanowicz-Hajduk, Anna Nowak, Anna Hering, Łukasz Kucharski, Piotr Graczyk, Mariusz Kowalczyk, Tadeusz Sulikowski and Anna Muzykiewicz-Szymańska
Molecules 2024, 29(23), 5548; https://doi.org/10.3390/molecules29235548 - 24 Nov 2024
Cited by 1 | Viewed by 1773
Abstract
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about [...] Read more.
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine, linked to their remarkable medical properties. These species include Kalanchoe blossfeldiana succulents, which grow in tropical regions. Despite the great interest in this plant, there are no reports about its therapeutic effects on the skin. In this study, the antioxidant properties of K. blossfeldiana ethanol extracts and the skin permeation of a topical hydrogel containing the extract (HKB) were assessed. Additionally, the content of active compounds in the K. blossfeldiana extract was evaluated by UHPLC-MS and HPLC-UV. The extract was analyzed with three antioxidant assays: ABTS, DPPH, and FRAP. Furthermore, the antielastase and antihialuronidase properties of the tested extract were assessed. Ex vivo penetration studies were performed using the Franz diffusion cells. The estimation of the cytotoxicity of HKB was performed by using an MTT assay ((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) on the human fibroblasts HFF-1. The results obtained show that the antioxidant properties of K. blossfeldiana extract were similar to those of ascorbic acid, while antielastase and antihialuronidase tests indicated the strong antiaging and anti-inflammatory activity of the extract (IC50 was 26.8 ± 0.13 and 77.31 ± 2.44 µg/mL, respectively). Moreover, active ingredients contained in K. blossfeldiana extract penetrated through the human skin and accumulated in it. The cytotoxicity test showed that HKB had no significant effect on human fibroblasts at a concentration up to 0.5%. In conclusion, the hydrogel containing the K. blossfeldiana extract can be considered as an interesting and new alternative to dermatologic and cosmetic preparations. Full article
Show Figures

Figure 1

29 pages, 1637 KiB  
Review
Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer
by Ghosoon Albahri, Adnan Badran, Zaher Abdel Baki, Mohamad Alame, Akram Hijazi, Anis Daou and Elias Baydoun
Pharmaceuticals 2024, 17(5), 574; https://doi.org/10.3390/ph17050574 - 30 Apr 2024
Cited by 13 | Viewed by 8243
Abstract
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these [...] Read more.
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored. Full article
Show Figures

Figure 1

13 pages, 2926 KiB  
Article
Exposure to Light of the Abaxial versus Adaxial Side of Detached Kalanchoë blossfeldiana Leaves Affects Anthocyanin Content and Composition Differently
by Wiesław Wiczkowski, Marian Saniewski, Agnieszka Marasek-Ciołakowska, Justyna Góraj-Koniarska, Joanna Mitrus and Marcin Horbowicz
Int. J. Mol. Sci. 2024, 25(5), 2875; https://doi.org/10.3390/ijms25052875 - 1 Mar 2024
Viewed by 1498
Abstract
The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin [...] Read more.
The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared. When the adaxial side was exposed to light, the anthocyanin contents of the leaves did not change. In contrast, when the abaxial side of detached leaves was exposed to light, there was enhanced accumulation of delphinidin-rhamnoside-glucoside, cyanidin-rhamnoside-glucoside, cyanidin-glucoside-glucoside, and two unknown derivatives of petunidin and delphinidin. Application of methyl jasmonate (JA-Me) on the abaxial side exposed to light inhibited the accumulation of these anthocyanins. This effect could probably be due to the presence of these anthocyanins in the epidermal cells of K. blossfeldiana leaves and was visible in the microscopic view of its cross-section. These anthocyanins were directly exposed to JA-Me, leading to inhibition of their formation and/or accumulation. The lack of significant effects of JA-Me on anthocyanin mono- and tri-glycosides may indicate that they are mainly present in the mesophyll tissue of the leaf. Full article
Show Figures

Figure 1

12 pages, 7095 KiB  
Article
Integrative Metabolome and Transcriptome Analyses Reveal the Molecular Mechanism of Yellow-Red Bicolor Formation in Kalanchoe blossfeldiana Petals
by Guizhi Feng, Jiaying Wang, Zimeng Pan and Chengyan Deng
Horticulturae 2023, 9(7), 844; https://doi.org/10.3390/horticulturae9070844 - 24 Jul 2023
Cited by 3 | Viewed by 1945
Abstract
The winter pot kalanchoe (Kalanchoe blossfeldiana) is an ornamental plant with succulent leaves and clustered flowers in Crassulaceae, widely used as a potted flower or garden decoration. In nature, the bicolor petal is an interesting phenomenon, and breeders have succeeded in [...] Read more.
The winter pot kalanchoe (Kalanchoe blossfeldiana) is an ornamental plant with succulent leaves and clustered flowers in Crassulaceae, widely used as a potted flower or garden decoration. In nature, the bicolor petal is an interesting phenomenon, and breeders have succeeded in cultivating the winter pot kalanchoe with bicolored petals. However, its potential molecular mechanism of pigmentation is poorly understood. This study collected a yellow-red colored winter pot kalanchoe to investigate the molecular mechanism underlying its bicolor formation using the integrative analyses of metabolome and transcriptome. The metabolome results showed that both flavonoid and carotenoid co-existed in the winter pot kalanchoe petals, whereas only anthocyanin accumulation showed significant differences—about nineteen times higher in the red region than that in the yellow region. The differentially expressed genes were significantly enriched in the anthocyanin biosynthesis pathway, and the expression level of biosynthetic genes, including KbCHS, KbCHI, KbF3H, KbDFR, KbANS and KbGTs, were significantly upregulated in the red region. Moreover, transcription factors potentially regulating anthocyanin biosynthesis were predicted, and KbMYB2 and KbbHLH1 might play important roles in positively regulating anthocyanin biosynthesis in the red region. The findings reported here provide new insights into the understanding of petal bicolor formation mechanisms and will assist cultivar innovation in winter pot kalanchoe. Full article
Show Figures

Figure 1

23 pages, 4915 KiB  
Article
Kalanchoe sp. Extracts—Phytochemistry, Cytotoxic, and Antimicrobial Activities
by Justyna Stefanowicz-Hajduk, Anna Hering, Mariusz Kowalczyk, Rafał Hałasa, Magdalena Gucwa and J. Renata Ochocka
Plants 2023, 12(12), 2268; https://doi.org/10.3390/plants12122268 - 10 Jun 2023
Cited by 9 | Viewed by 4049
Abstract
Kalanchoe species are succulents occurring in tropical regions. They have many biological and pharmacological properties. In this study, the cytotoxic and antimicrobial activities of water and dichloromethane Kalanchoe fractions obtained from ethanol extracts of three Kalanchoe species—K. daigremontiana, K. pinnata, [...] Read more.
Kalanchoe species are succulents occurring in tropical regions. They have many biological and pharmacological properties. In this study, the cytotoxic and antimicrobial activities of water and dichloromethane Kalanchoe fractions obtained from ethanol extracts of three Kalanchoe species—K. daigremontiana, K. pinnata, and K. blossfeldiana were estimated. The cytotoxic effect was assessed on human cancer cell lines—ovarian SKOV-3, cervical HeLa, breast MCF-7, and melanoma A375—by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The antimicrobial activity was estimated on selected Gram-positive and Gram-negative bacteria strains and on Candida albicans. The phytochemical analysis of selected Kalanchoe extracts was conducted by LC-QTOF-MS. The obtained results showed that the water fraction of K. blossfeldiana was active both on the tested cancer cells (IC50 values were 28.28 ± 2.76 and 32.51 ± 0.69 µg/mL on HeLa and SKOV-3, respectively) and bacteria strains (MIC values were 16 and 32 µg/mL on S. epidermidis and S. aureus, respectively). The water fraction of K. pinnata also had a significant effect on S. epidermidis and S. aureus, with MIC values of 32 and 64 µg/mL, respectively. The water fraction of K. blossfeldiana triggered a decrease in mitochondrial membrane potential (MMP) and induced cell cycle arrest in the G2/M phase in the SKOV-3 and HeLa cells. This fraction did not significantly increase cellular oxidative stress level. The DPPH and ABTS assays revealed that the water fraction of K. blossfeldiana had a strong antioxidant effect (IC50 was 9.44 ± 0.06 and 3.17 ± 0.1 µg/mL, respectively). The phytochemical analysis of the extracts of K. blossfeldiana and K. pinnata revealed the presence of at least 218 main components. The most frequently occurring were flavonol glycosides (31 metabolites), phenylpropanoids (13 metabolites), gallic acid derivatives (13 compounds), benzoic acid derived compounds (14 metabolites), and acyclic alcohol glycosides (16 compounds). In addition, proanthocyanidins were detected mainly in K. blossfeldiana. The study indicates that the water fraction of K. blossfeldiana has significant biological potential and can be further investigated towards anticancer and antimicrobial application. Full article
(This article belongs to the Special Issue Plant Extracts and Their Cytotoxic Activities)
Show Figures

Figure 1

19 pages, 4655 KiB  
Article
Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process
by Marian Saniewski, Joanna Szablińska-Piernik, Agnieszka Marasek-Ciołakowska, Joanna Mitrus, Justyna Góraj-Koniarska, Lesław B. Lahuta, Wiesław Wiczkowski, Kensuke Miyamoto, Junichi Ueda and Marcin Horbowicz
Int. J. Mol. Sci. 2023, 24(1), 626; https://doi.org/10.3390/ijms24010626 - 30 Dec 2022
Cited by 4 | Viewed by 2587
Abstract
Accumulation of anthocyanins in detached leaves and in excised stems of Kalanchoë blossfeldiana kept under natural light conditions in the presence or absence of methyl jasmonate (JA-Me) was investigated. When the abaxial surface of detached leaves was held lower than the adaxial surface [...] Read more.
Accumulation of anthocyanins in detached leaves and in excised stems of Kalanchoë blossfeldiana kept under natural light conditions in the presence or absence of methyl jasmonate (JA-Me) was investigated. When the abaxial surface of detached leaves was held lower than the adaxial surface (the normal or natural position) under natural light conditions, anthocyanins were not accumulated on the abaxial side of the leaves. In contrast, when the adaxial surface of detached leaves was held lower than the abaxial surface (inverted position), anthocyanins were highly accumulated on the abaxial side of the leaves. These phenomena were independent of the growth stage of K. blossfeldiana as well as photoperiod. Application of JA-Me in lanolin paste significantly inhibited anthocyanin accumulation induced on the abaxial side of detached leaves held in an inverted position in a dose-dependent manner. Anthocyanin accumulation in the excised stem in response to natural light was also significantly inhibited by JA-Me in lanolin paste. Possible mechanisms of anthocyanin accumulation on the abaxial side of detached K. blossfeldiana leaves held in an inverted position under natural light conditions and the inhibitory effect of JA-Me on this process are described. The accompanying changes in the content of primary metabolites and histological analyses were also described. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 4078 KiB  
Article
Low-Intensity Blue Light Supplemented during Photoperiod in Controlled Environment Induces Flowering and Antioxidant Production in Kalanchoe
by Jingli Yang, Jinnan Song and Byoung Ryong Jeong
Antioxidants 2022, 11(5), 811; https://doi.org/10.3390/antiox11050811 - 21 Apr 2022
Cited by 15 | Viewed by 3284
Abstract
Kalanchoe (Kalanchoe blossfeldiana) is a qualitative short-day plant with a high aesthetic value. When the night length is less than a specified cultivar-dependent critical value, however, it does not develop flowers. This study investigated the effects of low-intensity supplementary or night [...] Read more.
Kalanchoe (Kalanchoe blossfeldiana) is a qualitative short-day plant with a high aesthetic value. When the night length is less than a specified cultivar-dependent critical value, however, it does not develop flowers. This study investigated the effects of low-intensity supplementary or night interrupting (NI) blue (B) light on the plant performance and flower induction in kalanchoe ‘Rudak’. During the photoperiod in a closed-type plant factory with day/night temperatures of 23 °C/18 °C, white (W) LEDs were utilized to produce a photosynthetic photon flux density (PPFD) of 300 μmol m−2 s−1, and B LEDs were used to give supplementary/NI light at a PPFD of 10 μmol m−2 s−1. The control plants were exposed to a 10-h short day (SD, positive control) or a 13-h long day (LD, negative control) treatment without any B light. The B light was used for 4 h either (1) to supplement the W LEDs at the end of the SD (SD + 4B) and LD (LD + 4B), or (2) to provide night interruption (NI) in the SD (SD + NI-4B) and LD (LD + NI-4B). The LD + 4B and LD + NI-4B significantly enhanced plant growth and development, followed by the SD + 4B and SD + NI-4B treatments. In addition, the photosynthesis, physiological parameters, and activity of antioxidant systems were improved in those treatments. Except in the LD and LD + NI-4B, all plants flowered. It is noteworthy that kalanchoe ‘Rudak’ flowered in the LD + 4B treatment and induced the greatest number of flowers, followed by SD + NI-4B and SD + 4B. Plants grown in the LD + 4B treatment had the highest expression levels of certain monitored genes related to flowering. The results indicate that a 4-h supplementation of B light during the photoperiod in both the SD and LD treatments increased flower bud formation, promoted flowering, and enhanced plant performance. Kalanchoe ‘Rudak’ flowered especially well in the LD + 4B, presenting a possibility of practically inducing flowering in long-day seasons with B light application. Full article
(This article belongs to the Special Issue Antioxidant Mechanisms in Plants)
Show Figures

Figure 1

19 pages, 6202 KiB  
Article
The Bacillus cereus Strain EC9 Primes the Plant Immune System for Superior Biocontrol of Fusarium oxysporum
by Kenneth Madriz-Ordeñana, Sercan Pazarlar, Hans Jørgen Lyngs Jørgensen, Tue Kjærgaard Nielsen, Yingqi Zhang, Kai Lønne Nielsen, Lars Hestbjerg Hansen and Hans Thordal-Christensen
Plants 2022, 11(5), 687; https://doi.org/10.3390/plants11050687 - 2 Mar 2022
Cited by 20 | Viewed by 4945
Abstract
Antibiosis is a key feature widely exploited to develop biofungicides based on the ability of biological control agents (BCAs) to produce fungitoxic compounds. A less recognised attribute of plant-associated beneficial microorganisms is their ability to stimulate the plant immune system, which may provide [...] Read more.
Antibiosis is a key feature widely exploited to develop biofungicides based on the ability of biological control agents (BCAs) to produce fungitoxic compounds. A less recognised attribute of plant-associated beneficial microorganisms is their ability to stimulate the plant immune system, which may provide long-term, systemic self-protection against different types of pathogens. By using conventional antifungal in vitro screening coupled with in planta assays, we found antifungal and non-antifungal Bacillus strains that protected the ornamental plant Kalanchoe against the soil-borne pathogen Fusarium oxysporum in experimental and commercial production settings. Further examination of one antifungal and one non-antifungal strain indicated that high protection efficacy in planta did not correlate with antifungal activity in vitro. Whole-genome sequencing showed that the non-antifungal strain EC9 lacked the biosynthetic gene clusters associated with typical antimicrobial compounds. Instead, this bacterium triggers the expression of marker genes for the jasmonic and salicylic acid defence pathways, but only after pathogen challenge, indicating that this strain may protect Kalanchoe plants by priming immunity. We suggest that the stimulation of the plant immune system is a promising mode of action of BCAs for the development of novel biological crop protection products. Full article
(This article belongs to the Special Issue Biological Control of Plant Diseases)
Show Figures

Figure 1

46 pages, 4086 KiB  
Article
Italian Vascular Flora: New Findings, Updates and Exploration of Floristic Similarities between Regions
by Adriano Stinca, Carmelo Maria Musarella, Leonardo Rosati, Valentina Lucia Astrid Laface, Wolfgang Licht, Emanuele Fanfarillo, Robert Philipp Wagensommer, Gabriele Galasso, Simonetta Fascetti, Assunta Esposito, Tiberio Fiaschi, Gianluca Nicolella, Giuseppina Chianese, Giampiero Ciaschetti, Giovanni Salerno, Paola Fortini, Romeo Di Pietro, Enrico Vito Perrino, Claudia Angiolini, Leopoldo De Simone and Giacomo Meiadd Show full author list remove Hide full author list
Diversity 2021, 13(11), 600; https://doi.org/10.3390/d13110600 - 21 Nov 2021
Cited by 58 | Viewed by 8763
Abstract
The tradition of floristic studies in Italy has made it possible to obtain a good knowledge of plant diversity both on a national and regional scale. However, the lack of knowledge for some areas, advances in plant systematics and human activities related to [...] Read more.
The tradition of floristic studies in Italy has made it possible to obtain a good knowledge of plant diversity both on a national and regional scale. However, the lack of knowledge for some areas, advances in plant systematics and human activities related to globalization, highlight the need for further studies aimed at improving floristic knowledge. In this paper, based on fieldwork and herbaria and literature surveys, we update the knowledge on the Italian vascular flora and analyze the floristic similarities between the administrative regions. Four taxa, all exotic, were recorded for the first time in Italy and Europe. In detail, Elaeodendron croceum, Kalanchoë blossfeldiana, and Sedum spathulifolium var. spathulifolium were found as casual aliens, while Oxalis brasiliensis was reported as historical record based on some herbarium specimens. Furthermore, Kalanchoë laxiflora was confirmed as a casual alien species for Italy and Europe. Status changes for some taxa were proposed at both national and regional levels, as well as many taxa were reported as new or confirmed at the regional level. Currently the Italian vascular flora comprises 9150 taxa of which 7547 are native (of which 1598 are Italian endemics) and 1603 are exotic at the national level. The multivariate analysis of updated floristic data on a regional scale showed a clear distribution along the latitudinal gradient, in accordance with the natural geographical location of the regions in Italy. This pattern of plants distribution was not affected by the introduction of alien species. Despite some taxonomic and methodological issues which are still open, the data obtained confirm the important role of floristic investigations in the field and in herbaria, as well as the collaborative approach among botanists, in order to improve the knowledge of the Italian and European vascular flora. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Vascular Flora)
Show Figures

Graphical abstract

16 pages, 3419 KiB  
Article
Restoring Fertility for Novel Interspecific Hybrids between Kalanchoe garambiensis and K. nyikae Using Colchicine Treatment
by Yi Kuang, Chi-Hsuan Lu and Fu-Chiun Hsu
Plants 2021, 10(2), 209; https://doi.org/10.3390/plants10020209 - 22 Jan 2021
Cited by 12 | Viewed by 4079
Abstract
Interspecific hybridization is an effective strategy in Kalanchoe breeding programs for the introduction of new traits. Wild species within the Kalanchoe genus are valuable genetic resources for providing new horticulture traits and to improve environmental adaptations. However, reproductive barriers associated with fertilization and [...] Read more.
Interspecific hybridization is an effective strategy in Kalanchoe breeding programs for the introduction of new traits. Wild species within the Kalanchoe genus are valuable genetic resources for providing new horticulture traits and to improve environmental adaptations. However, reproductive barriers associated with fertilization and hybrid sterility must be overcome to produce fertile hybrid progenies. To approach the breeding objectives for Kalanchoe cut flower cultivars with long stem traits and adaptation to tropical/subtropical regions, a tropical species endemic to Taiwan, Kalanchoe garambiensis Kudo, was used as a parent to cross with other long stem Kalanchoe species. Reciprocal crossing was effective in overcoming interspecific unilateral incompatibility in our crossed pairs. One superior hybrid, ‘103-1’, produced capsules without seeds by selfing and backcrossing with pollens from either parent. Other than the seedless trait, failure of pollen releasing from anther, pollen aggregation and no pollen germination in ‘103-1’ suggested its F1 sterility. Colchicine treatments on apical buds of ‘103-1’ successfully overcame potential meiotic abnormalities by doubling ploidy. For the first time, fertile interspecific hybrids of K. garambiensis and K. nyikae Engler were generated. The fertile hybrid has further produced progeny populations by crossing with K. nyikae or K. blossfeldiana von Poelln, ‘Ida’. Full article
Show Figures

Figure 1

14 pages, 3894 KiB  
Article
Greener Synthesis of Zinc Oxide Nanoparticles: Characterization and Multifaceted Applications
by Ali Aldalbahi, Seham Alterary, Ruba Ali Abdullrahman Almoghim, Manal A. Awad, Noura S. Aldosari, Shouq Fahad Alghannam, Alhanouf Nasser Alabdan, Shaden Alharbi, Budur Ali Mohammed Alateeq, Atheer Abdulrahman Al Mohsen, Munirah A. Alkathiri and Raghad Abdulrahman Alrashed
Molecules 2020, 25(18), 4198; https://doi.org/10.3390/molecules25184198 - 14 Sep 2020
Cited by 100 | Viewed by 7875
Abstract
Nanoparticles (NPs) have unique properties compared to their bulk counterparts, and they have potentials for various applications in many fields of life science. Green-synthesized NPs have garnered considerable interest due to their inherent features such as rapidity, eco-friendliness and cost-effectiveness. Zinc oxide nanoparticles [...] Read more.
Nanoparticles (NPs) have unique properties compared to their bulk counterparts, and they have potentials for various applications in many fields of life science. Green-synthesized NPs have garnered considerable interest due to their inherent features such as rapidity, eco-friendliness and cost-effectiveness. Zinc oxide nanoparticles (ZnO NPs) were synthesized using an aqueous extract of Kalanchoe blossfeldiana as a reducing agent. The resulting nanoparticles were characterized via X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, photoluminescence (PL), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The antimicrobial potential of the synthesized ZnO NPs against bacterial and fungal strains was examined by the disk diffusion method, and they showed a promising antibacterial and antifungal potential. The catalytic activity of the synthesized ZnO NPs in reducing methylene blue (MB) and eosin was studied via UV-Vis spectroscopy. The decolorization percentages of the MB and Eosin Y dyes were 84% and 94%, respectively, which indicate an efficient degradation of the ZnO NPs. In addition, the cytotoxic activity of the ZnO NPs on the HeLa cell line was evaluated via in vitro assay. The MTT assay results demonstrate a potent cytotoxic effect of the ZnO NPs against the HeLa cancer cell line. Full article
Show Figures

Figure 1

14 pages, 5758 KiB  
Article
Flowering and Morphogenesis of Kalanchoe in Response to Quality and Intensity of Night Interruption Light
by Dong Il Kang, Hai Kyoung Jeong, Yoo Gyeong Park and Byoung Ryong Jeong
Plants 2019, 8(4), 90; https://doi.org/10.3390/plants8040090 - 4 Apr 2019
Cited by 15 | Viewed by 5441
Abstract
The effects of the quality and intensity of night interruption light (NIL) on the flowering and morphogenesis of kalanchoe (Kalanchoe blossfeldiana) ‘Lipstick’ and ‘Spain’ were investigated. Plants were raised in a closed-type plant factory under 250 μmol·m−2·s−1 PPFD [...] Read more.
The effects of the quality and intensity of night interruption light (NIL) on the flowering and morphogenesis of kalanchoe (Kalanchoe blossfeldiana) ‘Lipstick’ and ‘Spain’ were investigated. Plants were raised in a closed-type plant factory under 250 μmol·m−2·s−1 PPFD white light emitting diodes (LEDs) with additional light treatments. These treatments were designated long day (LD, 16 h light, 8 h dark), short day (SD, 8 h light, 16 h dark), and SD with a 4 h night interruption (NI). The NIL was constructed from 10 μmol·m−2·s−1 or 20 μmol·m−2·s−1 PPFD blue (NI-B), red (NI-R), white (NI-W), or blue and white (NI-BW) LEDs. In ‘Spain’, the SPAD value, area and thickness of leaves and plant height increased in the NI treatment as compared to the SD treatment. In ‘Lipstick’, most morphogenetic characteristics in the NI treatment showed no significant difference to those in the SD treatment. For both cultivars, plants in SD were significantly shorter than those in other treatments. The flowering of Kalanchoe ‘Lipstick’ was not affected by the NIL quality, while Kalanchoe ‘Spain’ flowered when grown in SD and 10 μmol·m−2·s−1 PPFD NI-B. These results suggest that the NIL quality and intensity affect the morphogenesis and flowering of kalanchoe, and that different cultivars are affected differently. There is a need to further assess the effects of the NIL quality and intensity on the morphogenesis and flowering of short-day plants for practical NIL applications. Full article
Show Figures

Figure 1

Back to TopTop