Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = K-RasG12D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9065 KB  
Article
Dauricine Impedes the Tumorigenesis of Lung Adenocarcinoma by Regulating Nrf2 and Reactive Oxygen Species
by Waleed Yousuf, Nimra Zafar Siddiqui, Perbhat Ali, Shaoxuan Cheng, Immad Ansari, Jialiang Song, Minghe Dai, Zhiyuan Qiu, Yue Zhu, Yaowen Zhang, Shuyan Liu, Yingqiu Zhang, Zhenhua Liu and Han Liu
Cells 2025, 14(10), 698; https://doi.org/10.3390/cells14100698 - 12 May 2025
Viewed by 817
Abstract
Dauricine has been shown to possess intriguing anti-cancerous activities against various malignancies. The current study examined the inhibitory effects of dauricine against lung adenocarcinoma with cell lines and animal models. MTT assay was performed in three different lung adenocarcinoma cell lines using a [...] Read more.
Dauricine has been shown to possess intriguing anti-cancerous activities against various malignancies. The current study examined the inhibitory effects of dauricine against lung adenocarcinoma with cell lines and animal models. MTT assay was performed in three different lung adenocarcinoma cell lines using a concentration range of dauricine. Colony formation, wound healing, Edu incorporation, and cell cycle analysis were conducted to investigate the impact of dauricine on lung adenocarcinoma cells in vitro. Moreover, flow cytometry was performed to observe the effect of dauricine on cellular ROS levels. The expression of redox regulator Nrf2 and apoptosis-related markers was assessed by Western blot. Importantly, the anti-tumor efficacy of dauricine was studied in vivo with two lung adenocarcinoma animal models, including a subcutaneous cell line-derived syngeneic model and an inducible orthotopic KRASG12D-driven lung adenocarcinoma model. The proliferation and migration of lung adenocarcinoma cells were significantly reduced by dauricine treatment. Flow cytometry analysis revealed that dauricine treatment resulted in cell cycle arrest at G0/G1 phases in A549, H1299, and A427 cells. Intracellular ROS levels were markedly augmented by dauricine treatment. Notably, dauricine led to the downregulation of the master redox regulator Nrf2. Meanwhile, dauricine treatment resulted in decreased Bcl-2 levels but elevated expression of BAX and cleaved Caspase 3. Finally, dauricine demonstrated significant efficacy in restricting tumor progression in both subcutaneous syngeneic and orthotopic lung adenocarcinoma models. Our results corroborate the anti-cancer effects of dauricine against lung adenocarcinoma with in vivo and in vitro analyses. Our findings also provide mechanistic evidence that links the impact of dauricine to cell cycle blockage and ROS-mediated apoptosis. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
Show Figures

Figure 1

24 pages, 5400 KB  
Article
Design, Synthesis, Anticancer Evaluation and Molecular Docking of Pyrimidine, Pyrido[4,3-d]pyrimidine and 5,6,7,8-Tetrahydropyrido[3,4-d]pyrimidine Derivatives as Novel KRAS-G12D Inhibitors and PROTACs
by Hailong Yang, Lu Gan and Huabei Zhang
Pharmaceuticals 2025, 18(5), 696; https://doi.org/10.3390/ph18050696 - 8 May 2025
Viewed by 1895
Abstract
Background: KRAS-G12D mutations drive 20–50% of pancreatic/biliary cancers yet remain challenging to target due to GTP-pocket conservation and high cellular GTP levels. While allosteric inhibitors targeting the SWII pocket (e.g., MRTX1133) show promise, limited chemical diversity and paradoxical cellular/enzymatic activity relationships necessitate [...] Read more.
Background: KRAS-G12D mutations drive 20–50% of pancreatic/biliary cancers yet remain challenging to target due to GTP-pocket conservation and high cellular GTP levels. While allosteric inhibitors targeting the SWII pocket (e.g., MRTX1133) show promise, limited chemical diversity and paradoxical cellular/enzymatic activity relationships necessitate the exploration of novel scaffolds. This study aims to develop KRAS-G12D inhibitors and PROTACs to offer a selection of new chemical entities through systematic structure–activity optimization and evaluate their therapeutic potential through PROTAC derivatization. Methods: Eleven compounds featuring heterocyclic cores (pyrimidine/pyrido[4,3-d]pyrimidine/5,6,7,8-tetrahydroprodo[3,4-d]pyrimidine) were designed via structure-based drug design. Antiproliferative activity against KRAS-G12D (Panc1), KRAS-G13D (HCT116) and wild-type (A549) cells was assessed using the CCK-8 assay. KRAS-G12D enzymatic inhibition was measured using a GTPase activity assay. Molecular docking simulations (Sybyl 2.0; PDB:7RPZ) elucidated binding modes. Two PROTACs were synthesized from lead compounds by conjugating E3 ligase linkers. All the novel inhibitors and PROTACs were characterized by means of NMR or HRMS. Results: Compound 10c demonstrated selective anti-proliferation in Panc1 cells (IC50 = 1.40 μM) with 4.9-fold greater selectivity over wild-type cells, despite weak enzymatic inhibition (IC50 > 10 μM). Docking revealed critical hydrogen bonds between its protonated 3,8-diazabicyclo[3.2.1]octane moiety and Asp12/Gly60. The enzymatic inhibitor 10k showed potent KRAS-G12D inhibition (IC50 = 0.009 μM) through homopiperazine-mediated interactions with Glu92/His95. Derived PROTACs 26a/b exhibited reduced potency (IC50 = 3–5 μM vs. parental 10k: 2.22 μM), potentially due to impaired membrane permeability. Conclusions: Eleven novel KRAS-G12D inhibitors with a seven-membered ring pharmacophore were synthesized. Compound 10c showed strong anti-proliferative activity, while 10k exhibited potent enzymatic inhibition. Two PROTACs were designed but showed no clear advantage over 10k. This study provides valuable insights for KRAS-targeted drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 2686 KB  
Article
In Silico Identification of Putative Allosteric Pockets and Inhibitors for the KRASG13D-SOS1 Complex in Cancer Therapy
by Zehra Sarica, Ozge Kurkcuoglu and Fethiye Aylin Sungur
Int. J. Mol. Sci. 2025, 26(7), 3293; https://doi.org/10.3390/ijms26073293 - 2 Apr 2025
Cited by 1 | Viewed by 1460
Abstract
RAS mutations occur in about 30% of human cancers, leading to enhanced RAS signaling and tumor growth. KRAS is the most commonly mutated oncogene in human tumors, especially lung, pancreatic, and colorectal cancers. Direct targeting of KRAS is difficult due to its highly [...] Read more.
RAS mutations occur in about 30% of human cancers, leading to enhanced RAS signaling and tumor growth. KRAS is the most commonly mutated oncogene in human tumors, especially lung, pancreatic, and colorectal cancers. Direct targeting of KRAS is difficult due to its highly conserved sequence; but, its complex with the guanine nucleotide exchange factor Son of Sevenless (SOS) 1 promises an attractive target for inhibiting RAS-mediated signaling. Here, we first revealed putative allosteric binding sites of the SOS1, KRASG12C-SOS1 complex, and the ternary KRASG13D-SOS1 complex structures using two network-based models, the essential site scanning analysis and the residue interaction network model. The results enabled us to identify two new putative allosteric pockets for the ternary KRASG13D-SOS1 complex. These were then screened together with the known ligand binding site against the natural compounds in the InterBioScreen (IBS) database using the Glide software package developed by Schrödinger, Inc. The docking poses of seven hit compounds were assessed using 400 ns long molecular dynamics (MD) simulations with two independent replicas using Desmond, coupled with thermal MM-GBSA calculations for the estimation of the binding free energy values. The structural skeleton of the seven proposed compounds consists of different functional groups and heterocyclic rings that possess anti-cancer activity and exhibit persistent interactions with key residues in binding pockets throughout the MD simulations. STOCK1N-09823 was determined as the most promising hit that promoted the disruption of the interactions R73 (chain A)/N879 and R73 (chain A)/Y884, which are key for SOS1-mediated KRAS activation. Full article
Show Figures

Figure 1

15 pages, 2017 KB  
Article
Oncogenic KRASG12D Transfer from Platelet-like Particles Enhances Proliferation and Survival in Non-Small Cell Lung Cancer Cells
by Jorge Ceron-Hernandez, Gonzalo Martinez-Navajas, Jose Manuel Sanchez-Manas, María Pilar Molina, Jiajun Xie, Inés Aznar-Peralta, Abel Garcia-Diaz, Sonia Perales, Carolina Torres, Maria J. Serrano and Pedro J. Real
Int. J. Mol. Sci. 2025, 26(7), 3264; https://doi.org/10.3390/ijms26073264 - 1 Apr 2025
Cited by 1 | Viewed by 968
Abstract
In the tumor context, platelets play a significant role in primary tumor progression, dissemination and metastasis. Analysis of this interaction in various cancers, such as non-small cell lung cancer (NSCLC), demonstrate that platelets can both transfer and receive biomolecules (e.g. RNA and proteins) [...] Read more.
In the tumor context, platelets play a significant role in primary tumor progression, dissemination and metastasis. Analysis of this interaction in various cancers, such as non-small cell lung cancer (NSCLC), demonstrate that platelets can both transfer and receive biomolecules (e.g. RNA and proteins) to and from the tumor at different stages, becoming tumor-educated platelets. To investigate how platelets are able to transfer oncogenic material, we developed in vitro platelet-like particles (PLPs), from a differentiated MEG-01 cell line, that stably carry RNA and protein of the KRASG12D oncogene in fusion with GFP. We co-cultured these PLPs with NSCLC H1975 tumor cells to assess their ability to transfer this material. We observed that the generated platelets were capable of stably expressing the oncogene and transferring both its RNA and protein forms to tumor cells using qPCR and imaging techniques. Additionally, we found that coculturing PLPs loaded with GFP-KRASG12D with tumor cells increased their proliferative capacity at specific PLP concentrations. In conclusion, our study successfully engineered an MEG-01 cell line to produce PLPs carrying oncogenic GFP-KRASG12D simulating the tumor microenvironment, demonstrating the efficient transfer of this oncogene to tumor cells and its significant impact on enhancing proliferation. Full article
Show Figures

Figure 1

26 pages, 2937 KB  
Article
Inflammatory Stimuli and Fecal Microbiota Transplantation Accelerate Pancreatic Carcinogenesis in Transgenic Mice, Accompanied by Changes in the Microbiota Composition
by Agnieszka Świdnicka-Siergiejko, Jarosław Daniluk, Katarzyna Miniewska, Urszula Daniluk, Katarzyna Guzińska-Ustymowicz, Anna Pryczynicz, Milena Dąbrowska, Małgorzata Rusak, Michał Ciborowski and Andrzej Dąbrowski
Cells 2025, 14(5), 361; https://doi.org/10.3390/cells14050361 - 28 Feb 2025
Cited by 2 | Viewed by 1028
Abstract
An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota [...] Read more.
An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota by 16s RNA-based metagenomic analysis in mice with inducible acinar transgenic expressions of KrasG12D, and age- and sex-matched control mice that were exposed to inflammatory stimuli and fecal microbiota obtained from mice with PDAC. Time- and inflammatory-dependent stool and pancreatic bacterial composition alterations and stool alpha microbiota diversity reduction were observed only in mice with a Kras mutation that developed advanced pancreatic changes. Stool Actinobacteriota abundance and pancreatic Actinobacteriota and Bifidobacterium abundances increased. In contrast, stool abundance of Firmicutes, Verrucomicrobiota, Spirochaetota, Desulfobacterota, Butyricicoccus, Roseburia, Lachnospiraceae A2, Lachnospiraceae unclassified, and Oscillospiraceae unclassified decreased, and pancreatic detection of Alloprevotella and Oscillospiraceae uncultured was not observed. Furthermore, FMT accelerated tumorigenesis, gradually decreased the stool alpha diversity, and changed the pancreatic and stool microbial composition in mice with a Kras mutation. Specifically, the abundance of Actinobacteriota, Bifidobacterium and Faecalibaculum increased, while the abundance of genera such as Lachnospiraceace A2 and ASF356, Desulfovibrionaceace uncultured, and Roseburia has decreased. In conclusion, pancreatic carcinogenesis in the presence of an oncogenic Kras mutation stimulated by chronic inflammation and FMT dynamically changes the stool and pancreas microbiota. In particular, a decrease in stool microbiota diversity and abundance of bacteria known to be involved in short-fatty acids production were observed. PDAC mouse model can be used for further research on microbiota–PDAC interactions and towards more personalized and effective cancer therapies. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

23 pages, 1072 KB  
Review
Recent Anti-KRASG12D Therapies: A “Possible Impossibility” for Pancreatic Ductal Adenocarcinoma
by Navid Sobhani, Matteo Pittacolo, Alberto D’Angelo and Giovanni Marchegiani
Cancers 2025, 17(4), 704; https://doi.org/10.3390/cancers17040704 - 19 Feb 2025
Cited by 3 | Viewed by 5761
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the metastatic setting. Methods: The pressing need to find better therapeutic methods brought about the discovery of new targeted therapies against the infamous KRAS mutations, the major oncological drivers of PDAC. Results: The most common KRAS mutation is KRASG12D, which causes a conformational change in the protein that constitutively activates downstream signaling pathways driving cancer hallmarks. Novel anti-KRASG12D therapies have been developed for solid-organ tumors, including small compounds, pan-RAS inhibitors, protease inhibitors, chimeric T cell receptors, and therapeutic vaccines. Conclusions: This comprehensive review summarizes current knowledge on the biology of KRAS-driven PDAC, the latest therapeutic options that have been experimentally validated, and developments in ongoing clinical trials. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

22 pages, 7069 KB  
Article
APOL1 Modulates Renin–Angiotensin System
by Vinod Kumar, Prabhjot Kaur, Kameshwar Ayasolla, Alok Jha, Amen Wiqas, Himanshu Vashistha, Moin A. Saleem, Waldemar Popik, Ashwani Malhotra, Christoph A. Gebeshuber, Karl Skorecki and Pravin C. Singhal
Biomolecules 2024, 14(12), 1575; https://doi.org/10.3390/biom14121575 - 10 Dec 2024
Cited by 1 | Viewed by 1879
Abstract
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin–angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing [...] Read more.
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin–angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels). G1/DPDs and G2/DPDs also showed increased mRNA expression for Angiotensinogen and Angiotensin II Type 1 (AT1R) and 2 (AT2R) receptors. Protein concentrations of Brain Acid-Soluble Protein [BASP]1, Enhancer of Zeste Homolog [EZH]2, Histone Deacetylase [HDAC]1, and Histone 3 Lysine27 trimethylated [H3K27me3] in WT1-IP (immunoprecipitated proteins with WT1 antibody) fractions were significantly higher in G0/DPDs vs. G1/DPD and G2/DPDs. Moreover, DPD-silenced BASP1 displayed an increased expression of renin. Notably, VDR agonist-treated DPDs showed escalated levels of VDR and a higher expression of PDMMs, but an attenuated expression of renin. Human Embryonic Kidney (HEK) cells transfected with increasing APOL1(G0) plasmid concentrations showed a corresponding reduction in renin mRNA expression. Bioinformatics studies predicted the miR193a target sites in the VDR 3′UTR (untranslated region), and the luciferase assay confirmed the predicted sites. As expected, podocytes transfected with miR193a plasmid displayed a reduced VDR and an enhanced expression of renin. Renal cortical section immunolabeling in miR193a transgenic (Tr) mice showed renin-expressing podocytes. Kidney tissue extracts from miR193aTr mice also showed reduced expression of VDR and PDMMs, but enhanced expression of Renin. Blood Ang II levels were higher in miR193aTr, APOLG1, and APOL1G1/G2 mice when compared to control mice. Based on these findings, miR193a regulates the activation of RAS and podocyte molecular markers through modulation of VDR and WT1 in the APOL1 milieu. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 716 KB  
Review
Genetic Variants of Obesity in Malaysia: A Scoping Review
by Siti Sarah Hamzah, Liyana Ahmad Zamri, Norhashimah Abu Seman and Nur Azlin Zainal Abidin
Genes 2024, 15(10), 1334; https://doi.org/10.3390/genes15101334 - 17 Oct 2024
Cited by 1 | Viewed by 2533
Abstract
Background: Obesity is a pressing public health issue in Malaysia, involving not only excess weight but also complex metabolic and physiological changes. Addressing these complexities requires comprehensive strategies, including understanding the population-level differences in obesity susceptibility. This review aims to compile the genetic [...] Read more.
Background: Obesity is a pressing public health issue in Malaysia, involving not only excess weight but also complex metabolic and physiological changes. Addressing these complexities requires comprehensive strategies, including understanding the population-level differences in obesity susceptibility. This review aims to compile the genetic variants studied among Malaysians and emphasize their implications for obesity risk. Methods: Relevant articles published up to March 2024 were extracted from the Scopus, PubMed, and ScienceDirect databases. The review process was conducted in accordance with the PRISMA-ScR guidelines. From an initial pool of 579 articles, 35 of these were selected for the final review. Results: The identified gene variants, including LEPR (K656N), LEP (G2548A—Indian only), ADIPOQ (rs17366568), UCP2 (45bp-I/D), ADRB3 (rs4994), MC3R (rs3827103), PPARγ (pro12Ala—Malay only), IL1RA (intron 2 VNTR), NFKB1 (rs28362491), and FADS1 (rs174547—Indian only), showed significant associations with obesity as measured by the respective studies. Conclusions: Overall, more intensive genetic research is needed, starting with population-based profiling of genetic data on obesity, including among children. Sociocultural contexts and environmental factors influence variations in genetic elements, highlighting the need for targeted interventions to mitigate the impacts of obesity in the population. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Metabolic Diseases)
Show Figures

Figure 1

18 pages, 7134 KB  
Article
Atypical Exon 2/3 Mutants G48C, Q43K, and E37K Present Oncogenic Phenotypes Distinct from Characterized NRAS Variants
by Mark Anthony G. Fran, Dominique Mickai G. Leaño, James Allen D. de Borja, Charles John T. Uy, Aleq Adrianne R. Andresan, Dennis L. Sacdalan and Reynaldo L. Garcia
Cells 2024, 13(20), 1691; https://doi.org/10.3390/cells13201691 - 12 Oct 2024
Viewed by 2087
Abstract
NRAS belongs to the RAS family of GTPases. In colorectal cancer (CRC), NRAS mutations are rare compared to KRAS, but may lead to worse outcomes. We report the functional characterization of the novel NRAS mutants—G48C, Q43K, and E37K—identified in Filipino young-onset CRC patients. [...] Read more.
NRAS belongs to the RAS family of GTPases. In colorectal cancer (CRC), NRAS mutations are rare compared to KRAS, but may lead to worse outcomes. We report the functional characterization of the novel NRAS mutants—G48C, Q43K, and E37K—identified in Filipino young-onset CRC patients. Unlike previously characterized NRAS mutants with no apparent effects on cell proliferation, these mutants enhanced proliferation of both HCT116 and NIH3T3 cells. This was confirmed in 3D spheroid assays to mimic the spatial organization of cells. G48C and E37K showed apoptosis resistance in both cell lines, and Q43K showed resistance in HCT116 cells. All three showed no effect on cellular migration in NIH3T3, but G48C enhanced the migration rate of HCT116 cells. Actin staining of NIH3T3 cells expressing the mutants showed a shrunken cytoplasm and transient structures associated with motility and invasiveness. Docking simulations show that GDP is only able to bind fully within the binding pocket of wild-type NRAS, but not in the mutants. Further, G48C, Q43K, and E37K all have less negative ΔG values, indicating a weaker GDP-binding affinity compared to wild-type NRAS. Taken together, the results suggest that oncogenic readouts of NRAS mutants are codon- and mutation-specific, with potential repercussions on the aggressiveness, resistance, and therapeutic response. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

15 pages, 2888 KB  
Article
Repurposing of c-MET Inhibitor Tivantinib Inhibits Pediatric Neuroblastoma Cellular Growth
by Rameswari Chilamakuri and Saurabh Agarwal
Pharmaceuticals 2024, 17(10), 1350; https://doi.org/10.3390/ph17101350 - 9 Oct 2024
Cited by 2 | Viewed by 1904
Abstract
Background: Dysregulation of receptor tyrosine kinase c-MET is known to promote tumor development by stimulating oncogenic signaling pathways in different cancers, including pediatric neuroblastoma (NB). NB is an extracranial solid pediatric cancer that accounts for almost 15% of all pediatric cancer-related deaths, with [...] Read more.
Background: Dysregulation of receptor tyrosine kinase c-MET is known to promote tumor development by stimulating oncogenic signaling pathways in different cancers, including pediatric neuroblastoma (NB). NB is an extracranial solid pediatric cancer that accounts for almost 15% of all pediatric cancer-related deaths, with less than a 50% long-term survival rate. Results: In this study, we analyzed a large cohort of primary NB patient data and revealed that high MET expression strongly correlates with poor overall survival, disease progression, relapse, and high MYCN levels in NB patients. To determine the effects of c-MET in NB, we repurposed a small molecule inhibitor, tivantinib, and found that c-MET inhibition significantly inhibits NB cellular growth. Tivantinib significantly blocks NB cell proliferation and 3D spheroid tumor formation and growth in different MYCN-amplified and MYCN-non-amplified NB cell lines. Furthermore, tivantinib blocks the cell cycle at the G2/M phase transition and induces apoptosis in different NB cell lines. As expected, c-MET inhibition by tivantinib inhibits the expression of multiple genes in PI3K, STAT, and Ras cell signaling pathways. Conclusions: Overall, our data indicate that c-MET directly regulates NB growth and 3D spheroid growth, and c-MET inhibition by tivantinib may be an effective therapeutic approach for high-risk NB. Further developing c-MET targeted therapeutic approaches and combining them with current therapies may pave the way for effectively translating novel therapies for NB and other c-MET-driven cancers. Full article
(This article belongs to the Special Issue New Targets and Experimental Therapeutic Approaches for Cancers)
Show Figures

Graphical abstract

19 pages, 4526 KB  
Article
Discovery of Coumarins from Zanthoxylum dimorphophyllum var. spinifoliumas and Their Potential against Rheumatoid Arthritis
by Caixia Du, Xingyu Li, Junlei Chen, Lili Luo, Chunmao Yuan, Jue Yang, Xiaojiang Hao and Wei Gu
Molecules 2024, 29(18), 4395; https://doi.org/10.3390/molecules29184395 - 16 Sep 2024
Cited by 2 | Viewed by 1487
Abstract
In the present study, a series of coumarins, including eight undescribed bis-isoprenylated ones Spinifoliumin A-H, were isolated and identified from the aerial parts of Zanthoxylum dimorphophyllum var. spinifolium (ZDS), a plant revered in traditional Chinese medicine, particularly for treating rheumatoid arthritis (RA). The structures [...] Read more.
In the present study, a series of coumarins, including eight undescribed bis-isoprenylated ones Spinifoliumin A-H, were isolated and identified from the aerial parts of Zanthoxylum dimorphophyllum var. spinifolium (ZDS), a plant revered in traditional Chinese medicine, particularly for treating rheumatoid arthritis (RA). The structures of the compounds were elucidated using 1D and 2D NMR spectroscopy, complemented by ECD, [Rh2(OCOCF3)4]-induced ECD, Mo2(OAc)4 induced ECD, IR, and HR-ESI-MS mass spectrometry. A network pharmacology approach allowed for predicting their anti-RA mechanisms and identifying the MAPK and PI3K-Akt signaling pathways, with EGFR as a critical gene target. A CCK-8 method was used to evaluate the inhibition activities on HFLS-RA cells of these compounds. The results demonstrated that Spinifoliumin A, B, and D-H are effective at preventing the abnormal proliferation of LPS-induced HFLS-RA cells. The results showed that compounds Spinifoliumin A, D, and G can significantly suppress the levels of IL-1β, IL-6, and TNF-α. Moreover, molecular docking methods were utilized to confirm the high affinity between Spinifoliumin A, D, and G and EGFR, SRC, and JUN, which were consistent with the results of network pharmacology. This study provides basic scientific evidence to support ZDS’s traditional use and potential clinical application. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

24 pages, 2059 KB  
Review
Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens
by Qing Hao, Yuhang Long, Yi Yang, Yiqi Deng, Zhenyu Ding, Li Yang, Yang Shu and Heng Xu
Vaccines 2024, 12(7), 717; https://doi.org/10.3390/vaccines12070717 - 27 Jun 2024
Cited by 7 | Viewed by 5803
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) [...] Read more.
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies. Full article
Show Figures

Figure 1

17 pages, 5510 KB  
Article
Down-Regulation of AKT Proteins Slows the Growth of Mutant-KRAS Pancreatic Tumors
by Chuankai Chen, Ya-Ping Jiang, Inchul You, Nathanael S. Gray and Richard Z. Lin
Cells 2024, 13(12), 1061; https://doi.org/10.3390/cells13121061 - 19 Jun 2024
Cited by 3 | Viewed by 3069
Abstract
Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand [...] Read more.
Serine/threonine kinase AKT isoforms play a well-established role in cell metabolism and growth. Most pancreatic adenocarcinomas (PDACs) harbor activation mutations of KRAS, which activates the PI3K/AKT signaling pathway. However, AKT inhibitors are not effective in the treatment of pancreatic cancer. To better understand the role of AKT signaling in mutant-KRAS pancreatic tumors, this study utilized proteolysis-targeting chimeras (PROTACs) and CRISPR-Cas9-genome editing to investigate AKT proteins. The PROTAC down-regulation of AKT proteins markedly slowed the growth of three pancreatic tumor cell lines harboring mutant KRAS. In contrast, the inhibition of AKT kinase activity alone had very little effect on the growth of these cell lines. The concurrent genetic deletion of all AKT isoforms (AKT1, AKT2, and AKT3) in the KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cell line also dramatically slowed its growth in vitro and when orthotopically implanted in syngeneic mice. Surprisingly, insulin-like growth factor-1 (IGF-1), but not epidermal growth factor (EGF), restored KPC cell growth in serum-deprived conditions, and the IGF-1 growth stimulation effect was AKT-dependent. The RNA-seq analysis of AKT1/2/3-deficient KPC cells suggested that reduced cholesterol synthesis may be responsible for the decreased response to IGF-1 stimulation. These results indicate that the presence of all three AKT isoforms supports pancreatic tumor cell growth, and the pharmacological degradation of AKT proteins may be more effective than AKT catalytic inhibitors for treating pancreatic cancer. Full article
Show Figures

Figure 1

20 pages, 3862 KB  
Article
Triple Blockade of Oncogenic RAS Signaling Using KRAS and MEK Inhibitors in Combination with Irradiation in Pancreatic Cancer
by Xuan Wang, Johanna Breuer, Stephan Garbe, Frank Giordano, Peter Brossart, Georg Feldmann and Savita Bisht
Int. J. Mol. Sci. 2024, 25(11), 6249; https://doi.org/10.3390/ijms25116249 - 6 Jun 2024
Cited by 2 | Viewed by 2716
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1–2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay. Full article
(This article belongs to the Special Issue Therapeutic Targets in Pancreatic Cancer)
Show Figures

Figure 1

10 pages, 2885 KB  
Case Report
Spontaneous Remission of Blastic Plasmacytoid Dendritic Cell Neoplasm: A Case Report
by Tamara Castaño-Bonilla, Raquel Mata, Daniel Láinez-González, Raquel Gonzalo, Susana Castañón, Francisco Javier Díaz de la Pinta, Carlos Blas, José L. López-Lorenzo and Juan Manuel Alonso-Domínguez
Medicina 2024, 60(5), 807; https://doi.org/10.3390/medicina60050807 - 14 May 2024
Viewed by 2445
Abstract
Spontaneous remissions (SRs) in blastic plasmacytoid dendritic cell neoplasms (BPDCNs) are infrequent, poorly documented, and transient. We report a 40-year-old man presenting with bycitopenia and soft tissue infection. The bone marrow exhibited 3% abnormal cells. Immunophenotyping of these cells revealed the antigens CD45+ [...] Read more.
Spontaneous remissions (SRs) in blastic plasmacytoid dendritic cell neoplasms (BPDCNs) are infrequent, poorly documented, and transient. We report a 40-year-old man presenting with bycitopenia and soft tissue infection. The bone marrow exhibited 3% abnormal cells. Immunophenotyping of these cells revealed the antigens CD45+ (dim), CD34+, CD117+, CD123+ (bright), HLA-DR+ (bimodal), CD56+ (bright), CD33+, CD13+, CD2+, and CD22+ (dim) and the partial expression of the CD10+, CD36+, and CD7+ antigens. All other myeloid, monocytic, and lymphoid antigens were negative. Genetic studies showed a complex karyotype and mutations in the TP53R337C and KRASG12D genes. On hospital admission, the patient showed a subcutaneous nodule on the right hand and left lower limb. Flow cytometry multiparameter (FCM) analysis showed the presence of 29% abnormal cells with the previously described immunophenotype. The patient was diagnosed with BPDCN. The patient was treated with broad-spectrum antibiotics for soft tissue infection, which delayed therapy for BPDCN. No steroids or chemotherapeutic or hypomethylating agents were administered. His blood cell counts improved and skin lesions disappeared, until the patient relapsed five months after achieving spontaneous remission. About 60% of abnormal cells were identified. No changes in immunophenotype or the results of genetic studies were observed. The patient underwent a HyperCVAD chemotherapy regimen for six cycles. Consolidation therapy was performed via allogeneic bone marrow transplantation with an HLA-unrelated donor. One year after the bone marrow transplant, the patient died due to the progression of his underlying disease, coinciding with a respiratory infection caused by SARS-CoV-2. In the available literature, SRs are often linked to infections or other stimulators of the immune system, suggesting that powerful immune activation could play a role in controlling the leukemic clone. Nevertheless, the underlying mechanism of this phenomenon is not clearly understood. We hypothesize that the immune system would force the leukemic stem cell (LSC) to undergo a state of quiescence. This loss of replication causes the LSC progeny to die off, resulting in the SR of BPDCN. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

Back to TopTop