Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = KMT2A rearrangement (KMT2Ar)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 427 KiB  
Review
Therapeutic Implications of Menin Inhibitors in the Treatment of Acute Leukemia: A Critical Review
by Martina Canichella, Cristina Papayannidis, Carla Mazzone and Paolo de Fabritiis
Diseases 2025, 13(7), 227; https://doi.org/10.3390/diseases13070227 - 19 Jul 2025
Viewed by 626
Abstract
Menin inhibitors are a class of targeted agents that exemplify how a deeper understanding of leukemia pathogenesis can unify seemingly distinct genetic acute leukemia subgroups under a common therapeutic strategy. In particular, acute leukemia with NPM1 mutations (NPM1m) and KMT2A rearrangements ( [...] Read more.
Menin inhibitors are a class of targeted agents that exemplify how a deeper understanding of leukemia pathogenesis can unify seemingly distinct genetic acute leukemia subgroups under a common therapeutic strategy. In particular, acute leukemia with NPM1 mutations (NPM1m) and KMT2A rearrangements (KMT2Ar) represent the primary targets of this emerging drug class. Acute myeloid leukemia (AML) with NPM1m—which accounts for approximately 30% of AML cases and AML or acute lymphoblastic leukemia (ALL) with KMT2Ar—and is present in 5–10% of cases, shares a common pathogenetic mechanism: the aberrant activation of the MEIS1–HOXA axis. These leukemic subsets are associated with poor prognosis, particularly in the relapsed/refractory (R/R) setting. For KMT2Ar AML, the prognosis is especially dismal, with a median overall survival (OS) of 2.4 months and a complete remission (CR) rate of only 5%. In NPM1m AML, intensive chemotherapy achieves remission in approximately 80% of cases, but relapse remains a major challenge, occurring in nearly 50% of patients. Relapsed NPM1m AML is linked to a poor prognosis, with a median OS of 6.1 months (12-month OS: 30%) and a median relapse-free survival (RFS) of 5.5 months (12-month RFS: 34%). Menin inhibitors directly target the leukemogenic transcriptional program driven by HOX and MEIS1, disrupting oncogenic signaling and offering a promising therapeutic approach for these high-risk patients. This class of agents has rapidly progressed through clinical development, showing promising antileukemic activity in both treatment-naïve and R/R AML. Currently, six menin inhibitors are in clinical evaluation as monotherapy or in combination regimens: revumenib, ziftomenib, bleximenib (previously JNJ-75276617), enzomenib (previously DSP-5336), DS-1594, and BMF-219. In this review, we critically analyze the clinical development and therapeutic potential of the four most extensively studied menin inhibitors—revumenib, ziftomenib, bleximenib, and enzomenib. We discuss their efficacy, safety profiles, and potential roles within the current treatment algorithm. The continued clinical evaluation of menin inhibitors may redefine treatment paradigms for NPM1m and KMT2Ar AML and other acute leukemia with the aberrant MEIS1-HOXA axis, offering new hope for patients with limited therapeutic options. Full article
(This article belongs to the Special Issue Targeted Therapies for Acute Leukemias)
Show Figures

Figure 1

7 pages, 2689 KiB  
Case Report
Cryptic KMT2A::AFDN Fusion Due to AFDN Insertion into KMT2A in a Patient with Acute Monoblastic Leukemia
by Qing Wei, Gokce A. Toruner, Beenu Thakral, Keyur P. Patel, Naveen Pemmaraju, Sa A. Wang, Rashmi Kanagal-Shamanna, Guilin Tang, Ghayas C. Issa, Sanam Loghavi, L Jeffrey Medeiros and Courtney DiNardo
Genes 2025, 16(3), 317; https://doi.org/10.3390/genes16030317 - 7 Mar 2025
Cited by 1 | Viewed by 1233
Abstract
Background: KMT2A rearrangements occur in ~10% of acute myeloid leukemia (AML) cases and are critical for classification, risk stratification, and use of targeted therapy. However, insertions involving the KMT2A gene can evade detection using chromosomal analysis and/or fluorescence in situ hybridization (FISH). Methods: [...] Read more.
Background: KMT2A rearrangements occur in ~10% of acute myeloid leukemia (AML) cases and are critical for classification, risk stratification, and use of targeted therapy. However, insertions involving the KMT2A gene can evade detection using chromosomal analysis and/or fluorescence in situ hybridization (FISH). Methods: We present a case of a 22-year-old woman with acute monoblastic leukemia harboring a cryptic KMT2A::AFDN fusion identified by RNA sequencing. Initial FISH showed a 3′ KMT2A deletion, while conventional karyotyping and the automated bioinformatic pipeline for optical genome mapping (OGM) did not identify the canonical translocation. Results: To resolve these discrepancies, metaphase KMT2A FISH (break-apart fusion probe) was performed to assess whether KMT2A was translocated to another chromosome. However, the results did not support this possibility. As the fusion signal remained on the normal chromosome 11, with the 5′ KMT2A signal localized to the derivative chromosome 11. A subsequent manual review of the OGM data revealed a cryptic ~300 kb insertion of AFDN into the 3′ region of KMT2A, reconciling the discrepancies between chromosomal analysis, FISH, and RNA fusion results. Conclusions: This case highlights the importance of integrating multiple testing modalities with expert review when there is a discrepancy. Our findings emphasize the need for a comprehensive approach to genomic assessment to enhance diagnostic accuracy and guide therapeutic decision-making. Full article
(This article belongs to the Special Issue Clinical Molecular Genetics in Hematologic Diseases)
Show Figures

Figure 1

20 pages, 573 KiB  
Systematic Review
Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review
by Arantza Sanvisens, Clara Bueno, Oriol Calvete, Francesc Solé, Rafael Marcos-Gragera and Marta Solans
Cancers 2025, 17(3), 370; https://doi.org/10.3390/cancers17030370 - 23 Jan 2025
Viewed by 1582
Abstract
Objective: Acute lymphoblastic leukaemia (ALL) is the most frequent childhood cancer. Infant ALL (<1 year) is rare, but it captures a lot of interest due to its poor prognosis, especially in patients harbouring KMT2A rearrangements, which have been demonstrated to arise prenatally. However, [...] Read more.
Objective: Acute lymphoblastic leukaemia (ALL) is the most frequent childhood cancer. Infant ALL (<1 year) is rare, but it captures a lot of interest due to its poor prognosis, especially in patients harbouring KMT2A rearrangements, which have been demonstrated to arise prenatally. However, epidemiological studies aimed at identifying specific risk factors in such cases are scarce, mainly due to sample-size limitations. We conducted a scoping review to elucidate the prenatal or perinatal factors associated with infant ALL. Methods: Original articles, letters, or conference abstracts published up to June 2022 were identified using the PubMed, Web of Science, and Embase databases, and 33 observational studies were selected. Results: The study reveals several well-established associations across the literature, such as maternal exposure to pesticides and high birth weight, and outlines suggestive associations, such as parental heavy smoking, parental use of several medications (e.g., dipyrone), and maternal exposure to air pollution during pregnancy. Conclusions: This scoping review summarizes the few observational studies that have analysed the prenatal and perinatal risk factors for ALL in infants diagnosed before the age of 1 year. The results of this review highlight the lack of research into this specific age group, which merits further research. Full article
(This article belongs to the Special Issue Study on Epidemiology of Childhood Cancer)
Show Figures

Figure 1

19 pages, 980 KiB  
Review
Menin Inhibitors: New Targeted Therapies for Specific Genetic Subtypes of Difficult-to-Treat Acute Leukemias
by Pasquale Niscola, Valentina Gianfelici, Marco Giovannini, Daniela Piccioni, Carla Mazzone and Paolo de Fabritiis
Cancers 2025, 17(1), 142; https://doi.org/10.3390/cancers17010142 - 4 Jan 2025
Cited by 1 | Viewed by 3386
Abstract
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A [...] Read more.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development. By disrupting the MEN1-KMT2Ar complex, a group of proteins involved in chromatin remodeling, MIs induce apoptosis and differentiation AL expressing KMT2Ar or NPM1m AML. Phase I and II clinical trials have evaluated MIs as standalone treatments and combined them with other synergistic drugs, yielding promising results. These trials have demonstrated notable response rates with manageable toxicities. Among MIs, ziftomenib received orphan drug and breakthrough therapy designations from the European Medicines Agency in January 2024 and the Food and Drug Administration (FDA) in April 2024, respectively, for treating R/R patients with NPM1m AML. Additionally, in November 2024, the FDA approved revumenib for treating R/R patients with KMT2Ar-AL. This review focuses on the pathophysiology of MI-sensitive AL, primarily AML. It illustrates data from clinical trials and discusses the emergence of resistance mechanisms. In addition, we outline future directions for the use of MIs and emphasize the need for further research to fully realize the potential of these novel compounds, especially in the context of specific genetic subtypes of challenging AL. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

15 pages, 2071 KiB  
Article
Unveiling the Complexity of KMT2A Rearrangements in Acute Myeloid Leukemias with Optical Genome Mapping
by Sandrine A. Lacoste, Vanessa Gagnon, François Béliveau, Sylvie Lavallée, Vanessa Collin and Josée Hébert
Cancers 2024, 16(24), 4171; https://doi.org/10.3390/cancers16244171 - 14 Dec 2024
Cited by 3 | Viewed by 1752
Abstract
Background: KMT2A rearrangements are major genetic entities in the classification of acute myeloid leukemias (AMLs), but their diverse and frequently cryptic nature makes their detection and characterization challenging. Karyotypic anomalies at the KMT2A locus and/or abnormal KMT2A Fluorescence in situ hybridization (FISH) [...] Read more.
Background: KMT2A rearrangements are major genetic entities in the classification of acute myeloid leukemias (AMLs), but their diverse and frequently cryptic nature makes their detection and characterization challenging. Karyotypic anomalies at the KMT2A locus and/or abnormal KMT2A Fluorescence in situ hybridization (FISH) results strongly indicate a KMT2A fusion, but the identification of the translocation partner gene often requires further investigation. KMT2A partial tandem duplications (PTDs), on the other hand, are undetectable by standard cytogenetics methods. Methods: We herein report the optical genome mapping (OGM) analysis of 38 AML samples: 12 cryptic/hard-to-characterize KMT2A fusions, 20 KMT2A-PTDs and 6 cases with no KMT2A anomaly. Results: In all the fusion cases, the rearrangement between 5’KMT2A and the 3’partner gene was identified as a translocation t(v;11q23.3)(v;118479068), and the analysis of co-occurring variants elucidated the formation of the rearrangement. The KMT2A variants detected in the KMT2A-PTD cases were surprisingly diverse. Combined with RNAseq data, OGM analysis identified 9 distinct in-frame KMT2A-PTD variants among the 20 cases analyzed. Conclusions: With the clinical development of menin inhibitors for the treatment of patients with KMT2A-rearranged acute leukemias, the characterization of these rearrangements is of utmost importance. Our results suggest that OGM is a promising tool for accurate genetic diagnosis in this context. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

10 pages, 2493 KiB  
Case Report
A Rare Case of a Malignant Proliferating Trichilemmal Tumor: A Molecular Study Harboring Potential Therapeutic Significance and a Review of Literature
by Mokhtar H. Abdelhammed, Hanna Siatecka, A. Hafeez Diwan, Christie J. Finch, Angela D. Haskins, David J. Hernandez and Ya Xu
Dermatopathology 2024, 11(4), 354-363; https://doi.org/10.3390/dermatopathology11040038 - 10 Dec 2024
Cited by 1 | Viewed by 1996
Abstract
Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on [...] Read more.
Malignant proliferating trichilemmal tumors (MPTTs), arising from the external root sheath of hair follicles, are exceptionally rare, with limited documentation of their genetic alterations. We present a case of a 64-year-old African American woman who initially presented with a gradually enlarging nodule on her posterior scalp. An initial biopsy at an outside hospital suggested metastatic adenocarcinoma or squamous cell carcinoma (SCC) of an uncertain origin. A subsequent wide local excision revealed a 2.0 cm tumor demonstrating characteristic trichilemmal keratinization, characterized by an abrupt transition from the nucleated epithelium to a laminated keratinized layer, confirming MPTT. Immunohistochemistry demonstrated diffuse p53 expression, patchy CD 34 expression, focal HER2 membranous expression, and patchy p16 staining (negative HPV ISH). A molecular analysis identified TP53 mutation and amplifications in the ERBB2 (HER2), BRD4, and TYMS. Additional gene mutations of uncertain significance included HSPH1, ATM, PDCD1 (PD-1), BARD1, MSH3, LRP1B, KMT2C (MLL3), GNA11, and RUNX1. Assessments for the homologous recombination deficiency, PD-L1 expression, gene rearrangement, altered splicing, and DNA mismatch repair gene expression were negative. The confirmation of ERBB2 (HER2) amplification in the MPTT through a molecular analysis suggests potential therapeutic avenues involving anti-HER2 monoclonal antibodies. The presence of the TP53 mutation, without the concurrent gene mutations typically observed in SCC, significantly aided in this differential diagnosis. Full article
Show Figures

Figure 1

15 pages, 790 KiB  
Review
Synergistic Strategies for KMT2A-Rearranged Leukemias: Beyond Menin Inhibitor
by Sandra Cantilena, Mohamed AlAmeri, Noelia Che, Owen Williams and Jasper de Boer
Cancers 2024, 16(23), 4017; https://doi.org/10.3390/cancers16234017 - 29 Nov 2024
Cited by 1 | Viewed by 2757
Abstract
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A–menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often [...] Read more.
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A–menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge. This review explores combination therapies aimed at overcoming resistance and improving patient outcomes. Potential strategies include inhibiting DOT1L, a histone methyltransferase essential for KMT2A-driven transcription, and BRD4, a regulator of transcriptional super-enhancers. Additionally, targeting MYC, a key oncogene frequently upregulated in KMT2A-rearranged leukemia, offers another approach. Direct inhibition of KMT2A-fusion proteins and c-MYB, a transcription factor critical for leukemic stem cell maintenance, is also explored. By integrating these diverse strategies, we propose a comprehensive therapeutic paradigm that targets multiple points of the leukemic transcriptional and epigenetic network. These combination approaches aim to disrupt key oncogenic pathways, reduce resistance, and enhance treatment efficacy, ultimately providing more durable remissions and improved survival for patients with KMT2A-rearranged leukemias. Full article
(This article belongs to the Special Issue The Clinical Trials and Management of Acute Myeloid Leukemia)
Show Figures

Graphical abstract

15 pages, 2643 KiB  
Article
Patient-Specific Circulating Tumor DNA for Monitoring Response to Menin Inhibitor Treatment in Preclinical Models of Infant Leukemia
by Louise Doculara, Kathryn Evans, J. Justin Gooding, Narges Bayat and Richard B. Lock
Cancers 2024, 16(23), 3990; https://doi.org/10.3390/cancers16233990 - 28 Nov 2024
Viewed by 1112
Abstract
Background: In infant KMT2A (MLL1)-rearranged (MLL-r) acute lymphoblastic leukemia (ALL), early relapse and treatment response are currently monitored through invasive repeated bone marrow (BM) biopsies. Circulating tumor DNA (ctDNA) in peripheral blood (PB) provides a minimally invasive alternative, allowing for more [...] Read more.
Background: In infant KMT2A (MLL1)-rearranged (MLL-r) acute lymphoblastic leukemia (ALL), early relapse and treatment response are currently monitored through invasive repeated bone marrow (BM) biopsies. Circulating tumor DNA (ctDNA) in peripheral blood (PB) provides a minimally invasive alternative, allowing for more frequent disease monitoring. However, a poor understanding of ctDNA dynamics has hampered its clinical translation. We explored the predictive value of ctDNA for detecting minimal/measurable residual disease (MRD) and drug response in a patient-derived xenograft (PDX) model of infant MLL-r ALL. Methods: Immune-deficient mice engrafted with three MLL-r ALL PDXs were monitored for ctDNA levels before and after treatment with the menin inhibitor SNDX-50469. Results: The amount of ctDNA detected strongly correlated with leukemia burden during initial engraftment prior to drug treatment. However, following SNDX-50469 treatment, the leukemic burden assessed by either PB leukemia cells through flow cytometry or ctDNA levels through droplet digital polymerase chain reaction (ddPCR) was discrepant. This divergence could be attributed to the persistence of leukemia cells in the spleen and BM, highlighting the ability of ctDNA to reflect disease dynamics in key leukemia infiltration sites. Conclusions: Notably, ctDNA analysis proved to be a superior predictor of MRD compared to PB assessment alone, especially in instances of low disease burden. These findings highlight the potential of ctDNA as a sensitive biomarker for monitoring treatment response and detecting MRD in infant MLL-r ALL. Full article
(This article belongs to the Section Pediatric Oncology)
Show Figures

Figure 1

19 pages, 2205 KiB  
Article
An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation
by Mohamed W. Attwa, Ali S. Abdelhameed and Adnan A. Kadi
Medicina 2024, 60(12), 1914; https://doi.org/10.3390/medicina60121914 - 21 Nov 2024
Cited by 7 | Viewed by 1446
Abstract
Background and Objectives: Revumenib (SNDX-5613) is a powerful and specific inhibitor of the menin–KMT2A binding interaction. It is a small molecule that is currently being researched to treat KMT2A-rearranged (KMT2Ar) acute leukemias. Revumenib (RVB) has received Orphan Drug Designation from the US FDA [...] Read more.
Background and Objectives: Revumenib (SNDX-5613) is a powerful and specific inhibitor of the menin–KMT2A binding interaction. It is a small molecule that is currently being researched to treat KMT2A-rearranged (KMT2Ar) acute leukemias. Revumenib (RVB) has received Orphan Drug Designation from the US FDA for treating patients with AML. It has also been granted Fast Track designation by the FDA for treating pediatric and adult patients with R/R acute leukemias that have a KMT2Ar or NPM1 mutation. Materials and Methods: The target of this research was to create a fast, precise, green, and extremely sensitive UPLC-MS/MS technique for the estimation of the RVB level in human liver microsomes (HLMs), employing an ESI source. The validation procedures were carried out in accordance with the bioanalytical technique validation requirements established by the US Food and Drug Administration that involve linearity, selectivity, precision, accuracy, stability, matrix effect, and extraction recovery. The outcome data of the validation features of the UPLC-MS/MS approach were acceptable according to FDA guidelines. RVB parent ions were formed in the positive ESI source and its two fragment ions were estimated employing multiple reaction monitoring (MRM) mode. The separation of RVB and encorafenib was achieved using a C8 column (2.1 mm, 50 mm, and 3.5 µm) and isocratic mobile phase. Results: The RVB calibration curve linearity ranged from 1 to 3000 ng/mL (y = 0.6515x − 0.5459 and R2 = 0.9945). The inter-day precision and accuracy spanned from −0.23% to 11.33%, while the intra-day precision and accuracy spanned from −0.88% to 11.67%, verifying the reproducibility of the UPLC-MS/MS analytical technique. The sensitivity of the developed methodology demonstrated its capability to quantify RVB levels at an LOQ of 0.96 ng/mL. The AGREE score was 0.77, confirming the greenness of the current method. The low in vitro t1/2 (14.93 min) and high intrinsic clearance (54.31 mL/min/kg) of RVB revealed that RVB shares similarities with medications that have a high extraction ratio. Conclusions: The present LC-MS/MS approach is considered the first analytical approach with the application of metabolic stability assessment for RVB estimation in HLMs. These methods are essential for advancing the development of new pharmaceuticals, particularly in enhancing metabolic stability. Full article
(This article belongs to the Special Issue Acute Myeloid Leukemia: Update on Diagnosis, Therapy, and Monitoring)
Show Figures

Figure 1

18 pages, 1512 KiB  
Review
Targeting Menin in Acute Myeloid Leukemia: Therapeutic Advances and Future Directions
by Sandhya Dhiman, Vikram Dhillon and Suresh Kumar Balasubramanian
Cancers 2024, 16(22), 3743; https://doi.org/10.3390/cancers16223743 - 6 Nov 2024
Cited by 3 | Viewed by 3893
Abstract
Germline mutations in the MEN1 gene encoding menin protein cause multiple endocrine neoplasia type 1 (MEN1) syndrome. Recent evidence suggests that inhibiting the interaction of menin with its crucial oncogenic protein partners represents a promising therapeutic strategy to AML. Menin plays a critical [...] Read more.
Germline mutations in the MEN1 gene encoding menin protein cause multiple endocrine neoplasia type 1 (MEN1) syndrome. Recent evidence suggests that inhibiting the interaction of menin with its crucial oncogenic protein partners represents a promising therapeutic strategy to AML. Menin plays a critical role in lysine methyltransferase 2A (KMT2A)-gene-rearranged and NPM1-m acute leukemias, both associated with adverse outcomes with current standard therapies, especially in the relapsed/refractory setting. Disrupting the menin–KMT2A interaction affects the proleukemogenic HOX/MEIS transcription program. This disruption leads to the differentiation of KMT2Ar and NPM1-m AML cells. Small molecular inhibitors of the menin–KMT2A interaction target the central cavity of MEN1 to inhibit the MEN1-KMT2A interaction and could target a similar transcriptional dependency in other leukemia subsets, broadening their therapeutic potential. These agents, both as monotherapies and in combination with synergistic drugs, are undergoing preclinical and clinical evaluation with promising early results. With the growing literature around menin inhibitors in AML, we discussed the biology of menin, its mechanism of action, its interacting partners in leukemia, possible inhibitors, their implications, synergistic drugs, and future therapeutic strategies in this review. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

8 pages, 1208 KiB  
Case Report
BRAF V600E-Mutant Acute Myeloid Leukemia: A Case Series and Literature Review of a Rare Entity
by Giby V. George, Andrew G. Evans and Audrey N. Jajosky
Genes 2024, 15(11), 1383; https://doi.org/10.3390/genes15111383 - 28 Oct 2024
Cited by 2 | Viewed by 2044
Abstract
Background: Although BRAF V600E mutations are common in solid tumors and select hematologic neoplasms, they are reported less frequently in myeloid malignancies. Of the cases of BRAF V600E-mutant acute myeloid leukemia (AML) that have been described, most display monocytic morphology and concurrent KMT2A [...] Read more.
Background: Although BRAF V600E mutations are common in solid tumors and select hematologic neoplasms, they are reported less frequently in myeloid malignancies. Of the cases of BRAF V600E-mutant acute myeloid leukemia (AML) that have been described, most display monocytic morphology and concurrent KMT2A rearrangement. Strikingly, all cases have been associated with poor survival. Case Presentation: Here, we report two cases of AML, one diagnosed in an elderly male with metastatic lung adenocarcinoma and hepatocellular carcinoma and the other diagnosed in a young boy previously treated for B-cell acute lymphoblastic leukemia. Peripheral blood NGS revealed oncogenic mutations in BRAF p.V600E (VAF = 33%), TET2 p.M508Cfs*25 (VAF = 48%), TET2 p.C211* (VAF = 49%), ZRSR2 p.R295* (VAF = 71%), BRAF p.N581S (VAF = 6%), and EZH2 c.118-2A>G, p.? (VAF = 4%) in case 1 and BRAF p.V600E (VAF = 1%) and KRAS p.G12A (VAF = 28%) in case 2. Cytogenetic workup revealed a complex karyotype in case 1 and an abnormal karyotype with non-clonal aberrations and KMT2A (MLL) rearrangement in case 2. Morphologically, both patients were found to have AML with monocytic features. The post-mortem examination of case 2 also revealed extensive solid organ infiltration, consistent with a monocytic leukemia. Both patients died within days of diagnosis, demonstrating the lethality of this molecular subgroup of AML. Conclusions: Our cases add to the literature, highlighting the poor prognosis of patients diagnosed with BRAF-mutant AML. Although it is uncertain whether the complex karyotype and somatic mutations observed in case 1 and KMT2A rearrangement and variants identified in case 2 may have either independently or cooperatively conferred a poor prognosis, we contend that additional comprehensive studies are needed to further understand the pathophysiology and prognosis of BRAF mutations in AML. We further posit whether patients with BRAF V600E-mutant AML may benefit from the combined use of BRAF inhibitors and/or RAS-pathway-targeting regimens, which are currently FDA-approved for the treatment of BRAF V600-mutant solid tumors and BRAF-mutant histiocytic neoplasms. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 578 KiB  
Review
KMT2A Rearrangements in Leukemias: Molecular Aspects and Therapeutic Perspectives
by Luca Guarnera, Matteo D’Addona, Carlos Bravo-Perez and Valeria Visconte
Int. J. Mol. Sci. 2024, 25(16), 9023; https://doi.org/10.3390/ijms25169023 - 20 Aug 2024
Cited by 8 | Viewed by 5986 | Correction
Abstract
KMT2A (alias: mixed-lineage leukemia [MLL]) gene mapping on chromosome 11q23 encodes the lysine-specific histone N-methyltransferase 2A and promotes transcription by inducing an open chromatin conformation. Numerous genomic breakpoints within the KMT2A gene have been reported in young children and adults with [...] Read more.
KMT2A (alias: mixed-lineage leukemia [MLL]) gene mapping on chromosome 11q23 encodes the lysine-specific histone N-methyltransferase 2A and promotes transcription by inducing an open chromatin conformation. Numerous genomic breakpoints within the KMT2A gene have been reported in young children and adults with hematologic disorders and are present in up to 10% of acute leukemias. These rearrangements describe distinct features and worse prognosis depending on the fusion partner, characterized by chemotherapy resistance and high rates of relapse, with a progression-free survival of 30–40% and overall survival below 25%. Less intensive regimens are used in pediatric patients, while new combination therapies and targeted immunotherapeutic agents are being explored in adults. Beneficial therapeutic effects, and even cure, can be reached with hematopoietic stem cell transplantation, mainly in young children with dismal molecular lesions; however, delayed related toxicities represent a concern. Herein, we summarize the translocation partner genes and partial tandem duplications of the KMT2A gene, their molecular impact, clinical aspects, and novel targeted therapies. Full article
(This article belongs to the Special Issue Molecular Mechanism of Leukemia 2.0)
Show Figures

Figure 1

12 pages, 2074 KiB  
Article
Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management
by Seo Wan Kim, Namsoo Kim, Yu Jeong Choi, Seung-Tae Lee, Jong Rak Choi and Saeam Shin
Cancers 2024, 16(13), 2467; https://doi.org/10.3390/cancers16132467 - 5 Jul 2024
Viewed by 1749
Abstract
Gene fusions are key drivers in acute leukemia, impacting diagnosis and treatment decisions. We analyzed 264 leukemia patients using targeted RNA sequencing with conventional karyotyping and reverse transcription polymerase chain reaction (RT-PCR). Leukemic fusions were detected in 127 patients (48.1%). The new guidelines [...] Read more.
Gene fusions are key drivers in acute leukemia, impacting diagnosis and treatment decisions. We analyzed 264 leukemia patients using targeted RNA sequencing with conventional karyotyping and reverse transcription polymerase chain reaction (RT-PCR). Leukemic fusions were detected in 127 patients (48.1%). The new guidelines introduced additional diagnostic criteria, expanding the spectrum of gene fusions. We discovered three novel fusions (RUNX1::DOPEY2, RUNX1::MACROD2, and ZCCHC7::LRP1B). We analyzed recurrent breakpoints for the KMT2A and NUP98 rearrangements. Targeted RNA sequencing showed consistent results with RT-PCR in all tested samples. However, when compared to conventional karyotyping, we observed an 83.3% concordance rate, with 29 cases found only in targeted RNA sequencing, 7 cases with discordant results, and 5 cases found only in conventional karyotyping. For the five cases where known leukemic gene rearrangements were suspected only in conventional karyotyping, we conducted additional messenger RNA sequencing in four cases and proved no pathogenic gene rearrangements. Targeted RNA sequencing proved advantageous for the rapid and accurate interpretation of gene rearrangements. The concurrent use of multiple methods was essential for a comprehensive evaluation. Comprehensive molecular analysis enhances our understanding of leukemia’s genetic basis, aiding diagnosis and classification. Advanced molecular techniques improve clinical decision-making, offering potential benefits. Full article
(This article belongs to the Section Cancer Informatics and Big Data)
Show Figures

Figure 1

14 pages, 4700 KiB  
Article
Distinct Responses to Menin Inhibition and Synergy with DOT1L Inhibition in KMT2A-Rearranged Acute Lymphoblastic and Myeloid Leukemia
by Fabienne R. S. Adriaanse, Pauline Schneider, Susan T. C. J. M. Arentsen-Peters, Ana M. Neves da Fonseca, Janine Stutterheim, Rob Pieters, C. Michel Zwaan and Ronald W. Stam
Int. J. Mol. Sci. 2024, 25(11), 6020; https://doi.org/10.3390/ijms25116020 - 30 May 2024
Cited by 8 | Viewed by 2790
Abstract
Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have [...] Read more.
Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

8 pages, 1108 KiB  
Article
BRAF Mutations in Patients with Myeloid Neoplasms: A Cancer Center Multigene Next-Generation Sequencing Analysis Experience
by Fei Fei, Caitlin Caporale, Lisa Chang, Barbara K. Fortini, Haris Ali, Diana Bell, Anthony Stein, Guido Marcucci, Milhan Telatar and Michelle Afkhami
Int. J. Mol. Sci. 2024, 25(10), 5183; https://doi.org/10.3390/ijms25105183 - 9 May 2024
Cited by 2 | Viewed by 2520
Abstract
BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single [...] Read more.
BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single cancer center. We conducted a retrospective review of patients with myeloid neoplasms who underwent the HopeSeq studies between January 2018 and September 2023. A total of 14 patients with myeloid neoplasms carrying BRAF mutations were included in our cohort. The clinical, pathological, and molecular features of these patients were investigated. Our study indicates that BRAF mutations are rare in myeloid neoplasms, constituting only 0.53% (14/2632) of all myeloid neoplasm cases, with the most common BRAF mutation being BRAF V600E (4/14; 28.6%). Interestingly, we observed that six out of seven patients with acute myeloid leukemia (AML) exhibited AML with monocytic differentiation, and all the patients with AML exhibited an extremely poor prognosis compared to those without BRAF mutations. TET2 (5/14; 35.7%), ASXL1 (4/14; 28.6%), and JAK2 (4/14; 28.6%) were the three most frequently co-mutated genes in these patients. Moreover, we noted concurrent KMT2A gene rearrangement with BRAF mutations in three patients with AML (3/7; 42.9%). Our study suggests that although BRAF mutations are rare in myeloid neoplasms, they play a crucial role in the pathogenesis of specific AML subtypes. Furthermore, RAS pathway alterations, including BRAF mutations, are associated with KMT2A gene rearrangement in AML. However, these findings warrant further validation in larger studies. Full article
(This article belongs to the Special Issue Molecular Mechanism of Cancer Research and Therapies)
Show Figures

Figure 1

Back to TopTop